Evaluation and Optimization of Prediction Models for Crop Yield in Plant Factory
Abstract
1. Introduction
2. Materials and Methods
2.1. Crop Growth Area
2.2. Crop Canopy Image Acquisition
2.3. Optimization Design of Crop Yield Prediction Model
3. Results
3.1. Accuracy Analysis of CCPA Recognition
3.2. Real Calculation of CCPA Recognition
3.3. Construction of Crop Yield Prediction Model
4. Discussion
4.1. Effect of Complex Background on CCPA Recognition
4.2. Performance Analysis of Crop Yield Prediction Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morya, P.; Agarwal, M.; Agarwal, G.D. A comprehensive insight into solar drying systems for agricultural and industrial applications. Sol. Energy 2025, 293, 14. [Google Scholar] [CrossRef]
- Russo, A.; Sardeshpande, M.; Rupprecht, C.D.D. Urban rewilding for sustainability and food security. Land Use Policy 2025, 149, 8. [Google Scholar] [CrossRef]
- Qazi, A.; Al-Mhdawi, M.K.S. Sustainability and adaptation dynamics in global food security: A bayesian belief network approach. J. Clean. Prod. 2024, 467, 14. [Google Scholar] [CrossRef]
- Schroeder, L.S.; Rasche, L.; Jantke, K.; Mishra, G.; Lange, S.; Eschenbach, A.; Schneider, U.A. Combined effects of climate change and agricultural intensification on soil erosion in uphill shifting cultivation in northeast india. Land Degrad. Dev. 2024, 35, 670–686. [Google Scholar] [CrossRef]
- Zakrzewska, A.; Nowak, A. Diversification of agricultural output intensity across the european union in light of the assumptions of sustainable development. Agriculture 2022, 12, 1370. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Meng, Q.; Wang, C.; Ma, J.; Li, H.; Ma, K. Evaluating agricultural non-point source pollution with high-resolution remote sensing technology and SWAT model: A case study in ningxia yellow river irrigation district, china. Ecol. Indic. 2024, 166, 12. [Google Scholar] [CrossRef]
- Luo, X.; Kou, C.; Wang, Q. Optimal fertilizer application reduced nitrogen leaching and maintained high yield in wheat-maize cropping system in north china. Plants 2022, 11, 1963. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Guo, G.; An, L.; Fang, W.; Tan, Y.; Jiang, J.; Bing, X.; Song, Q.; Zhou, Q.; et al. A comprehensive risk assessment of microplastics in soil, water, and atmosphere: Implications for human health and environmental safety. Ecotoxicol. Environ. Saf. 2024, 285, 14. [Google Scholar] [CrossRef]
- Ragaveena, S.; Edward, A.S.; Surendran, U. Smart controlled environment agriculture methods: A holistic review. Rev. Environ. Sci. Bio-Technol. 2021, 20, 887–913, Correction in Rev. Environ. Sci. Bio-Technol. 2021, 20, 915.. [Google Scholar] [CrossRef]
- Kaya, C. Intelligent environmental control in plant factories: Integrating sensors, automation, and AI for optimal crop production. Food Energy Secur. 2025, 14, 17. [Google Scholar] [CrossRef]
- Hati, A.J.; Singh, R.R. Smart indoor farms: Leveraging technological advancements to power a sustainable agricultural revolution. AgriEngineering 2021, 3, 728–767. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhang, B.; Deng, L.; Bozdar, B.; Li, J.; Chachar, S.; Chachar, Z.; Jahan, I.; Talpur, A.; Gishkori, M.S.; et al. Advancing horizons in vegetable cultivation: A journey from ageold practices to high-tech greenhouse cultivation—A review. Front. Plant Sci. 2024, 15, 26. [Google Scholar] [CrossRef]
- Peng, Y.; Xiao, Y.; Fu, Z.; Dong, Y.; Zheng, Y.; Yan, H.; Li, X. Precision irrigation perspectives on the sustainable water-saving of field crop production in china: Water demand prediction and irrigation scheme optimization. J. Clean. Prod. 2019, 230, 365–377. [Google Scholar] [CrossRef]
- Weidner, T.; Yang, A.; Hamm, M.W. Energy optimisation of plant factories and greenhouses for different climatic conditions. Energy Conv. Manag. 2021, 243, 14. [Google Scholar] [CrossRef]
- Zhou, C.; Zhou, K.; Hu, J.; Zhang, X.; Li, Q. Optimization of light quality for plant factory production of brassica campestris (pakchoi). Agriculture 2025, 15, 347. [Google Scholar] [CrossRef]
- Li, K.; Fang, H.; Zou, Z.R.; Cheng, R.F. Optimization of rhizosphere cooling airflow for microclimate regulation and its effects on lettuce growth in plant factory. J. Integr. Agric. 2021, 20, 2680–2695. [Google Scholar] [CrossRef]
- Yuan, X.; Hu, J.; Marcelis, L.F.M.; Heuvelink, E.; Peng, J.; Yang, X.; Yang, Q. Advanced technologies in plant factories: Exploring current and future economic and environmental benefits in urban horticulture. Hortic. Res. 2025, 12, 12. [Google Scholar] [CrossRef]
- Yu, H.; Wang, P.; Zhu, L.; Liu, Y.; Chen, M.; Zhang, S.; Sui, Y.; Yu, H. Optimizing light intensity and airflow for improved lettuce growth and reduced tip burn disease in a plant factory. Sci. Hortic. 2024, 338, 13. [Google Scholar] [CrossRef]
- Huang, K.; Yang, C.; Kuo, C. Plant factory crop scheduling considering volume, yield changes and multi-period harvests using lagrangian relaxation. Biosyst. Eng. 2020, 200, 328–337. [Google Scholar] [CrossRef]
- Zou, H.; Li, C.; Zhang, A.; Zhang, X.; Chen, X.; Wang, F.; Yan, Y.; Zhang, S. Light environment control for reducing energy loss and increasing crop yield in plant factories. Sol. Energy 2024, 268, 10. [Google Scholar] [CrossRef]
- Iniyan, S.; Akhil Varma, V.; Teja Naidu, C. Crop yield prediction using machine learning techniques. Adv. Eng. Softw. 2023, 175, 103326. [Google Scholar] [CrossRef]
- Qiao, M.; He, X.; Cheng, X.; Li, P.; Luo, H.; Zhang, L.; Tian, Z. Crop yield prediction from multi-spectral, multi-temporal remotely sensed imagery using recurrent 3d convolutional neural networks. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 12. [Google Scholar] [CrossRef]
- Gene-Mola, J.; Gregorio, E.; Cheein, F.A.; Guevara, J.; Llorens, J.; Sanz-Cortiella, R.; Escola, A.; Rosell-Polo, J.R. Fruit detection, yield prediction and canopy geometric characterization using LiDAR with forced air flow. Comput. Electron. Agric. 2020, 168, 13. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Xue, Z.; Hu, J.; Chen, S.; Lv, Z. Rice growth estimation and yield prediction by combining the DSSAT model and remote sensing data using the monte carlo markov chain technique. Plants 2025, 14, 1206. [Google Scholar] [CrossRef]
- Zare, H.; Weber, T.K.D.; Ingwersen, J.; Nowak, W.; Gayler, S.; Streck, T. Within-season crop yield prediction by a multi-model ensemble with integrated data assimilation. Field Crops Res. 2024, 308, 16. [Google Scholar] [CrossRef]
- Mohan, A.; Venkatesan, M.; Prabhavathy, P.; Jayakrishnan, A. Temporal convolutional network based rice crop yield prediction using multispectral satellite data. Infrared Phys. Technol. 2023, 135, 9. [Google Scholar] [CrossRef]
- Saapilin, N.S.; Yong, W.T.L.; Cheong, B.E.; Kamaruzaman, K.A.; Rodrigues, K.F. Physiological and biochemical responses of chinese cabbage (brassica rapa var. Chinensis) to different light treatments. Chem. Biol. Technol. Agric. 2022, 9, 20. [Google Scholar] [CrossRef]
- Le, V.; Ahderom, S.; Apopei, B.; Alameh, K. A novel method for detecting morphologically similar crops and weeds based on the combination of contour masks and filtered local binary pattern operators. Gigascience 2020, 9, 16. [Google Scholar] [CrossRef]
- Bleasdale, A.J.; Blackburn, G.A.; Whyatt, J.D. Feasibility of detecting apple scab infections using low-cost sensors and interpreting radiation interactions with scab lesions. Int. J. Remote Sens. 2022, 43, 4984–5005. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, T.; Basanta, H. Using fuzzy mask r-CNN model to automatically identify tomato ripeness. IEEE Access 2020, 8, 207672–207682. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, C.; Li, J.; Zhu, L.; Zhou, B.; Zhou, Q.; Cheng, L.; Shuai, Z. A novel interval power flow method based on hybrid box-ellipsoid uncertain sets. IEEE Trans. Power Syst. 2024, 39, 6111–6114. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, S.; Pei, L.; Liang, S.; Yang, Q.; Wang, J. Distribution mechanism of disperse dyes with similar substituents in a waterless dyeing system based on molecular dynamic simulation. Dyes Pigment. 2022, 202, 8. [Google Scholar] [CrossRef]
- Wang, H.; Fu, T.; Du, Y.; Gao, W.; Huang, K.; Liu, Z.; Chandak, P.; Liu, S.; Van Katwyk, P.; Deac, A.; et al. Scientific discovery in the age of artificial intelligence. Nature 2023, 621, E33. [Google Scholar] [CrossRef]
- Azimjonov, J.; Kim, T. A comprehensive empirical analysis of data sets, regression-based feature selectors, and linear SVM classifiers for intrusion detection systems. IEEE Internet Things J. 2024, 11, 34676–34693. [Google Scholar] [CrossRef]
Model Type | Model Name | Interpretability | Define Model Number |
---|---|---|---|
Linear Regression | Linear | Easy | 2.1 |
Interactions Linear | Easy | 2.2 | |
Robust Linear | Easy | 2.3 | |
Stepwise Linear | Easy | 2.4 | |
Tree | Fine Tree | Easy | 2.5 |
Medium Tree | Easy | 2.6 | |
Coarse Tree | Easy | 2.7 | |
SVM | Linear SVM | Easy | 2.8 |
Quadratic SVM | Hard | 2.9 | |
Cubic SVM | Hard | 2.10 | |
Fine Gaussian SVM | Hard | 2.11 | |
Medium Gaussian SVM | Hard | 2.12 | |
Coarse Gaussian SVM | Hard | 2.13 | |
Efficient Linear | Efficient Linear Least Squares | Easy | 2.14 |
Efficient Linear SVM | Easy | 2.15 | |
Ensemble | Boosted Trees | Hard | 2.16 |
Bagged Trees | Hard | 2.17 | |
Gaussian Process Regression | Squared Exponential GPR | Hard | 2.18 |
Matern 5/2 GPR | Hard | 2.19 | |
Exponential GPR | Hard | 2.20 | |
Rational Quadratic | Hard | 2.21 | |
Neural Networks | Narrow Neural Network | Hard | 2.22 |
Medium Neural Network | Hard | 2.23 | |
Wide Neural Network | Hard | 2.24 | |
Bilayered Neural Network | Hard | 2.25 | |
Trilayered Neural Network | Hard | 2.26 | |
Kernel | SVM Kernel | Hard | 2.27 |
Least Squares Kernel Regression | Hard | 2.28 |
Metrics | Wide Neural Network | Fine Tree | Exponential GPR | Bilayered Neural Network |
---|---|---|---|---|
MAE | 19.76 | 25.40 | 30.33 | 30.08 |
MAPE | 11.74 | 17.45 | 18.67 | 16.54 |
MSE | 737.33 | 1547.79 | 1808.31 | 2002.25 |
RMSE | 27.15 | 39.34 | 42.52 | 44.75 |
R2 | 0.95 | 0.89 | 0.87 | 0.86 |
Prediction Speed (obs/sec) | 60,234.9 | 57,224.6 | 71,582.0 | 81,433.2 |
Training Time (sec) | 1.40 | 0.66 | 1.99 | 0.84 |
Model Size (bytes) | 7039 | 4613 | 8643 | 6651 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Zheng, Y.; Zheng, Z.; He, Y. Evaluation and Optimization of Prediction Models for Crop Yield in Plant Factory. Plants 2025, 14, 2140. https://doi.org/10.3390/plants14142140
Peng Y, Zheng Y, Zheng Z, He Y. Evaluation and Optimization of Prediction Models for Crop Yield in Plant Factory. Plants. 2025; 14(14):2140. https://doi.org/10.3390/plants14142140
Chicago/Turabian StylePeng, Yaoqi, Yudong Zheng, Zengwei Zheng, and Yong He. 2025. "Evaluation and Optimization of Prediction Models for Crop Yield in Plant Factory" Plants 14, no. 14: 2140. https://doi.org/10.3390/plants14142140
APA StylePeng, Y., Zheng, Y., Zheng, Z., & He, Y. (2025). Evaluation and Optimization of Prediction Models for Crop Yield in Plant Factory. Plants, 14(14), 2140. https://doi.org/10.3390/plants14142140