Decreased Nitrogen and Carbohydrate Metabolism Activity Leads to Grain Yield Reduction in Qingke Under Continuous Cropping
Abstract
1. Introduction
2. Results
2.1. Chlorophyll, N, P, and K Content in Qingke Leaf Under 23-Year Continuous Cropping (23y-CC) at Different Developmental Stages
2.1.1. Chlorophyll Contents
2.1.2. N, P, and K Contents
2.2. Nitrogen Metabolism Enzyme Activities in Qingke Leaf Under 23y-CC at Different Developmental Stages
2.2.1. Glutamate Synthase Activity
2.2.2. Glutamine Synthase Activity
2.2.3. Glutaminase Activity
2.2.4. Nitrate Reductase Activity
2.2.5. Nitrite Reductase Activity
2.3. Sugar Content in Qingke Leaf Under 23y-CC at Different Developmental Stages
2.3.1. Soluble Sugar Content
2.3.2. Starch Content
2.4. Sucrose Metabolism Enzyme Activity in Qingke Leaf Under 23y-CC at Different Developmental Stages
2.4.1. Sucrose Synthase Activity
2.4.2. Sucrose Phosphate Synthase Activity
2.4.3. Sucrose Phosphorylase Activity
2.4.4. Invertase Activity
2.5. Starch Metabolism Enzyme Activity in Qingke Leaf Under 23y-CC at Different Developmental Stages
2.5.1. Pyrophosphate: Fructose-6-phosphate 1-Phosphotransferase Activity
2.5.2. Fructose-1.6-diphosphatase Activity
2.5.3. ADP-Glucose Pyrophosphorylase Activity
2.5.4. Pyruvate Phosphate Dual Kinase Activity
2.5.5. Triose Phosphate Isomerase Activity
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Experiments
4.2. Chlorophyll Content Quantification
4.3. Leaf Nutrient Content Analysis
4.4. Carbohydrate Profiling
4.5. Enzyme Activity Assays
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.K.; Zhang, X.M.; Ma, Q.H. Seed mixture of oats and common vetch on fertilizerand water-use reduction in a semi-arid alpine region. Soil Tillage Res. 2022, 219, 105329. [Google Scholar] [CrossRef]
- Ma, Q.H.; Zhang, X.M.; Wu, Y.H. Optimizing water and nitrogen strategies to improve forage oat yield and quality on the Tibetan Plateau using APSIM. Agronomy 2022, 12, 933. [Google Scholar] [CrossRef]
- Ma, X.J.; Zhang, Y.L.; Wei, F.; Zhao, L.H.; Zhou, J.L.; Qi, G.R.; Ma, Z.; Zhu, H.Q.; Feng, H.J.; Feng, Z.L. Applications of Chaetomium globosum CEF-082 improve soil health and mitigate the continuous cropping obstacles for Gossypium hirsutum. Ind. Crops Prod. 2023, 197, 116586. [Google Scholar] [CrossRef]
- Lambers, H. Phosphorus acquisition and utilization in plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Bao, A.L.; Zhao, Z.Q.; Ding, G.D.; Shi, L.; Xu, F.S.; Cai, H.M. The stable level of Glutamine synthetase 2 plays an important role in rice growth and in carbon-nitrogen metabolic balance. Int. J. Mol. Sci. 2015, 16, 12713–12736. [Google Scholar] [CrossRef] [PubMed]
- Mohn, M.A.; Thaqi, B.; Fischer-Schrader, K. Isoform-Specific NO Synthesis by Arabidopsis thaliana Nitrate Reductase. Plants 2019, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Wang, Y.; Chen, G.; Zhang, A.; Qian, Q. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat. Commun. 2019, 10, 5207. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.M.; Xu, H.L.; Ali, Q.; Jiang, H.R.; Wang, F.L.; Xu, Q.C.; Li, F.L.; Shen, Y. Nitrate reductase drives nutrition control and disease resistance in tomato (Solanum lycopersicum L.) cultivars. J. Soil Sci. Plant Nutr. 2024, 24, 818–830. [Google Scholar] [CrossRef]
- Islam, S.; Zhang, J.J.; Zhao, Y.; She, M.Y.; Ma, W.J. Genetic regulation of the traits contributing to wheat nitrogen use efficiency. Plant Sci. 2021, 303, 110759. [Google Scholar] [CrossRef] [PubMed]
- Cruz, C.; Bio, A.F.M.; Domínguez-Valdivia, M.D.; Aparicio-Tejo, P.M.; Lamsfuc, C.; Martins-Loução, M.C. How does glutamine synthetase activity determine plant tolerance to ammonium? Planta 2006, 223, 1068–1080. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.M.; Zhou, Y.; Xiao, J.H.; Li, X.H.; Zhang, Q.F.; Lian, X.M. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 2009, 28, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Oliver, G.; Gosset, G.; Sanchez-Pescador, R.; Lozoya, E.; Ku, L.M.; Becerril, B.; Valle, F.; Bolivar, F. Determination of the nucleotide sequence for the glutamate synthase structural genes of Escherichia coli K-12. Gene 1987, 60, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, M.; Li, W.; He, X.; Teng, W.; Ma, W.; Zhao, X.; Hu, M.; Li, H.; Zhang, Y.; et al. Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnol. J. 2019, 17, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Wang, W.M.; Guan, C.Y.; Liu, Q.; Rong, X.M.; Han, Y.L.; Peng, J.W.; Liao, Q.; Yu, Y.; Song, H.X. Mechanisms of nitrogen re-distribution in response to enzyme activities and the effects on nitrogen use efficiency in Brassica napus during later growth stages. Pak. J. Bot. 2015, 46, 1789–1795. [Google Scholar]
- Liu, Z.X.; Gao, F.; Li, X.D.; Zhang, J.L. Source-sink coordinated peanut cultivar increases yield and kernel protein content through enhancing photosynthetic characteristics and regulating carbon and nitrogen metabolisms. Plant Physiol. Biochem. 2024, 206, 108311. [Google Scholar] [CrossRef] [PubMed]
- Gulati, A.; Jaiwal, P.K. Effect of NaCl on nitrate reductase, glutamate dehydrogenase and glutamate synthase in Vigna radiata calli. Biol. Plant. 1996, 38, 177–183. [Google Scholar] [CrossRef]
- Avigad, G.; Dey, P.M. Carbohydrate Metabolism: Storage Carbohydrates. In Plant Biochemistry; Academic Press: Cambridge, UK, 1997; pp. 143–204. [Google Scholar]
- Koch, K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Plant Biol. 2004, 7, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Eastmond, P.J.; Astley, H.M.; Parsley, K.; Aubry, S.; Willaims, B.P.; Menard, G.N.; Craddock, C.P.; Nunes-Nesi, A.; Fernie, A.R.; Hibberd, J.M. Arabidopsis uses two gluconeogenic gateways for organic acids to fuel seedling establishment. Nat. Commun. 2015, 6, 6659. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.J.; Han, J.N.; Wang, R.F.; Li, X.X. Down-regulation of nitrogen/carbon metabolism coupled with coordinative hormone modulation contributes to developmental inhibition of the maize ear under nitrogen limitation. Planta 2016, 244, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.N.; Chen, L.N.; Ahmad, S.; Cai, Y.C.; Duan, Y.Q.; Li, X.W.; Liu, Y.Q.; Jiao, G.A.; Xie, L.H.; Hu, S.K.; et al. Genome-wide analysis and functional characterization of pyruvate kinase (PK) gene family modulating rice yield and quality. Int. J. Mol. Sci. 2022, 23, 15357. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, S.J.; Zhao, Y.J.; Li, B.; Zhang, J.R. Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta 2011, 233, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.Z.; Liu, G.Q.; Peng, X.Q.; Wei, L.T.; Wang, C.Y.; Zhu, Y.J.; Ma, Y.; Jiang, Y.M.; Guo, T.C. Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene. Plant Physiol. Biochem. 2013, 73, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Tan, J.; Yi, K.; Lin, B.; Hao, P.; Jin, T.; Hua, S. Elevated ROS Levels Caused by Reductions in GSH and AsA Contents Lead to Grain Yield Reduction in Qingke under Continuous Cropping. Plants 2024, 13, 1003. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.L.; Liu, Z.Q.; Zhao, F.; Tang, J.W. Comparison of total emitted solar-induced chlorophyll fluorescence (SIF) and top-of-canopy (TOC) SIF in estimating photosynthesis. Remote Sens. Environ. 2020, 251, 112083. [Google Scholar] [CrossRef]
- Li, C.M.; Li, Q.T.; Zhang, J.H.; Kuang, T.Y. Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field. Plant Physiol. 2001, 362, 1805–1810. [Google Scholar]
- Anderson, J.W.; Walker, D.A. Ammonia assimilation and oxygen evolution by a reconstituted chloroplast system in the presence of 2-oxoglutarate and glutamate. Planta 1983, 159, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Liao, H.S.; Hsieh, M.H. Glutamine metabolism, sensing and signaling in plants. Plant Cell Physiol. 2023, 64, 1466–1481. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.B.; Guo, L.X.; Shi, C.Y.; Khan, M.A.; Bai, Y.X.; Du, W.; Liu, Y.Z. Assessment of sugar and sugar accumulation-related gene expression profiles reveal new insight into the formation of low sugar accumulation trait in a sweet orange (Citrus sinensis) bud mutant. Mol. Biol. Rep. 2020, 47, 2781–2791. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Chen, T.T.; Wang, X.Y.; Cao, J.; Li, X.; Xu, X.Y.; Chen, L.; Xia, Q.; Dong, Y.L.; Huang, L.P.; et al. Physiological and expressional regulation on photosynthesis, starch and sucrose metabolism response to waterlogging stress in peanut. Front. Plant Sci. 2021, 12, 601771. [Google Scholar] [PubMed]
- Stein, O.; Granot, D. An overview of sucrose synthases in plants. Front. Plant Sci. 2019, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Zrenner, R.; Salanoubat, M.; Willmitzer, L.; Sonneeald, U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 1995, 7, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.M.; Wang, L.; Ruan, Y.L. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J. Exp. Bot. 2014, 65, 1713–1735. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Q.; Chen, D.Y.; Ma, Q.Y.; Rose, J.K.C.; Fei, Z.J.; Liu, Y.S.; Giovannoni, J.J. The tomato high pigment 1/damaged DNA binding protein 1 gene contributes to regulation of fruit ripening. Hortic. Res. 2019, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Jin, L.F.; Teixeira da Silva, J.A.; Islam, M.Z.; Gao, H.W.; Liu, Y.Z.; Peng, H.A. Activities of enzymes directly related with sucrose and citric acid metabolism in citrus fruit in response to soil plastic film mulch. Sci. Hortic. 2014, 168, 73–80. [Google Scholar] [CrossRef]
- Tang, G.Q.; Lüscher, M.; Sturm, A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 1999, 11, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Schaarschmidt, S.; Roitsch, T.; Hause, B. Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. J. Exp. Bot. 2006, 57, 4015–4023. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Chourey, P.S.; Boote, K.J.; Allen, L.H., Jr. Short-term high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain sorghum (Sorghum bicolor). J. Plant Physiol. 2010, 167, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Basson, C.E.; Groenewald, J.H.; Kossmann, J.; Cronjé, C.; Bauer, R. Upregulation of pyrophosphate: Fructose 6-phosphate 1-phosphotransferase (PFP) activity in strawberry. Transgenic Res. 2011, 20, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Mizokami, Y.; Sugiura, D.; Watanabe, C.K.A.; Betsuyaku, E.; Inada, N.; Terashima, I. Elevated CO2-induced changes in mesophyll conductance and anatomical traits in wild type and carbohydrate-metabolism mutants of Arabidopsis. J. Exp. Bot. 2019, 70, 4807–4818. [Google Scholar] [CrossRef] [PubMed]
- Streb, S.; Egli, B.; Eicke, S.; Zeeman, S.C. The debate on the pathway of starch synthesis: A closer look at low-starch mutants lacking plastidial phosphoglucomutase supports the chloroplast-localized pathway. Plant Physiol. 2009, 151, 1769–1772. [Google Scholar] [CrossRef] [PubMed]
- Corbi, J.; Dutheil, J.Y.; Damerval, C.; Tenaillon, M.I.; Manicacci, D. Accelerated evolution and coevolution drove the evolutionary history of AGPase subunits during angiosperm radiation. Ann. Bot. 2012, 109, 693–708. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Illana, V.; Riveros-Rosas, H.; Cabrera, N.; de Gómez-Puyou, M.T.; Pérez-Montfort, R.; Costas, M.; Gómez-Puyou, A. A guide to the effects of a large portion of the residues of triosephosphate isomerase on catalysis, stability, druggability, and human disease. Proteins Struct. Funct. Bioinform. 2017, 85, 1190–1211. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Liu, Y.J.; Peng, S.G.; Yin, H.Q.; Meng, D.L.; Tao, J.M.; Gu, Y.B.; Li, J.; Yang, S.; Xiao, N.W.; et al. Soil potentials to resist continuous cropping obstacle: Three field cases. Environ. Res. 2021, 200, 111319. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Cui, Y.S.; Li, H.Y.; Kuang, A.X.; Li, X.R.; Wei, Y.L.; Ji, X.L. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Microbiol. Res. 2017, 194, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Shao, C.; Sun, H.; Liu, Z.B.; Guan, Y.M.; Wu, L.J.; Zhang, L.L.; Pan, X.X.; Zhang, Z.G.; Zhang, Y.Y.; et al. Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime. Geoderma 2020, 363, 114155. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Zheng, X.Q.; Wang, X.T.; Xiang, W.; Xiao, M.L.; Wei, L.; Zhang, Y.; Song, K.; Zhao, Z.; Lv, W.G.; et al. Effect of fertilization regimes on continuous cropping growth constraints in watermelon is associated with abundance of key ecological clusters in the rhizosphere. Agric. Ecosyst. Environ. 2022, 339, 108135. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, K.; Li, S.H.; Zhou, Y.Q.; Ran, S.X.; Xu, R.; Lin, Y.Z.; Shen, L.; Huang, W.Q.; Zhong, F.L. Carbon and nitrogen metabolism in tomato (Solanum lycopersicum L.) leaves response to nitrogen treatment. Plant Growth Regul. 2023, 100, 747–756. [Google Scholar] [CrossRef]
- Qu, Z.; Zhou, X.Y.; Liu, C.X.; Wang, X.Y.; Dong, S. Effects of Drought Stress on Key Enzymes in Soybean Carbon and Nitrogen Metabolism. Legume Res. 2024, 47, 1900–1906. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Ji, Z.; Jiao, W.; Shen, C.B.; Qin, Y.J.; Huang, Y.Z.; Huang, M.H.; Kang, S.M.; Liu, X.; Li, S.Q.; et al. Natural variation of OsWRKY23 drives difference in nitrate use efficiency between indica and japonica rice. Nat. Commun. 2025, 16, 1420. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhu, Y.; Ma, Z.T.; Zhang, M.Y.; Wei, H.Y.; Zhang, H.C.; Liu, G.D.; Hu, Q.; Li, G.Y.; Xu, F.F. Effects of light intensity and nitrogen fertilizer interaction on carbon and nitrogen metabolism at grain-filling stage and its relationship with yield and quality of southern soft japonica rice. Acta Agron. Sin. 2023, 49, 3042–3062. [Google Scholar] [CrossRef]
- Liu, J.M.; Si, Z.Y.; Li, S.; Wu, L.F.; Zhang, Y.Y.; Wu, X.L.; Cao, H.; Gao, Y.; Duan, A.W. Effects of water and nitrogen rate on grain-filling characteristics under high-low seedbed cultivation in winter wheat. J. Integr. Agric. 2023, 23, 4018–4031. [Google Scholar] [CrossRef]
- Li, W.W.; Chen, M.; Zhong, L.; Liu, J.M.; Xu, Z.S.; Li, L.C.; Ma, Y.Z. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis. Biochem. Biophys. Res. Commun. 2015, 468, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.M.; Xu, J.; Xu, H.S.; Li, S.W.; Li, C.; Wang, Q.X.; Yang, M.Y.; Wang, H.Z.; Zheng, B.S.; Wu, X.Q. Effect of continuous cropping soil on the biosynthesis of bioactive compounds and the antioxidant activity of Lingzhi or Renshi medicinal mushroom, Ganoderma lucidum (Agaricomycetes). Int. J. Med. Mushrooms 2021, 23, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.P.; Batish, D.R.; Kohli, R.K. Autotoxicity: Concept, organisms, and ecological significance. Crit. Rev. Plant Sci. 1999, 18, 757–772. [Google Scholar] [CrossRef]
- Zhang, X.H.; Lang, D.Y.; Zhang, E.H.; Wang, Z.S. Effect of autotoxicity and soil microbes in continuous cropping soil on Angelica sinensis seedling growth and rhizosphere soil microbial population. Chin. Herb. Med. 2015, 7, 88–93. [Google Scholar] [CrossRef]
- Rice, E.L. Allelopathy; Academic Press: Orlando, FL, USA, 1984; p. 207. [Google Scholar]
- Liu, C.; Li, C.F.; Zheng, F. Composition Identification and Allelopathic Effect of Root Exudates of Ginseng (Panax ginseng) in Different Continuous Cropping Years. Acta Microsc. 2019, 28, 467–475. [Google Scholar]
- Sharma, S.; Singh, P.; Choudhary, O.P.; Neemisha. Nitrogen and rice straw incorporation impact nitrogen use efficiency, soil nitrogen pools and enzyme activity in rice-wheat system in north-western India. Field Crop Res. 2021, 266, 108131. [Google Scholar] [CrossRef]
- Liu, G.S.; Jiang, N.H.; Zhang, L.D.; Liu, Z.L. Soil Physical and Chemical Analysis and Description of Soil Profiles; China Standard Methods Press: Beijing, China, 1996; pp. 24–266. [Google Scholar]
- Rashid, M.M.; Jahan, M.; Islam, K.S. Impact of Nitrogen, Phosphorus and Potassium on Brown Planthopper and Tolerance of Its Host Rice Plants. Rice Sci. 2016, 23, 119–131. [Google Scholar] [CrossRef]
- Kumari, V.V.; Balloli, S.S.; Kumar, M. Diversified cropping systems for reducing soil erosion and nutrient loss and for increasing crop productivity and profitability in rainfed environments. Agric. Syst. 2024, 217, 103919. [Google Scholar] [CrossRef]
- Zong, M.M.; Manevski, K.; Liang, Z. Diversifying maize rotation with other industrial crops improves biomass yield and nitrogen uptake while showing variable effects on nitrate leaching. Agric. Ecosyst. Environ. 2024, 371, 109091. [Google Scholar] [CrossRef]
- Guo, T.X.; Yao, Y.H.; Wu, K.L.; Yao, X.H.; Bai, Y.X.; An, L.K. Study on mixed cropping model of hulless barley and pea based on interspecific relationship and production performance evaluation. Acta Agric. Boreali-Occident. Sin. 2022, 31, 1287–1301. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; He, C.; Tan, J.; Jin, T.; Hua, S. Decreased Nitrogen and Carbohydrate Metabolism Activity Leads to Grain Yield Reduction in Qingke Under Continuous Cropping. Plants 2025, 14, 2235. https://doi.org/10.3390/plants14142235
Ma Z, He C, Tan J, Jin T, Hua S. Decreased Nitrogen and Carbohydrate Metabolism Activity Leads to Grain Yield Reduction in Qingke Under Continuous Cropping. Plants. 2025; 14(14):2235. https://doi.org/10.3390/plants14142235
Chicago/Turabian StyleMa, Zhiqi, Chaochao He, Jianxin Tan, Tao Jin, and Shuijin Hua. 2025. "Decreased Nitrogen and Carbohydrate Metabolism Activity Leads to Grain Yield Reduction in Qingke Under Continuous Cropping" Plants 14, no. 14: 2235. https://doi.org/10.3390/plants14142235
APA StyleMa, Z., He, C., Tan, J., Jin, T., & Hua, S. (2025). Decreased Nitrogen and Carbohydrate Metabolism Activity Leads to Grain Yield Reduction in Qingke Under Continuous Cropping. Plants, 14(14), 2235. https://doi.org/10.3390/plants14142235