Phenotyping for Drought Tolerance in Different Wheat Genotypes Using Spectral and Fluorescence Sensors
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphological and Physiological Evaluations
2.2. Pearson Correlation and Principal Component Analysis
3. Material and Methods
3.1. Soil Characterization
3.2. Experimental Design and Genotypes Characterization
3.3. Levels of Irrigation
3.4. Morphophysiological Evaluations
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Hui, W.; Zhao, F.; Wang, P.; Su, C.; Gong, W. Physiology of plant responses to water stress and related genes: A review. Forests 2022, 13, 324. [Google Scholar] [CrossRef]
- Leng, G.; Hall, J. Crop Yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2019, 654, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Slafer, G.A.; Savin, R.; Pinochet, D.; Calderini, D.F. Wheat. In Crop Physiology Case Histories for Major Crops, 2nd ed.; Victor, O.S., Daniel, F.C., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 98–163. [Google Scholar]
- Zamani, A.; Emam, Y.; Edalat, M. Response of bread wheat cultivars to terminal water stress and cytokinin application from a grain phenotyping perspective. Agronomy 2024, 14, 182. [Google Scholar] [CrossRef]
- Xiong, W.; Reynolds, M.; Xu, Y. Climate change challenges plant breeding. Curr. Opin. Plant Biol. 2022, 70, 102308. [Google Scholar] [CrossRef] [PubMed]
- Harb, A.; Krishnan, A.; Ambavaram, M.M.; Pereira, A. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol. 2010, 154, 1254–1271. [Google Scholar] [CrossRef] [PubMed]
- Todorova, D.; Katerova, Z.; Shopova, E.; Brankova, L.; Sergiev, I.; Jankauskienė, J.; Jurkonienė, S. The physiological responses of wheat and maize seedlings grown under water deficit are modulated by pre-application of auxin-type plant growth regulators. Plants 2022, 11, 3251. [Google Scholar] [CrossRef] [PubMed]
- Filippou, P.; Bouchagier, P.; Skotti, E.; Fotopoulos, V. Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environ. Exp. Bot. 2014, 97, 1–10. [Google Scholar] [CrossRef]
- Takahashi, F.; Kuromori, T.; Urano, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Drought stress responses and resistance in plants: From cellular responses to long-distance intercellular communication. Front. Plant Sci. 2020, 11, 556972. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Abdullah, M.; Ahmar, S.; Yasir, M.; Iqbal, M.S.; Yasir, M.; Rehman, S.U.; Ahmed, S.; Rana, R.M.; Ghafoor, A.; et al. Incredible role of osmotic adjustment in grain yield sustainability under water scarcity conditions in wheat (Triticum aestivum L.). Plants 2020, 9, 1208. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.S.; Li, F.M. Root Respiration, photosynthesis and grain yield of two spring wheat in response to soil drying. Plant Growth Regul. 2005, 46, 233–240. [Google Scholar] [CrossRef]
- Pirasteh-Anosheh, H.; Saed-Moucheshi, A.; Pakniyat, H.; Pessarakli, M. Stomatal responses to drought stress. In Water Stress and Crop Plants: A Sustainable Approach, 1st ed.; Parvaiz, A., Ed.; Wiley: Chichester, UK, 2016; Volume 2, pp. 24–40. [Google Scholar]
- Silva, P.C.D.; Ribeiro, W.Q.; Ramos, M.L.G.; Rocha, O.C.; Veiga, A.D.; Silva, N.H.; Brasileiro, L.D.O. Water stress alters growth and fruit uniformity of arabica coffee genotypes in the Brazilian Cerrado. Sci. Agric. 2024, 81, e20230001. [Google Scholar] [CrossRef]
- Lima, G.C.; Silva, M.L.N.; Curi, N.; Silva, M.A.D.; Oliveira, A.H.; Avanzi, J.C.; Ummus, M.E. Avaliação da cobertura vegetal pelo índice de vegetação por diferença normalizada. Rev. Ambien. Água 2013, 8, 204–214. [Google Scholar]
- Hlaváčová, M.; Klem, K.; Pytela, J.; Veselá, B.; Hlavinka, P.; Smutná, P.; Horáková, V.; Škarpa, P.; Trnka, M. Yield formation parameters of selected winter wheat genotypes in response to water shortage. Agronomy 2022, 12, 831. [Google Scholar] [CrossRef]
- Miransari, M.; Riahi, H.; Eftekhar, F.; Minaie, A.; Smith, D.L. Improving soybean (Glycine max L.) N2 fixation under stress. J. Plant Growth Regul. 2013, 32, 909–921. [Google Scholar] [CrossRef]
- Kolber, Z.; Klimov, D.; Ananyev, G.; Rascher, U.; Berry, J.; Osmond, B. Measuring photosynthetic parameters at a distance: Laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation. Photosynth. Res. 2005, 84, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Wang, J.; Guo, X.; Yang, W.; Zhao, C. High-throughput phenotyping: Breaking through the bottleneck in future crop breeding. Crop J. 2021, 9, 633–645. [Google Scholar] [CrossRef]
- Meroni, M.; Rossini, M.; Picchi, V.; Panigada, C.; Cogliati, S.; Nali, C.; Colombo, R. Assessing Steady-state Fluorescence and PRI from hyperspectral proximal sensing as early indicators of plant stress: The case of ozone exposure. Sensors 2008, 8, 1740–1754. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ruiz, M.; Prior, A.; Martinez-Guanter, J.; Apolo-Apolo, O.; Andrade-Sanchez, P.; Egea, G. Development and evaluation of a self-propelled electric platform for highthroughput field phenotyping in wheat breeding trials. Comput. Electron. Agric. 2020, 169, 105237. [Google Scholar] [CrossRef]
- Pieruschka, R.; Klimov, D.; Kolber, Z.S.; Berry, J.A. Monitoring of cold and light stress impact on photosynthesis by using the laser induced fluorescence transient (LIFT) approach. Funct. Plant Biol. 2010, 37, 395–402. [Google Scholar] [CrossRef]
- Gameiro, C.; Utkin, A.B.; Cartaxana, P.; da Silva, J.M.; Matos, A.R. The use of laser induced chlorophyll fluorescence (LIF) as a fast and non-destructive method to investigate water deficit in Arabidopsis. Agric. Water Manag. 2016, 164, 127–136. [Google Scholar] [CrossRef]
- Keller, B.; Vass, I.; Matsubara, S.; Paul, K.; Jedmowski, C.; Pieruschka, R.; Nedbal, L.; Rascher, U.; Muller, O. Maximum fluorescence and electron transport kinetics determined by light-induced fluorescence transients (LIFT) for photosynthesis phenotyping. Photosynth. Res. 2019, 140, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Krause, G.H.; Weis, E. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42, 313–349. [Google Scholar] [CrossRef]
- Silva, S.C.P.D.; Baptista, G.M.D.M. Análises espectrais da vegetação com dados hyperion e sua relação com a concentração e o fluxo de CO2 em diferentes ambientes na Amazônia brasileira. Bol. de Ciênc. Geodés. 2015, 21, 354–370. [Google Scholar] [CrossRef]
- Zeng, Y.; Hao, D.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y.; et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 2022, 3, 477–493. [Google Scholar] [CrossRef]
- Tavares, C.J.; Ribeiro Junior, W.Q.; Ramos, M.L.G.; Pereira, L.F.; Casari, R.A.d.C.N.; Pereira, A.F.; de Sousa, C.A.F.; da Silva, A.R.; Neto, S.P.d.S.; Mertz-Henning, L.M. Water stress alters morphophysiological, grain quality and vegetation indices of soybean cultivars. Plants 2022, 11, 559. [Google Scholar] [CrossRef] [PubMed]
- Farias, G.D.; Bremm, C.; Bredemeier, C.; Menezes, J.d.L.; Alves, L.A.; Tiecher, T.; Martins, A.P.; Fioravanço, G.P.; da Silva, G.P.; Carvalho, P.C.d.F. Normalized Difference Vegetation Index (NDVI) for soybean biomass and nutrient uptake estimation in response to production systems and fertilization strategies. Front. Sustain. Food Syst. 2023, 6, 959681. [Google Scholar] [CrossRef]
- Garbulsky, M.F.; Peñuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The Photochemical Reflectance Index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis. Remote Sens. Environ. 2011, 115, 281–297. [Google Scholar] [CrossRef]
- Keller, B.; Zimmermann, L.; Rascher, U.; Matsubara, S.; Steier, A.; Muller, O. Toward predicting photosynthetic efficiency and biomass gain in crop genotypes over a field season. Plant Physiol. 2022, 188, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Guendouz, A.; Semcheddine, N.; Moumeni, L.; Hafsi, M. The Effect of Supplementary Irrigation on Leaf Area, Specific Leaf Weight, Grain Yield and Water Use Efficiency in Durum Wheat (Triticum durum Desf.) Cultivars. Ekin J. Crop Breed. Genet. 2016, 2, 82–86. [Google Scholar]
- Yang, D.; Liu, Y.; Cheng, H.; Chang, L.; Chen, J.; Chai, S.; Li, M. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genet. 2016, 17, 94. [Google Scholar] [CrossRef] [PubMed]
- Vicente, R.; Vergara-Díaz, O.; Medina, S.; Chairi, F.; Kefauver, S.C.; Bort, J.; Serret, M.D.; Aparicio, N.; Araus, J.L. Durumwheat ears perform better than the flag leaves under water stress: Gene expression and physiological evidence. Environ. Exp. Bot. 2018, 153, 271–285. [Google Scholar] [CrossRef]
- Sewore, B.M.; Abe, A.; Nigussie, M. Evaluation of bread wheat (Triticum aestivum L.) genotypes for drought tolerance using morpho-physiological traits under drought-stressed and well-watered conditions. PLoS ONE 2023, 18, e0283347. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Barma, N.C.D.; Biswas, B.K.; Khan, A.A.; Rahman, J. Study on morpho-physiological traits in spring wheat (Triticum aestivum L.) under rainfed condition. Bangladesh J. Agric. Res. 2016, 41, 235–250. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, P.; Lai, X.; Wang, X.; Ji, W.; Xu, S. The selection and application of peduncle length QTL QPL_6D.1 in modern wheat (Triticum aestivum L.) breeding. Theor. Appl. Genet. 2023, 136, 32. [Google Scholar] [CrossRef] [PubMed]
- Mahpara, S.; Hussain, S.T.; Farooq, J. Drought tolerance studies in wheat (Triticum aestivum L.). Cercet. Agron. Mold. 2014, 47, 1–8. [Google Scholar] [CrossRef]
- Wang, Z.M.; Wei, A.L.; Zheng, D.M. Photosynthetic characteristics of non-leaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear. Photosynthetica 2001, 39, 239–244. [Google Scholar] [CrossRef]
- Martínez-Peña, R.; Vergara-Díaz, O.; Schlereth, A.; Höhne, M.; Morcuende, R.; Nieto-Taladriz, M.T.; Araus, J.L.; Aparicio, N.; Vicente, R. Analysis of durum wheat photosynthetic organs during grain filling reveals the ear as a water stress-tolerant organ and the peduncle as the largest pool of primary metabolites. Planta 2023, 257, 81. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Wang, F.; Feng, B.; Li, S.; Si, J.; Zhang, B. The structural and photosynthetic characteristics of the exposed peduncle of wheat (Triticum aestivum L.): An important photosynthate source for grain-filling. BMC Plant Biol. 2010, 10, 141. [Google Scholar] [CrossRef] [PubMed]
- Croce, R.; Carmo-Silva, E.; Cho, Y.B.; Ermakova, M.; Harbinson, J.; Lawson, T.; Zhu, X. Perspectives on improving photosynthesis to increase crop yield. Plant Cell 2024, 36, 3944–3973. [Google Scholar] [CrossRef] [PubMed]
- Arya, V.K.; Singh, J.; Kumar, L.; Nagar, S.S.; Ahalawat, N.K.; Chand, P. Genetic variability and heritability studies in relationto grain yield and its component traits in wheat (Triticum aestivum L.). Int. J. Agricult. Stat. Sci. 2018, 14, 215–222. [Google Scholar]
- Węgrzyn, A.; Klimek-Kopyra, A.; Dacewicz, E.; Skowera, B.; Grygierzec, W.; Kulig, B.; Flis-Olszewska, E. Effect of Selected Meteorological Factors on the Growth Rate and Seed Yield of Winter Wheat—A Case Study. Agronomy 2022, 12, 2924. [Google Scholar] [CrossRef]
- Hussain, M.; Malik, M.A.; Farooq, M.; Ashraf, M.Y.; Cheema, M.A. Improving Drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J. Agron. Crop Sci. 2008, 194, 193–199. [Google Scholar] [CrossRef]
- Sarto, M.V.M.; Sarto, J.R.W.; Rampim, L.; Rosset, J.S.; Bassegio, D.; Costa, P.F.D.; Inagaki, A.M. Wheat phenology and yield under drought: A review. Aust. J. Crop Sci. 2017, 11, 941–946. [Google Scholar] [CrossRef]
- Phillips, S.B.; Keahey, D.A.; Warren, J.G.; Mullins, G. Estimating Winter Wheat Tiller Density Using Spectral Reflectance Sensors for Early-Spring, Variable-Rate Nitrogen Applications. Agron. J. 2004, 96, 591–600. [Google Scholar] [CrossRef]
- Yang, C.W.; Lin, C.C.; Kao, C.H. Proline, ornithine, arginine and glutamic acid contents in detached rice leaves. Biol. Plant. 2000, 43, 305–307. [Google Scholar] [CrossRef]
- Ullah, A.; Al-Busaidi, W.M.; Al-Sadi, A.M.; Farooq, M. Bread wheat genotypes accumulating free proline and phenolics can better tolerate drought stress through sustained rate of photosynthesis. J. Soil Sci. Plant Nutr. 2022, 22, 165–176. [Google Scholar] [CrossRef]
- Nowsherwan, I.; Shabbir, G.; Malik, S.I.; Ilyas, M.; Cheema, N.M. Selection of wheat genotype(s) for drought stress based on physiological traits. Int. J. Plant Soil Sci. 2017, 17, 1–7. [Google Scholar] [CrossRef]
- Marijuan, M.P.; Bosch, S.M. Ecophysiology of invasive plants: Osmotic adjustment and antioxidants. Trends Plant Sci. 2013, 18, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Vendruscolo, E.C.G.; Schuster, I.; Pileggi, M.; Scapim, C.A.; Molinari, H.B.C.; Marur, C.J.; Vieira, L.G.E. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J. Plant Physiol. 2007, 164, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, F.; Ashraf, M. Proline alleviates abiotic stress induced oxidative stress in plants. J. Plant Growth Regul. 2023, 42, 4629–4651. [Google Scholar] [CrossRef]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Cao, X.; Khan, M.A.R. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms. Plant Biol. 2022, 24, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Akram, N.A.; Alqurainy, F.; Foolad, M.R. Drought tolerance: Roles of organic osmolytes, growth regulators, and mineral nutrients. Adv. Agron. 2011, 111, 249–296. [Google Scholar]
- Ulllah, M.I.; Alsanhani, A.; Aldawdahi, N. Farmer’s perception of climate change: An assessment from medina region, Saudi Arabia. Agrobiol. Rec. 2024, 18, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Sadras, V.O.; Lawson, C.; Montoro, A. Photosynthetic traits in Australian wheat varieties released between 1958 and 2007. Field Crop. Res. 2012, 134, 19–29. [Google Scholar] [CrossRef]
- Driever, S.M.; Lawson, T.; Andralojc, P.J.; Raines, C.A.; Parry, M.A.J. Natural variation in photosynthetic capacity, growth, and yield in 64 field-grown wheat genotypes. J. Exp. Bot. 2014, 65, 4959–4973. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Tian, Z.; Ata-Ul-Karim, S.T.; Liu, Y.; Cui, Y.; Zahoor, R.; Jiang, D.; Dai, T. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars. Plant Physiol. Biochem. 2016, 106, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Wasaya, A.; Manzoor, S.; Yasir, T.A.; Sarwar, N.; Mubeen, K.; Ismail, I.A.; El Sabagh, A. Evaluation of fourteen bread wheat (Triticum aestivum L.) genotypes by observing gas exchange parameters, relative water and chlorophyll content, and yield attributes under drought stress. Sustainability 2021, 13, 4799. [Google Scholar] [CrossRef]
- Sikder, S.; Foulkes, J.; West, H.; Silva, J.D.; Gaju, O.; Greenland, A.; Howell, P. Evaluation of photosynthetic potential of wheat genotypes under drought condition. Photosynthetica 2015, 53, 47–54. [Google Scholar] [CrossRef]
- Qiao, M.; Hong, C.; Jiao, Y.; Hou, S.; Gao, H. Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants 2024, 13, 1808. [Google Scholar] [CrossRef] [PubMed]
- Lawson, T.; Kramer, D.M.; Raines, C.A. Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Cur. Opin. Biotechnol. 2012, 23, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Niazi, A.K.; Akhtar, J.; Saifullah; Farooq, M.; Souri, Z.; Karimi, N.; Rengel, Z. Acquiring control: The evolution of ROS-induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol. Biochem. 2019, 141, 353–369. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Struik, P.C.; Yin, X.; Yang, J. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. J. Exp. Bot. 2017, 68, 5191–5205. [Google Scholar] [CrossRef] [PubMed]
- da Silva, P.C.; Junior, W.Q.R.; Ramos, M.L.G.; Rocha, O.C.; Veiga, A.D.; Silva, N.H.; Brasileiro, L.d.O.; Santana, C.C.; Soares, G.F.; Malaquias, J.V.; et al. Physiological changes of Arabica coffee under different intensities and durations of water stress in the Brazilian Cerrado. Plants 2022, 11, 2198. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, E.; Morales, A.; Harbinson, J.; Kromdijk, J.; Heuvelink, E.; Marcelis, L.F. Dynamic photosynthesis in different environmental conditions. J. Exp. Bot. 2015, 66, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Hammer, G.L.; Doherty, A.; Von Caemmerer, S.; Farquhar, G.D. Quantifying impacts of enhancing photosynthesis on crop yield. Nat. Plants 2019, 5, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, P.H.P.; Matta, F.M.D.; Cambraia, J. Responses of the photosynthetic apparatus to aluminum stress in two sorghum cultivars. J. Plant Nutr. 2002, 25, 821–832. [Google Scholar] [CrossRef]
- Tavares, C.J.; Junior, W.Q.R.; Ramos, M.L.G.; Pereira, L.F.; Muller, O.; Casari, R.A.d.C.N.; de Sousa, C.A.F.; da Silva, A.R. Water Stress Alters Physiological, Spectral, and Agronomic Indexes of Wheat Genotypes. Plants 2023, 12, 3571. [Google Scholar] [CrossRef] [PubMed]
- Torres Netto, A.; Campostrini, E.; Oliveira, J.G.D.; Bressan-Smith, R.E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 2005, 104, 199–209. [Google Scholar] [CrossRef]
- Hunt, S. Measurements of photosynthesis and respiration in plants. Physiol. Plant. 2003, 117, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Björkman, O.; Demming, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Plants 1987, 170, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.D.A.; Jifon, J.L.; Silva, J.A.G.D.; Sharma, V. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz. J. Plant Physiol. 2007, 19, 193–201. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta BBA Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Oliosi, G.; Rodrigues, J.D.O.; Falqueto, A.R.; Pires, F.R.; Monte, J.A.; Partelli, F.L. Chlorophyll a fluorescence transient and vegetative growth in conilon coffee under different nitrogen sources. Coffee Sci. 2017, 12, 248–259. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta. Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
- Khadka, K.; Burt, A.J.; Earl, H.J.; Raizada, M.N.; Navabi, A. Does leaf waxiness confound the use of NDVI in the assessment of chlorophyll when evaluating genetic diversity panels of wheat? Agronomy 2021, 11, 486. [Google Scholar] [CrossRef]
- Cheng, Y.B.; Middleton, E.M.; Zhang, Q.; Huemmrich, K.F.; Campbell, P.K.E.; Corp, L.A.; Cook, B.D.; Kustas, W.P.; Daughtry, C.S. Integrating solar induced fluorescence and the photochemical reflectance index for estimating gross primary production in a cornfield. Remote Sens. 2013, 5, 6857–6879. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of Winter Wheat Above-Ground Biomass Using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef]
- Hazratkulova, S.; Sharma, R.C.; Alikulov, S.; Islomov, S.; Yuldashev, T.; Ziyaev, Z.; Khalikulov, Z.; Ziyadullaev, Z.; Turok, J. Analysis of genotypic variation for normalized difference vegetation index and its relationship with grain yield in winter wheat under terminal heat stress. Plant Breed. 2012, 131, 716–721. [Google Scholar] [CrossRef]
- Ramya, K.T.; Jain, N.; Ramya, P.; Singh, P.K.; Arora, A.; Singh, G.P.; Prabhu, K.V. Genotypic variation for normalized difference vegetation index and its relationship with grain yield in wheat under terminal heat stress. Indian J. Genet. Plant Breed. 2015, 75, 174–182. [Google Scholar] [CrossRef]
- Ayala-Silva, T.; Beyl, C.A. Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Adv. Space Res. 2005, 35, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Gizaw, S.A.; Garland-Campbell, K.; Carter, A.H. Evaluation of agronomic traits and spectral reflectance in Pacific Northwest winter wheat under rain-fed and irrigated conditions. Field Crop. Res. 2016, 196, 168–179. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Carvalho, J.D.F.C.; Sibaldelli, R.N.R.; Neiverth, W.; Rio, A.D.; Ferreira, L.C.; Procópio, S.D.O.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; et al. NDVI variation according to the time of measurement, sampling size, positioning of sensor and water regime in different soybean cultivars. Precis. Agric. 2016, 18, 470–490. [Google Scholar] [CrossRef]
- Holmes, M.G.; Keiller, D.R. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: A comparison of a range of species. Plant Cell Environ. 2002, 25, 85–93. [Google Scholar] [CrossRef]
- Gamon, J.A.; Field, C.B.; Fredeen, A.L.; Thayer, S. Assessing photosynthetic downregulation in sunflower stands with an optically-based model. Photosynth. Res 2001, 67, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Ustin, S.L.; Jacquemoud, S. How the optical properties of leaves modify the absorption and scattering of energy and enhance leaf functionality. In Remote Sensing of Plant Biodiversity; Springer International Publishing: Cham, Switzerland, 2020; pp. 349–384. [Google Scholar]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A Narrow-Waveband Spectral Index That Tracks Diurnal Changes in Photosynthetic Efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Derks, A.; Schaven, K.; Bruce, D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim. Et Biophys. Acta 2015, 1847, 468–485. [Google Scholar] [CrossRef] [PubMed]
- Kováč, D.; Veselovská, P.; Klem, K.; Večeřová, K.; Ač, A.; Peñuelas, J.; Urban, O. Potential of photochemical reflectance index for indicating photochemistry and light use efficiency in leaves of european beech and norway spruce trees. Remote Sens. 2018, 10, 1202. [Google Scholar] [CrossRef]
- Magney, T.S.; Vierling, L.A.; Eitel, J.U.H.; Huggins, D.R.; Garrity, S.R. Response of high frequency Photochemical Reflectance Index (PRI) measurements to environmental conditions in wheat. Remote Sens. Environ. 2016, 173, 84–97. [Google Scholar] [CrossRef]
- Osmond, B.; Chow, W.S.; Wyber, R.; Zavafer, A.; Keller, B.; Pogson, B.J.; Robinson, S.A. Relative functional and optical absorption cross-sections of PSII and other photosynthetic parameters monitored in situ, at a distance with a time resolution of a few seconds, using a prototype light induced fluorescence transient (LIFT) device. Funct. Plant Biol. 2017, 44, 985–1006. [Google Scholar] [CrossRef] [PubMed]
- Flagella, Z.; Pastore, D.; Campanile, R.G.; Di Fonzo, N. Photochemical quenching of chlorophyll fluorescence and drought tolerance in different durum wheat (Triticum durum) cultivars. J. Agric. Sci. 1994, 122, 183–192. [Google Scholar] [CrossRef]
- Macedo, T.B.; Peterson, R.K.D.; Dausz, C.L.; Weaver, D.K. Photosynthetic responses of wheat, Triticum aestivum L., to defoliation patterns on individual leaves. Environ. Entomol. 2007, 36, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Troccoli, A.; Di Fonzo, N. Relationship between kernel size features and test weight in Triticum durum. Cereal Chem. 1999, 76, 45–49. [Google Scholar] [CrossRef]
- Gautam, A.; Prasad, S.V.S.; Jajoo, A.; Bassi, F. Evaluation of Indian Durum Wheat Genotypes for Yield and Quality Traits Using Additive Main-Effects and Multiplicative Interaction (AMMI) Biplot Analysis under Terminal Heat Stress Conditions. Crop Breed. Genet. Genom. 2023, 5, 3. [Google Scholar]
- Modarresi, M.; Mohammadi, V.; Zali, A.; Mardi, M. Response of wheat yield and yield related traits to high temperature. Cereal Res. Commun. 2010, 38, 23–31. [Google Scholar] [CrossRef]
- Mohammadi-Bazargani, M.; Hajirezaei, M.R.; Salekdeh, G.H.; Bushehri, A.A.S.; Falahati-Anbaran, M.; Moradi, F.; Naghavi, M.R.; Ehdaie, B. A view on the role of metabolites in enhanced stem reserves remobilization in wheat under drought during grain filling. Aust. J. Crop Sci. 2012, 6, 1613–1623. [Google Scholar]
- Heyne, E.G.; Campbell, L.G. Experiments with semi-dwarf wheats in Kansas. Trans. Kans. Acad. Sci. 1971, 74, 147–1560. [Google Scholar] [CrossRef]
- Nasri, R.; Kashani, A.; Paknejad, F.; Vazan, S.; Barary, M. Correlation, path analysis and stepwise regression in yield and yield component in wheat (Triticum aestivum L.) under the temperate climate of Ilam province, Iran. Indian J. Fund. Appl. Life Sci. 2014, 4, 188–198. [Google Scholar]
- Serraj, R.; Sinclair, T.R. Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant Cell Environ. 2002, 25, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Ojha, R.; Sarkar, A.; Aryal, A.; Rahul, K.C.; Tiwari, S.; Poudel, M.; Pant, K.R.; Shrestha, J. Correlation and path coefficient analysis of wheat (Triticum aestivum L.) genotypes. Farming Manag. 2018, 3, 136–141. [Google Scholar] [CrossRef]
- Khan, N.; Naqvi, F. Correlation and Path Coefficient analysis in wheat genotypes under irrigated andnon-irrigated conditions. Asian J. Agric. Sci. 2012, 4, 346–351. [Google Scholar]
- Slafer, G.A.; Savin, R.; Sadras, V.O. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crop. Res. 2014, 157, 71–83. [Google Scholar] [CrossRef]
- Gonzalez-Navarro, O.E.; Griffiths, S.; Molero, G.; Reynolds, M.P.; Slafer, G.A. Variation in developmental patterns among elite wheat lines and relationships with yield, yield components and spike fertility. Field Crop. Res. 2016, 196, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Ayer, D.K.; Sharma, A.; Ojha, B.R.; Paudel, A.; Dhakal, K. Correlation and path coefficient analysis in advanced wheat genotypes. SAARC J. Agric. 2017, 15, 1–12. [Google Scholar] [CrossRef][Green Version]
- Dogan, R. The correlation and path coefficient analysis for yield and some yield components of durum wheat (Triticum turgidum var Durum L.) in west anatolia conditions. Pak. J. Bot. 2009, 41, 1081–1089. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Soil Survey Staff. Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report no. 42, Version 5.0; Burt, R., Soil Survey Staff, Eds.; Natural Resources Conservation Service, US Department of Agriculture: Washington, DC, USA, 2014.
- Ribeiro Júnior, W.Q.; Ramos, M.L.G.; Rebouças, U.V.; Trindade, M.D.G.; Ferreira, F.M.; Siqueira, M.M.H.; Silva, H.L.M.; Rodrigues, G.C.; Guerra, A.F.; Rocha, O.C.; et al. Fenotipagem Para Tolerância à Seca Visando o Melhoramento do Trigo No Cerrado; Circular Técnica Embrapa Trigo: Brasília, Brasil, 2017; Volume 1, p. 17.
- Hanks, R.J.; Keller, J.; Rasmussen, V.P.; Wilson, G.D. Line source sprinkler for continuous variable irrigation crop production studies. Soil Sci. Soc. Am. J. 1976, 40, 426–429. [Google Scholar] [CrossRef]
- Embrapa—Empresa Brasileira de Pesquisa Agropecuária. Monitoramento de Irrigação no Cerrado. 2017. Available online: https://hidro.nuvem.ti.embrapa.br/ (accessed on 27 April 2020).
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Brasil—Ministério da Agricultura, Pecuária e Abastecimento. Available online: https://www.gov.br/agricultura/pt-br/assuntos/lfda/arquivos-publicacoes-laboratorio/regras-para-analise-de-sementes.pdf/view (accessed on 16 April 2025).
- Guerra, N.B.E.; Livera, A.V.S. Correlation between the sensory profile and physical and chemical determinations of pineapple cv. Pearl. Braz. J. Fruit Crops 1999, 2, 32–35. [Google Scholar]
Genotype | WR1–100% | WR2–80% | WR3–50% | WR4–30% |
---|---|---|---|---|
FLA | ||||
Brilhante | 15.6 ± 4.64 Ab | 14.7 ± 2.01 Ab | 14.9 ± 3.85 Aa | 6.7 ± 2.77 Ba |
BRS404 | 15.0 ± 1.33 Ab | 15.9 ± 0.80 Ab | 13.0 ± 0.30 ABa | 8.7 ± 0.81.Ba |
PF080492 | 14.4 ± 1.36 Ab | 17.6 ± 1.55 Ab | 13.3 ± 0.61 ABa | 8.0 ± 0.58 Ba |
PF020037 | 21.6 ± 3.84 Aa | 23.6 ± 1.10 Aa | 12.6 ± 2.36 Ba | 9.0 ± 1.94 Ba |
PL | ||||
Brilhante | 38.4 ± 0.95 Aa | 33.2 ± 2.64 Bab | 28.1 ± 1.47 Ca | 19.4 ± 2.79 Da |
BRS404 | 34.3 ± 2.22 Aa | 32.2 ± 1.34 Ab | 23.3 ± 2.01 Ba | 16.9 ± 0.38 Ca |
PF080492 | 35.8 ± 2.50 Aa | 37.8 ± 5.02 Aa | 27.5 ± 2.94 Ba | 19.9 ± 0.48 Ca |
PF020037 | 25.9 ± 0.11 Ab | 25.6 ± 2.36 Ac | 25.8 ± 2.01 Aa | 20.6 ± 0.38 Ba |
PRO | ||||
Brilhante | 1.01 ± 0.19 Ca | 7.4 ± 1.12 Ba | 10.9 ± 0.58 Aa | 6.65 ± 0.53 Ba |
BRS404 | 1.02 ± 0.18 Ba | 1.89 ± 0.37 Bb | 6.13 ± 0.28 Ab | 5.18 ± 1.22 Aa |
PF080492 | 0.93 ± 0.09 Ca | 0.97 ± 0.12 BCb | 3.32 ± 0.55 Ac | 2.60 ± 0.51 ABb |
PF020037 | 0.72 ± 0.31 Ca | 1.35 ± 0.55 Cb | 3.67 ± 0.06 Bc | 5.99 ± 1.89 Aa |
gs | ||||
Brilhante | 0.44 ± 0.03 Ab | 0.38 ± 0.04 Aa | 0.24 ± 0.09 Ba | 0.11 ± 0.05 Ca |
BRS404 | 0.55 ± 0.04 Aa | 0.46 ± 0.05 Ba | 0.15 ± 0.01 Cab | 0.11 ± 0.03 Ca |
PF080492 | 0.44 ± 0.00 Ab | 0.47 ± 0.02 Aa | 0.21 ± 0.07 Bab | 0.10 ± 0.03 Ca |
PF020037 | 0.53 ± 0.01 Aab | 0.40 ± 0.06 Ba | 0.14 ± 0.05 Cb | 0.11 ± 0.03 Ca |
Ci | ||||
Brilhante | 277.1 ± 4.88 Aa | 269.3 ± 18.02 Aba | 249.1 ± 48.01 Ba | 177.5 ± 39.73 Ca |
BRS404 | 298.6 ± 2.66 Aa | 288.8 ± 3.29 Aa | 202.1 ± 1.48 Bb | 187.8 ± 20.65 Ba |
PF080492 | 292.8 ± 5.30 Aa | 291.3 ± 1.06 Aa | 227.1 ± 27.42 Bab | 191.9 ± 13.36 Ca |
PF020037 | 290.1 ± 2.71 Aa | 271.4 ± 12.62 Aa | 198.4 ± 24.38 Bb | 193.8 ± 12.07 Ba |
E | ||||
Brilhante | 6.1 ± 0.49 Aa | 5.9 ± 0.12 Aa | 5.4 ± 1.52 Aa | 3.2 ± 1.17 Ba |
BRS404 | 7.2 ± 0.08 Aa | 6.4 ± 0.14 Aa | 3.1 ± 0.06 Bb | 2.7 ± 0.67 Ba |
PF080492 | 7.1 ± 0.03 Aa | 6.8 ± 0.28 Aa | 4.2 ± 1.05 Bb | 2.4 ± 0.65 Ca |
PF020037 | 7.0 ± 0.46 Aa | 6.1 ± 0.51 Ba | 3.0 ± 0.82 Cb | 2.5 ± 0.53 Ca |
Genotype | WR1–100% | WR2–80% | WR3–50% | WR4–30% |
---|---|---|---|---|
Fv′/Fm′ | ||||
Brilhante | 0.49 ± 0.1 Aa | 0.52 ± 0.05 Aa | 0.53 ± 0.01 Aab | 0.50 ± 0.04 Aa |
BRS404 | 0.55 ± 0.02 Aa | 0.56 ± 0.02 Aa | 0.49 ± 0.04 ABab | 0.46 ± 0.03 Bab |
PF080492 | 0.49 ± 0.05 Aa | 0.48 ± 0.05 Aa | 0.43 ± 0.06 Ab | 0.36 ± 0.03 Bb |
PF020037 | 0.49 ± 0.07 Aa | 0.47 ± 0.07 Aa | 0.55 ± 0.08 Aa | 0.47 ± 0.10 Aa |
Fv/Fm | ||||
Brilhante | 0.83 ± 0.02 ABa | 0.84 ± 0.01 Aa | 0.82 ± 0.00 BCa | 0.81 ± 0.01 Ca |
BRS404 | 0.83 ± 0.01 Aa | 0.82 ± 0.00 Aa | 0.82 ± 0.01 Aa | 0.80 ± 0.02 Ba |
PF080492 | 0.83 ± 0.00 Aa | 0.83 ± 0.00 Aa | 0.82 ± 0.01 Aa | 0.80 ± 0.01 Ba |
PF020037 | 0.83 ± 0.01 Aa | 0.83 ± 0.00 Aa | 0.82 ± 0.01 Aa | 0.82 ± 0.00 Aa |
Fv′/Fm′L | ||||
Brilhante | 0.59 ± 0.03 Aa | 0.59 ± 0.04 Aa | 0.57 ± 0.04 Aa | 0.45 ± 0.05 Ba |
BRS404 | 0.57 ± 0.02 Aa | 0.55 ± 0.01 Aa | 0.49 ± 0.02 Bab | 0.48 ± 0.06 Ba |
PF080492 | 0.56 ± 0.00 Aa | 0.58 ± 0.01 Aa | 0.53 ± 0.01 ABab | 0.48 ± 0.01 Ba |
PF020037 | 0.54 ± 0.02 Aa | 0.53 ± 0.04 ABa | 0.47 ± 0.02 Cb | 0.48 ± 0.05 BCa |
TGW | ||||
Brilhante | 3.7 ± 0.11 Aa | 3.12 ± 0.13 Aba | 3.3 ± 0.01 Ba | 2.9 ± 0.09 Ca |
BRS404 | 3.4 ± 0.06 Ab | 3.3 ± 0.0.11 Aab | 3.3 ± 0.20 Aa | 2.9 ± 0.13 Ba |
PF080492 | 3.3 ± 0.08 Ab | 3.1 ± 0.11 Ab | 2.7 ± 0.12 Bb | 2.4 ± 0.10 Cb |
PF020037 | 3.4 ± 0.10 Ab | 3.3 ± 0.12 Aab | 3.4 ± 0.06 Aba | 3.1 ± 0.28 Ba |
HW | ||||
Brilhante | 81.3 ± 1.3 Aa | 80.3 ± 1.3 Aba | 79.4 ± 0.92 Aba | 78.1 ± 0.35 Ba |
BRS404 | 82.6 ± 1.04 Aa | 81.6 ± 2.12 Aa | 81.6 ± 1.01 Aa | 79.0 ± 0.25 Ba |
PF080492 | 83.0 ± 0.31 Aa | 81.6 ± 0.21 Aba | 79.4 ± 0.51 Bca | 78.1 ± 0.50 Ca |
PF020037 | 77.1 ± 2.33 Ab | 77.4 ± 2.95 ABb | 79.7 ± 0.25 Ba | 77.2 ± 0.61 Ba |
PROD | ||||
Brilhante | 4111.4 ± 1178.61 Aa | 3582.7 ± 660.40 Ab | 2858.3 ± 228.52 Ba | 1078 ± 106.64 Ca |
BRS404 | 4582.9 ± 583.54 Aa | 3757.9 ± 587.85 ABb | 3110.5 ± 267.46 Ba | 1550.1 ± 354.86 Ca |
PF080492 | 4921.5 ± 1010.84 Aa | 5108.1 ± 730.02 Aa | 2675.3 ± 171.75 Ba | 1169.0 ± 101.08 Ca |
PF020037 | 2858.4 ± 476.87 Ab | 2752.9 ± 669.89 Ab | 2595.1 ± 250.59 Aa | 1298.6 ± 106.23 Ba |
Genotype | PH | A | NDVI | PRI | NE | EL |
---|---|---|---|---|---|---|
Brilhante | 0.94 ± 0.10 a | 21.0 ± 5.67 a | 0.57 ± 0.10 a | 0.22 ± 0.03 b | 432.8 ± 77.29 b | 7.24 ± 0.46 b |
BRS404 | 0.85 ± 0.11 b | 19.2 ± 5.24 ab | 0.55 ± 0.10 a | 0.22 ± 0.02 b | 430.0 ± 78.29 b | 7.77 ± 0.37 b |
PF080492 | 0.72 ± 0.08 c | 19.1 ± 4.83 ab | 0.50 ± 0.16 b | 0.22 ± 0.03 b | 511.0 ± 88.01 a | 9.26 ± 0.73 a |
PF020037 | 0.92 ± 0.12 a | 18.4 ± 6.63 b | 0.59 ± 0.11 a | 0.25 ± 0.02 a | 417.5 ± 70.28 b | 7.55 ± 0.49 b |
Variable | PC1 | PC2 |
---|---|---|
PH | 0.610 | 0.607 |
FLA | 0.774 | 0.158 |
PRO | −0.507 | 0.431 |
A | 0.927 | 0.138 |
gs | 0.949 | −0.037 |
Ci | 0.937 | −0.135 |
E | 0.953 | −0.076 |
Fv/FmL | 0.605 | −0.053 |
Fv/FmA | 0.692 | 0.333 |
Fv/FmB | 0.396 | 0.430 |
NDVI | 0.854 | 0.260 |
PRI | 0.748 | 0.231 |
PL | 0.841 | −0.233 |
EL | 0.267 | −0.857 |
NE | 0.750 | −0.374 |
TGW | 0.499 | 0.583 |
HW | 0.446 | −0.484 |
PROD | 0.832 | −0.350 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, G.F.; Ramos, M.L.G.; Pereira, L.F.; Keller, B.; Muller, O.; de Lima, C.A.; da Silva, P.C.; Malaquias, J.V.; Chagas, J.H.; Ribeiro Junior, W.Q. Phenotyping for Drought Tolerance in Different Wheat Genotypes Using Spectral and Fluorescence Sensors. Plants 2025, 14, 2216. https://doi.org/10.3390/plants14142216
Soares GF, Ramos MLG, Pereira LF, Keller B, Muller O, de Lima CA, da Silva PC, Malaquias JV, Chagas JH, Ribeiro Junior WQ. Phenotyping for Drought Tolerance in Different Wheat Genotypes Using Spectral and Fluorescence Sensors. Plants. 2025; 14(14):2216. https://doi.org/10.3390/plants14142216
Chicago/Turabian StyleSoares, Guilherme Filgueiras, Maria Lucrecia Gerosa Ramos, Luca Felisberto Pereira, Beat Keller, Onno Muller, Cristiane Andrea de Lima, Patricia Carvalho da Silva, Juaci Vitória Malaquias, Jorge Henrique Chagas, and Walter Quadros Ribeiro Junior. 2025. "Phenotyping for Drought Tolerance in Different Wheat Genotypes Using Spectral and Fluorescence Sensors" Plants 14, no. 14: 2216. https://doi.org/10.3390/plants14142216
APA StyleSoares, G. F., Ramos, M. L. G., Pereira, L. F., Keller, B., Muller, O., de Lima, C. A., da Silva, P. C., Malaquias, J. V., Chagas, J. H., & Ribeiro Junior, W. Q. (2025). Phenotyping for Drought Tolerance in Different Wheat Genotypes Using Spectral and Fluorescence Sensors. Plants, 14(14), 2216. https://doi.org/10.3390/plants14142216