An Efficient Extraction, Characterization and Antioxidant Study of Polysaccharides from Peucedani Decursivi Radix
Abstract
1. Introduction
2. Results and Discussion
2.1. Screening of the Best NADESs for the Extraction of Polysaccharides from PDR
2.2. Single Factor Experimental Optimization Results on the Yields of PDR Polysaccharides
2.2.1. The Effect of Liquid-to-Material Ratio on the Yields of PDR Polysaccharides
2.2.2. The Effect of Ultrasonic Time on the Yields of PDR Polysaccharides
2.2.3. The Effect of Ultrasonic Temperature on the Yields of PDR Polysaccharides
2.2.4. The Effect of Alcohol Precipitation Time on the Extraction Yields of PDR Polysaccharides
2.3. BBD-RSM Optimization Results on the Yields of PDR Polysaccharides
2.4. Verification of Prediction Model
2.5. Fourier−Transform Infrared (FT-IR) Spectroscopy
2.6. Monosaccharide Compositions of Polysaccharides
2.7. Molecular Weight of Polysaccharides
2.8. Surface Morphology of Polysaccharides Observed by SEM
2.9. The Cycle Extraction of Polysaccharides by NADESs
2.10. Antioxidant Activity Results
3. Materials and Methods
3.1. Materials and Regents
3.2. Preparation of NADESs
3.3. Determination of Polysaccharide Extraction Yields
3.4. Extraction of Polysaccharides from PDR
3.4.1. Pretreatment of PDR Powder
3.4.2. Extraction of Polysaccharides
3.4.3. Deproteinization
3.5. Optimization of Extraction Process of Polysaccharides from PDR
3.5.1. Single Factor Test
3.5.2. BBD-RSM Test
3.6. Determination of Antioxidant Activity of Polysaccharides
3.7. Characterization of Polysaccharides
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tao, Y.; Pu, J.L.; Wang, P. Ethnobotany, phytochemistry, pharmacology and quality control of Peucedanum decursivum (Miq.) Maxim: A critical review. J. Ethnopharmacol. 2024, 334, 118542. [Google Scholar] [CrossRef] [PubMed]
- National Pharmacopoeia Committee (NPC). 2020 Pharmacopoeia of the People’s Republic of China (a); Medical Science and Technology Press: Beijing, China, 2020. [Google Scholar]
- Barot, K.P.; Jain, S.V.; Kremer, L.; Singh, S.; Ghate, M.D. Recent advances and therapeutic journey of coumarins: Current status and perspectives. Med. Chem. Res. 2015, 24, 2771–2798. [Google Scholar] [CrossRef]
- Song, Z.Q.; Li, B.; Tian, K.Y.; Hong, L.; Wu, W.; Zhang, H.Y. Research progress on chemical constituents and pharmacological activities of Peucedani Radix and Peucedani Decursivi Radix. Chin. Tradit. Herb. Drugs 2022, 53, 948–964. [Google Scholar]
- Benchamas, G.; Huang, S.; Huang, G. The influence of traditional processing technologies and new technologies on the structure and function of food polysaccharide. Food Funct. 2020, 11, 5718–5725. [Google Scholar] [CrossRef]
- Cheng, H.; Huang, G.L. The antioxidant activities of carboxymethylated garlic polysaccharide and its derivatives. Int. J. Biol. Macromol. 2019, 140, 1054–1063. [Google Scholar] [CrossRef]
- Huang, G.; Chen, F.; Yang, W.; Huang, H. Preparation, deproteinization and comparison of bioactive polysaccharides. Trends Food Sci. Tech. 2021, 109, 564–568. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Shen, M.; Yu, Q.; Chen, Y.; Huang, L.; Xie, J. The water-soluble non-starch polysaccharides from natural resources against excessive oxidative stress: A potential health-promoting effect and its mechanisms. Int. J. Biol. Macromol. 2021, 171, 320–330. [Google Scholar] [CrossRef]
- Bai, L.; Xu, D.; Zhou, Y.-M.; Zhang, Y.-B.; Zhang, H.; Chen, Y.-B.; Cui, Y.-L. Antioxidant Activities of Natural Polysaccharides and Their Derivatives for Biomedical and Medicinal Applications. Antioxidants 2022, 11, 2491. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Yu, S.; Wang, T.; Li, R.; Zhang, Y.; Liu, Y. Medicinal and edible polysaccharides from ancient plants: Extraction, isolation, purification, structure, biological activity and market trends of sea buckthorn polysaccharides. Food Funct. 2024, 15, 4703–4723. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, Q.; Wang, Z.; Borjigin, G.; Sun, J.; Zhao, Y.; Li, Q.; Shi, X.; Shah, S.F.A.; Wang, X.; et al. Ultrasound-assisted polysaccharide extraction from Fritillaria ussuriensis Maxim. and its structural characterization, antioxidant and immunological activity. Ultrason. Sonochemistry 2024, 103, 106800. [Google Scholar] [CrossRef]
- Chu, Q.; Xie, S.; Wei, H.; Tian, X.; Tang, Z.; Li, D.; Liu, Y. Enzyme-assisted ultrasonic extraction of total flavonoids and extraction polysaccharides in residue from Abelmoschus manihot (L). Ultrason. Sonochem. 2024, 104, 106815. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Zhang, Y.; Bi, W. Switching from deep eutectic solvents to deep eutectic systems for natural product extraction. Green Chem. Eng. 2025, 6, 36–53. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, L.; Chen, L.; Zhou, W.; Wang, C.; Ma, L. Exploring carbohydrate extraction from biomass using deep eutectic solvents: Factors and mechanisms. iScience 2023, 26, 107671. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yu, L.; Zhou, H.; Wan, H.; Zhang, Y.; Wan, H.; Yang, J. Optimization of extraction process of Astragali radix-Paeoniae radix alba by comparing BBD-RSM and SA-BPNN and antioxidant activity. LWT 2023, 191, 115677. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.-J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Hikmawanti, N.P.E.; Ramadon, D.; Jantan, I.; Mun’im, A. Natural Deep Eutectic Solvents (NADES): Phytochemical Extraction Performance Enhancer for Pharmaceutical and Nutraceutical Product Development. Plants 2021, 10, 2091. [Google Scholar] [CrossRef]
- Olivares, B.; Martínez, F.A.; Ezquer, M.; Morales, B.J.; Fuentes, I.; Calvo, M.; Campodónico, P.R. Betaine-urea deep eutectic solvent improves imipenem antibiotic activity. J. Mol. Liq. 2022, 350, 118551. [Google Scholar] [CrossRef]
- Chen, Q.; He, N.; Fan, J.; Song, F. Physical Properties of Betaine-1,2-Propanediol-Based Deep Eutectic Solvents. Polymers 2022, 14, 1783. [Google Scholar] [CrossRef]
- Fuad, F.M.; Nadzir, M.M. The formulation and physicochemical properties of betaine-based natural deep eutectic solvent. J. Mol. Liq. 2022, 360, 119392. [Google Scholar] [CrossRef]
- Meng, H.; Ding, S.; Xue, S.; Liu, S.; Wu, Q.; Zhang, Q. Capillary electrophoresis separations with Betaine: Urea, a deep eutectic solvent as the separation medium. Anal. Chim. Acta 2024, 1336, 343467. [Google Scholar] [CrossRef]
- Pereira, T.C.; Souza, V.P.; Padilha, A.P.F.; A Duarte, F.; Flores, E.M. Trends and perspectives on the ultrasound-assisted extraction of bioactive compounds using natural deep eutectic solvents. Curr. Opin. Chem. Eng. 2025, 47, 101088. [Google Scholar] [CrossRef]
- Yusoff, M.H.M.; Shafie, M.H. Pioneering polysaccharide extraction with deep eutectic solvents: A review on impacts to extraction yield, physicochemical properties and bioactivities. Int. J. Biol. Macromol. 2025, 306, 141469. [Google Scholar] [CrossRef]
- Wang, C.; Li, Q.; Qiu, D.; Guo, Y.; Ding, X.; Jiang, K. An efficient and environmentally-friendly extraction, characterization and activity prediction of polysaccharides from Rhizoma et Radix Notopterygii. Int. J. Biol. Macromol. 2024, 265, 130907. [Google Scholar] [CrossRef]
- Qian, Y.; Wei, J.; Zhang, Z.; Wang, X.; Zhang, J.; Wu, B. Optimization of Polysaccharides Extraction from Seed Melon by Response Surface Methodology and Its Hypolipidemic Effects In Vitro. Sci. Tech Food Ind. 2020, 41, 7. [Google Scholar] [CrossRef]
- Meng, Y.; Sui, X.; Pan, X.; Zhang, X.; Sui, H.; Xu, T.; Zhang, H.; Liu, T.; Liu, J.; Ge, P. Density-oriented deep eutectic solvent-based system for the selective separation of polysaccharides from Astragalus membranaceus var. Mongholicus under ultrasound-assisted conditions. Ultrason. Sonochem. 2023, 98, 106522. [Google Scholar] [CrossRef]
- Miao, M.; Bai, A.; Jiang, B.; Song, Y.; Cui, S.W.; Zhang, T. Characterisation of a novel water-soluble polysaccharide from Leuconostoc citreum SK24.002. Food Hydrocoll. 2014, 36, 265–272. [Google Scholar] [CrossRef]
- Guo, Y.; Nan, S.; Qiu, C.; Song, C.; Wu, B.; Tang, Y.; Cheng, L.; Ma, H. Ultrasound-assisted enzymatic extraction of jujube (Ziziphus jujuba Mill.) polysaccharides: Extraction efficiency, antioxidant activity, and structure features. Ultrason. Sonochem. 2024, 111, 107088. [Google Scholar] [CrossRef]
- Li, R.; Shi, G.; Chen, L.; Liu, Y. Polysaccharides extraction from Ganoderma lucidum using a ternary deep eutectic solvents of choline chloride/guaiacol/lactic acid. Int. J. Biol. Macromol. 2024, 263, 130263. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, Z.; Liu, G.; Liang, L.; Wen, C.; Liu, X.; Li, Y.; Ji, T.; Liu, D.; Ren, J.; et al. Subcritical Water Enhanced with Deep Eutectic Solvent for Extracting Polysaccharides from Lentinus edodes and Their Antioxidant Activities. Molecules 2022, 27, 3612. [Google Scholar] [CrossRef]
- Zhou, C.; Yu, X.; Zhang, Y.; He, R.; Ma, H. Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea. Carbohyd. Polym. 2012, 87, 2046–2051. [Google Scholar] [CrossRef]
- Xue, J.; Su, J.; Wang, X.; Zhang, R.; Li, X.; Li, Y.; Ding, Y.; Chu, X. Eco-Friendly and Efficient Extraction of Polysaccharides from Acanthopanax senticosus by Ultrasound-Assisted Deep Eutectic Solvent. Molecules 2024, 29, 942. [Google Scholar] [CrossRef]
- Fan, X.; Chang, Y.; Wang, L.; Zhu, Y.; Dong, M.; Lv, M.; An, J.; Yang, Q.; Jiao, J.; Meng, D.; et al. A simple and efficient sample preparation for taxanes in Taxus chinensis needles with natural menthol-based aqueous deep eutectic solvent. J. Sep. Sci. 2020, 43, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.T.; Pei, D.; Yu, P.L.; Wei, J.T.; Wang, N.L.; Di, D.L.; Liu, Y.W. Aqueous two-phase systems based on deep eutectic solvents and their application in green separation processes. J. Sep. Sci. 2020, 43, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Wang, M.; Zhang, K.; Fu, Q.; Wang, L.; Gao, M.; Xia, Z.; Gao, D. Extraction and determination of bioactive flavonoids from Abelmoschus manihot (Linn.) Medicus flowers using deep eutectic solvents coupled with high-performance liquid chromatography. J. Sep. Sci. 2019, 42, 2044–2052. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, S.; Liu, C.; Wang, Q.; Wang, Y.; Fan, J. A hydrophobic deep eutectic solvent-based vortex-assisted dispersive liquid-liquid microextraction combined with HPLC for the determination of nitrite in water and biological samples. J. Sep. Sci. 2019, 42, 574–581. [Google Scholar] [CrossRef]
- Najafi, A.; Hashemi, M. Vortex-assisted natural deep eutectic solvent microextraction using response surface methodology optimization for determination of orthophosphate in water samples by molybdenum blue method. J. Sep. Sci. 2019, 42, 3102–3109. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Wang, H.; Huang, G.; Zhang, X. Analysis and properties of polysaccharides extracted from Brassica oleracea L. var. capitata L. by hot water extraction/ultrasonic-synergistic enzymatic method. Ultrason. Sonochem. 2025, 114, 107244. [Google Scholar] [CrossRef]
- Yi, P.; Li, N.; Wan, J.-B.; Zhang, D.; Li, M.; Yan, C. Structural characterization and antioxidant activity of a heteropolysaccharide from Ganoderma capense. Carbohydr. Polym. 2015, 121, 183–189. [Google Scholar] [CrossRef]
- Deng, L.; Huang, G. Ultrasound-assisted extraction, optimization, characteristics and antioxidant activity of Piper nigrum L. polysaccharides. Ultrason. Sonochem. 2025, 116, 107309. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Wan, Y.; Hao, J.Y.; Hu, R.Z.; Chen, C.; Yao, X.H.; Zhao, W.G.; Liu, Z.Y.; Li, L. Evaluation of the alkaloid, polyphenols, and antioxidant contents of various mulberry cultivars from different planting areas in eastern China. Ind. Crop. Prod. 2018, 122, 298–307. [Google Scholar] [CrossRef]
Factors | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
A (liquid-to-material ratio, mL/g) | 20 | 30 | 40 |
B (ultrasonic time, min) | 30 | 40 | 50 |
C (ultrasonic, temperature, ℃) | 25 | 35 | 45 |
D (alcohol precipitation time, h) | 6 | 12 | 18 |
NO. | A | B | C | D | Y (Yields, %) |
---|---|---|---|---|---|
1 | 1 | 0 | 0 | −1 | 6.46 |
2 | 1 | 0 | 0 | 1 | 11.87 |
3 | 0 | 0 | 0 | 0 | 7.34 |
4 | 0 | 0 | −1 | −1 | 12.22 |
5 | 1 | −1 | 0 | 0 | 13.77 |
6 | 1 | 0 | −1 | 0 | 6.52 |
7 | 0 | 0 | 0 | 0 | 7.21 |
8 | −1 | 0 | −1 | 0 | 3.22 |
9 | −1 | 1 | 0 | 0 | 8.44 |
10 | −1 | 0 | −1 | 0 | 1.86 |
11 | −1 | 0 | 0 | 1 | 1.70 |
12 | 0 | 1 | 0 | 1 | 12.74 |
13 | 0 | −1 | −1 | 0 | 14.53 |
14 | 0 | 0 | −1 | −1 | 2.85 |
15 | −1 | 0 | 0 | −1 | 5.52 |
16 | 0 | −1 | 0 | −1 | 12.34 |
17 | 0 | 0 | −1 | 1 | 8.92 |
18 | 0 | 1 | 0 | −1 | 10.70 |
19 | 0 | 0 | −1 | 1 | 5.62 |
20 | 0 | 1 | −1 | 0 | 8.12 |
21 | 1 | 0 | −1 | 0 | 8.29 |
22 | 0 | −1 | 0 | 1 | 10.85 |
23 | 1 | 1 | 0 | 0 | 8.29 |
24 | 0 | 0 | 0 | 0 | 7.77 |
25 | −1 | −1 | 0 | 0 | 3.68 |
26 | 0 | 0 | 0 | 0 | 7.47 |
27 | 0 | 1 | −1 | 0 | 12.28 |
28 | 0 | −1 | −1 | 0 | 4.59 |
29 | 0 | 0 | 0 | 0 | 7.03 |
Extraction Methods | Ara | Rha | Gal | Glc | Xyl | Man | Gal-UA | Glc-UA |
---|---|---|---|---|---|---|---|---|
HE | 13.27% | 2.20% | 19.65% | 53.32% | 0.92% | 1.32% | 7.97% | 1.35% |
EAHE | 12.06% | 2.00% | 18.65% | 57.89% | 0.84% | 1.37% | 5.97% | 1.22% |
UAE-NADES | 27.89% | 2.58% | 40.56% | 20.74% | 1.19% | 1.85% | 2.32% | 2.86% |
UAE-NADES-E | 17.77% | 2.15% | 31.58% | 42.25% | 0.95% | 1.59% | 2.14% | 1.56% |
Extraction Methods | Mn (kDa) | Mp (kDa) | Mw (kDa) | Mz (kDa) | Polydispersity (Mw/Mn) |
---|---|---|---|---|---|
HE | 81.467 | 108.201 | 139.499 | 429.715 | 1.712 |
EAHE | 44.935 | 17.970 | 85.332 | 137.667 | 1.899 |
UAE-NADES | 38.468 | 52.769 | 92.686 | 295.408 | 2.409 |
UAE-NADES-E | 16.474 | 8.801 | 51.233 | 230.688 | 3.110 |
NO. | Hydrogen Bond Acceptors (HBA) | Hydrogen Bond Donors (HBD) | HBA/HBD Ratio | Water Content |
---|---|---|---|---|
1 | Choline chloride | citric acid | 1:3 | 30% |
2 | Choline chloride | 1, 2-propylene glycol | 1:3 | 30% |
3 | Choline chloride | glycol | 1:3 | 30% |
4 | Betaine | 1,4-butanediol | 1:3 | 30% |
5 | Betaine | lactic acid | 1:3 | 30% |
6 | Betaine | 1,3-butanediol | 1:3 | 30% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Li, Z.; Hu, C.; Wang, C.; Yang, F.; Ding, X. An Efficient Extraction, Characterization and Antioxidant Study of Polysaccharides from Peucedani Decursivi Radix. Plants 2025, 14, 2188. https://doi.org/10.3390/plants14142188
Li Q, Li Z, Hu C, Wang C, Yang F, Ding X. An Efficient Extraction, Characterization and Antioxidant Study of Polysaccharides from Peucedani Decursivi Radix. Plants. 2025; 14(14):2188. https://doi.org/10.3390/plants14142188
Chicago/Turabian StyleLi, Qian, Zeyu Li, Chaogui Hu, Chenyue Wang, Feng Yang, and Xiaoqin Ding. 2025. "An Efficient Extraction, Characterization and Antioxidant Study of Polysaccharides from Peucedani Decursivi Radix" Plants 14, no. 14: 2188. https://doi.org/10.3390/plants14142188
APA StyleLi, Q., Li, Z., Hu, C., Wang, C., Yang, F., & Ding, X. (2025). An Efficient Extraction, Characterization and Antioxidant Study of Polysaccharides from Peucedani Decursivi Radix. Plants, 14(14), 2188. https://doi.org/10.3390/plants14142188