Physiological and Multi-Omics Analysis in Leaves of Solanum americanum in Response to Cd Toxicity
Abstract
1. Introduction
2. Results
2.1. Physiological Effects in Leaf Under Cd Stress
2.2. The Response of Leaf Transcriptomes to Cd Toxicity
2.3. The Response of Leaf Proteomes to Cd Toxicity
2.4. The Response of Leaf Metabolomes to Cd Toxicity
2.5. The Leaf Regulatory Network in Response to Cd Toxicity
3. Discussion
3.1. Cd Accumulation Induces Physiological Changes and Enhances Antioxidant Defense in the Leaves of S. americanum
3.2. S. americanum Copes with Cd Stress by Adjusting Photosynthesis
3.3. Phenylpropanoid Biosynthesis Confers Cd Tolerance in the Leaves of S. americanum
3.4. A Conceptual Response Network in Leaves of S. americanum
4. Materials and Methods
4.1. Plant Materials and Hydroponic Treatment
4.2. Sampling for Physiological Parameters
4.2.1. Biomass and Element Concentration Determination
4.2.2. Biochemical Parameters
4.3. Sampling for Multi-Omics Profiling Analysis
4.3.1. Transcriptome Profiling Analysis
4.3.2. Proteome Profiling Analysis
4.3.3. Metabolome Profiling Analysis
4.4. Integrated Analysis of Multi-Omics Data
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phlsson, A.M.B. Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Poll. 1989, 47, 287–319. [Google Scholar] [CrossRef]
- Gallego, S.M.; Pena, L.B.; Barcia, R.A.; Azpilicueta, C.E.; Iannone, M.F.; Rosales, E.P.; Zawoznik, M.S.; Groppa, M.D.; Benavides, M.P. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 2012, 83, 33–46. [Google Scholar] [CrossRef]
- Tan, L.T.; Qu, M.M.; Zhu, Y.X.; Peng, C.; Wang, J.R.; Gao, D.Y.; Chen, C.Y. Zinc transporter5 and Zinc transporter9 function synergistically in Zinc/Cadmium uptake. Plant Physiol. 2020, 183, 1235–1249. [Google Scholar] [CrossRef] [PubMed]
- Qiao, K.; Gong, L.; Tian, Y.B.; Wang, H.; Chai, T.Y. The metal-binding domain of wheat heavy metal ATPase2 (TaHMA2) is involved in zinc/cadmium tolerance and translocation in Arabidopsis. Plant Cell Rep. 2018, 37, 1343–1352. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Olowe, O.M.; Asemoloye, M.D. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere 2022, 288, 132555–132569. [Google Scholar] [CrossRef]
- Li, S.M.; Fu, W.Y.; Li, B.L.; Wang, Y.; Cheng, Y.R.; Kang, H.Y.; Zeng, J. Insight into Cd detoxification and accumulation in wheat by foliar application of ferulic acid. Plants 2025, 14, 1436. [Google Scholar] [CrossRef]
- Yuan, X.; Liang, R.; Wang, G.; Ma, S.; Liu, N.; Gong, Y.; Mccouch, S.R.; Zhu, H.; Liu, Z.; Li, Z.; et al. Design of rice with low cadmium accumulation in grain using single segment substitution line. New Crops 2025, 2, 100035. [Google Scholar] [CrossRef]
- Gavrilescu, M. Enhancing phytoremediation of soils polluted with heavy metals. Curr. Opin. Biotech. 2022, 74, 21–31. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Mehri, M.; Ghabooli, M.; Movahedi, Z. Contribution of Serendipita indica on growth improvement, antioxidative capacity of Dracocephalum kotschyi, and its resistance against cadmium stress. Int. Microbiol. 2023, 26, 821–831. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Ayub, A.; Hussain, S.; Waraich, E.A.; El-Esawi, M.A.; Ishfaq, M.; Ahmad, M.; Ali, N.; Maqsood, M.F. Cadmium toxicity in plants: Recent progress on morpho-physiological effects and remediation strategies. J. Soil Sci. Plant Nutr. 2022, 22, 212–269. [Google Scholar] [CrossRef]
- Khanna, K.; Kohli, S.K.; Ohri, P.; Bhardwaj, R.; Ahmad, P. Agroecotoxicological aspect of Cd in soil-plant system: Uptake, translocation and amelioration strategies. Environ. Sci. Pollut. Res. 2022, 29, 30908–30934. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.T.; Li, L.Y.; Duan, Q.X.; Liu, X.L.; Chen, M. Progress in our understanding of plant responses to the stress of heavy metal cadmium. Plant Signal. Behav. 2021, 16, 1836884–1836891. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.E.A.; Castro, P.R.C.; Azevedo, R.A. Hormesis in plants under Cd exposure: From toxic to beneficial element. J. Hazard. Mater. 2020, 384, 121434–121443. [Google Scholar] [CrossRef]
- Clemens, S.; Palmgren, M.G.; Krämer, U. A long way ahead: Understanding and engineering plant metal accumulation. Trends Plant Sci. 2002, 7, 309–315. [Google Scholar] [CrossRef]
- Li, T.Q.; Tao, Q.; Di, Z.Z.; Lu, F.; Yang, X.E. Effect of elevated CO2 concentration on photosynthetic characteristics of hyperaccumulator Sedum alfredii under cadmium stress. J. Integr. Plant Biol. 2015, 57, 653–660. [Google Scholar] [CrossRef]
- Bayçu, G.; Gevrek-Kürüm, N.; Moustaka, J.; Csatári, I.; Rognes, S.E.; Moustakas, M. Cadmium-zinc accumulation and photosystemII responses of Noccaea caerulescens to Cd and Zn exposure. Environ. Sci. Pollut. Res. 2017, 24, 2840–2850. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Wu, Y.; Li, S.; Jiao, Q.; Fan, L.; Li, G.; Agathokleous, E.; Chen, Y.; Wang, Y.; et al. Integrated ultrastructural, physiological and transcriptomic analyses uncover alterations in photosynthetic biomacromolecule structures by cadmium and cerium co-exposure and their regulation by hormone signaling and antioxidant pathways in maize. Int. J. Biol. Macromol. 2025, 309, 142472. [Google Scholar] [CrossRef]
- Kuang, L.H.; Yan, T.; Gao, F.; Tang, W.B.; Wu, D.Z. Multi-omics analysis reveals differential molecular responses to cadmium toxicity in rice root tip and mature zone. J. Hazard. Mater. 2024, 462, 132758–132773. [Google Scholar] [CrossRef]
- Sarma, H. Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. J. Environ. Sci. Technol. 2011, 4, 118–138. [Google Scholar] [CrossRef]
- Moravčíková, D.; Žiarovská, J. The effect of cadmium on plants in terms of the response of gene expression level and activity. Plants 2023, 12, 1848. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C.; Chen, X.F.; Chu, S.H.; You, Y.M.; Chi, Y.W.; Wang, R.Y.; Yang, X.J.; Hayat, K.; Zhang, D.; Zhou, P. Comparative cytology combined with transcriptomic and metabolomic analyses of Solanum nigrum L. in response to Cd toxicity. J. Hazard. Mater. 2022, 423, 127168–127183. [Google Scholar] [CrossRef] [PubMed]
- Feki, K.; Tounsi, S.; Mrabet, M.; Mhadhbi, H.; Brini, F. Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants. Environ. Sci. Pollut. Res. 2021, 28, 64967–64986. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.S.; Zhang, Z.H. Mechanisms of cadmium phytoremediation and detoxification in plants. Crop J. 2021, 9, 521–529. [Google Scholar] [CrossRef]
- Parihar, P.; Singh, S.; Singh, R.; Rajasheker, G.; Rathnagiri, P.; Srivastava, R.K.; Singh, V.P.; Suprasanna, P.; Prasad, S.M.; Kishor, P.K. An integrated transcriptomic, proteomic, and metabolomic approach to unravel the molecular mechanisms of metal stress tolerance in plants. In Plant-Metal Interactions; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1, pp. 1–28. [Google Scholar]
- Vanholme, R.; De Meester, B.; Ralph, J.; Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 2019, 56, 230–239. [Google Scholar] [CrossRef]
- Yu, M.; Zhuo, R.Y.; Lu, Z.C.; Li, S.C.; Chen, J.J.; Wang, Y.J.; Li, J.H.; Han, X.J. Molecular insights into lignin biosynthesis on cadmium tolerance: Morphology, transcriptome and proteome profiling in Salix matsudana. J. Hazard. Mater. 2023, 441, 129909. [Google Scholar] [CrossRef]
- Čatský, J.; von Caemmerer, S. Biochemical models of leaf photosynthesis. Photosynthetica 2001, 39, 528. [Google Scholar] [CrossRef]
- Smith, W.K.; Vogelmann, T.C.; DeLucia, E.H.; Bell, D.T.; Shepherd, K.A. Leaf form and photosynthesis. Bioscience 1997, 47, 785–793. [Google Scholar] [CrossRef]
- Krause, G.H.; Weis, E. ChlorophyII fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. 1991, 42, 313–349. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.; Xiao, H.W.; Xin, J.P.; Zhao, C.; Tian, R.N. Photosynthetic responses of Pontederia cordata to cadmium stress: Anatomical structure, ultrastructure, physiology, and gene Expression. Plants 2025, 14, 1344. [Google Scholar] [CrossRef]
- Tang, L.; Yao, A.J.; Yuan, M.; Tang, Y.T.; Liu, J.; Liu, X.; Qiu, R.L. Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium. Chemosphere 2016, 164, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.B.; Qiu, B.S. Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci. 2005, 169, 737–745. [Google Scholar] [CrossRef]
- Jin, X.F.; Yang, X.E.; Islam, E.; Liu, D.; Mahmood, Q. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J. Hazard. Mater. 2008, 156, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Ying, R.R.; Jiang, D.; Zeng, X.W.; Morel, J.L.; Tang, Y.T.; Qiu, R.L. Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata. Plant Physiol. Bioch. 2013, 73, 70–76. [Google Scholar] [CrossRef]
- Zhang, X.F.; Xia, H.P.; Li, Z.A.; Zhuang, P.; Gao, B. Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. J. Hazard. Mater. 2011, 189, 414–419. [Google Scholar] [CrossRef]
- Li, Q.Q.; Wang, X.Y.; Teng, C.; He, X.X.; Fu, X.Y.; Peng, W.T.; Fan, Y.L.; Lyu, S.H. An Improved and simplified agrobacterium-mediated genetic transformation protocol for Solanum nigrum with a shorter growth time. Plants 2024, 13, 2015. [Google Scholar] [CrossRef]
- Huang, K.W.; Wang, Y.; Wei, X.H.; Bie, Y.H.; Zhou, H.X.; Deng, L.L.; Lin, L.J.; Liao, M.A. Effects of mutual grafting Solanum photeinocarpum from two ecosystems on physiology and selenium absorption of their offspring under selenium stress. Acta Physiol. Plant. 2021, 43, 96. [Google Scholar] [CrossRef]
- Lin, L.J.; Wu, C.F.; Wang, J.; Liao, M.A.; Yang, D.Y.; Deng, H.H.; Lv, X.L.; Xia, H.; Liang, D.; Deng, Q.X. Effects of reciprocal hybridization on cadmium accumulation in F1 hybrids of two Solanum photeinocarpum ecotypes. Environ. Sci. Pollut. Res. 2020, 27, 7120–7129. [Google Scholar] [CrossRef]
- Tang, Y.; He, J.; Yu, X.N.; Xie, Y.D.; Lin, L.J.; Sun, G.C.; Li, H.X.; Liao, M.G.; Liang, D.; Xia, H.; et al. Intercropping with Solanum nigrum and Solanum photeinocarpum from two ecoclimatic regions promotes growth and reduces cadmium uptake of eggplant seedlings. Pedosphere 2017, 27, 638–644. [Google Scholar] [CrossRef]
- Zhou, J.; Han, P.P.; Pan, Y.Z.; Wu, M.X.; Zhao, Y.; Jia, Y.; Jiang, B.B.; Zhang, L.; Xu, Q.; Liu, S.L.; et al. Effects of a cadmium stress on photosynthetic physiology and chlorophyII fluoreseence in Solanum nigrum and S. americanum. J. Agro-Enviroment Sci. 2021, 1, 26–34. [Google Scholar]
- Zhu, Y.; Qiu, W.M.; He, X.Y.; Wu, L.H.; Zhuo, R.Y. Integrative analysis of transcriptome and proteome provides insights into adaptation to cadmium stress in Sedum plumbizincicola. Ecotoxicol. Environ. Saf. 2022, 230, 113149–113158. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.X.; Xu, Q.; Tang, T.T.; Li, X.; Pan, Y.Z. Integrative physiological, transcriptomic, and metabolomic analysis of Abelmoschus manihot in response to Cd toxicity. Front. Plant Sci. 2024, 15, 1389207. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.H.; Dai, S.X.; Wang, R.G.; Guo, J.K.; Ding, Y.Z.; Xu, Y.M. Combined effects of elevated CO2 and Cd-contaminated soil on the growth, gas exchange, antioxidant defense, and Cd accumulation of poplars and willows. Environ. Exp. Bot. 2015, 115, 1–10. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, C.L.; Lan, X.Y.; Zhao, J.; Xiang, Y.F.; Pan, Y.Z. Effect of cadmium stress on the growth and physiological characteristics of Primula forbesii seedlings. Acta Bot. Boreali-Occident. Sin. 2020, 40, 454–462. [Google Scholar]
- Saitanis, C.J.; Bari, S.M.; Burkey, K.O.; Stamatelopoulos, D.; Agathokleous, E. Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone. Environ. Sci. Pollut. Res. 2014, 21, 13560–13571. [Google Scholar] [CrossRef]
- Woolhouse, N.W. Longevity and senescence in plants. Sci. Prog. 1974, 61, 123–147. [Google Scholar]
- Wu, M.X.; Luo, Q.; Zhao, Y.; Long, Y.; Liu, S.L.; Pan, Y.Z. Physiological and biochemical mechanisms preventing Cd toxicity in the new hyperaccumulator Abelmoschus manihot. J. Plant Growth Regul. 2018, 37, 709–718. [Google Scholar] [CrossRef]
- Jogawat, A.; Yadav, B.; Narayan, O.P. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiol. Plant. 2021, 173, 259–275. [Google Scholar] [CrossRef]
- Ueno, D.; Iwashita, T.; Zhao, F.; Ma, J.F. Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell Physiol. 2008, 49, 540. [Google Scholar] [CrossRef]
- Wang, Y.M.; Chen, X.K.; Chen, J.G. Advances of the mechanism for copper tolerance in plants. Plant Sci. 2025, 350, 112299. [Google Scholar] [CrossRef]
- Liu, F.; Xi, M.; Liu, T.; Wu, X.; Ju, L.; Wang, D. The central role of transcription factors in bridging biotic and abiotic stress responses for plants’ resilience. New Crops 2024, 1, 100005. [Google Scholar] [CrossRef]
- Peng, R.N.; Sun, W.Y.; Jin, X.X.; Yu, L.J.; Dong, Y.L. Analysis of 2,4-epibrassinolide created an enhancement tolerance on Cd toxicity in Solanum nigrum L. Environ. Sci. Pollut. Res. 2020, 27, 16784–16797. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.L.; Dong, Y.J.; Kong, J.; Liu, S. Effects of root and foliar applications of exogenous NO on alleviating cadmium toxicity in lettuce seedlings. Plant Growth Regul. 2014, 72, 39–50. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Pandey, P.; Rajpoot, R.; Rani, A.; Dubey, R.S. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 2014, 251, 1047–1065. [Google Scholar] [CrossRef]
- Liu, Z.C.; Zhou, L.Z.; Gan, C.C.; Hu, L.J.; Pang, B.; Zuo, D.; Wang, G.Y.; Wang, H.C.; Liu, Y.L. Transcriptomic analysis reveals key genes and pathways corresponding to Cd and Pb in the hyperaccumulator Arabis paniculata. Ecotoxicol. Environ. Saf. 2023, 254, 114757. [Google Scholar] [CrossRef]
- Krämer, U. Metal hyperaccumulation in plants. Annu. Rev. Plant Biol. 2010, 61, 517–534. [Google Scholar] [CrossRef]
- Noor, W.; Umar, S.; Mir, M.Y.; Shah, D.; Majeed, G.; Hafeez, S.; Yaqoob, S.; Khan, A.G.; Kamili, A. Effect of cadmium on growth, photosynthesis and nitrogen metabolism of crop plants. J. Res. Dev. 2018, 18, 100–106. [Google Scholar]
- Dekker, J.P.; Boekema, E.J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta (BBA)-Bioenerg. 2005, 1706, 12–39. [Google Scholar] [CrossRef]
- Croce, R.; van Amerongen, H. Light-harvesting and structural organization of Photosystem II: From individual complexes to thylakoid membrane. J. Photochem. Photobiol. B Biol. 2011, 104, 142–153. [Google Scholar] [CrossRef]
- Luciński, R.; Jackowski, G. The structure, functions and degradation of pigment-binding proteins of photosystem II. Acta Biochim. Pol. 2006, 53, 693–708. [Google Scholar] [CrossRef]
- Liu, H.T.; Jiao, Q.J.; Fan, L.N.; Jiang, Y.; Alyemeni, M.N.; Ahmad, P.; Chen, Y.L.; Zhu, M.; Liu, H.P.; Zhao, Y.; et al. Integrated physio-biochemical and transcriptomic analysis revealed mechanism underlying of Si-mediated alleviation to cadmium toxicity in wheat. J. Hazard. Mater. 2023, 452, 131366. [Google Scholar] [CrossRef] [PubMed]
- Raines, C.A. The Calvin cycle revisited. Photosynth. Res. 2003, 75, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.Q.; Hong, X.L. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef] [PubMed]
- Tohge, T.; Watanabe, M.; Hoefgen, R.; Fernie, A.R. The evolution of phenylpropanoid metabolism in the green lineage. Crit. Rev. Biochem. Mol. 2013, 48, 123–152. [Google Scholar] [CrossRef]
- Kang, Y.C.; Yao, Y.H.; Liu, Y.H.; Shi, M.F.; Zhang, W.N.; Zhang, R.Y.; Li, H.; Qin, S.H.; Yang, X.Y. Exogenous glutathione enhances tolerance of the potato (Solanum tuberosum L.) to cadmium stress by regulating the biosynthesis of phenylpropanoid and the signal transduction of plant hormones. Chem. Biol. Technol. Agric. 2023, 10, 24–37. [Google Scholar] [CrossRef]
- Lavhale, S.G.; Kalunke, R.M.; Giri, A.P. Structural, functional and evolutionary diversity of 4-coumarate-CoA ligase in plants. Planta 2018, 248, 1063–1078. [Google Scholar] [CrossRef]
- Jiankang, Z. Abiotic stress signaling and response in plant. Cell 2016, 167, 313–324. [Google Scholar]
- Zhu, H.; Ai, H.; Cao, L.; Sui, R.; Ye, H.; Du, D.; Sun, J.; Yao, J.; Chen, K.; Chen, L. Transcriptome analysis providing novel insights for Cd-resistant tall fescue responses to Cd stress. Ecotoxicol. Environ. Saf. 2018, 160, 349–356. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, X.; Guo, X.; Pan, Y.; Yu, B.; Tang, Z.; Guo, Q. Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus. Ecotoxicol. Environ. Saf. 2018, 157, 266–275. [Google Scholar] [CrossRef]
- Dong, Q.; Tao, Q.; Li, B.; Huang, R.; Xu, Q.; Li, H.X.; Shen, J.; Chen, X.; Li, Q.Q.; Tang, X.Y.; et al. The mechanism of enhanced lignin regulating foliar Cd absorption and yield in rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2023, 249, 111492–114481. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, S.; Yao, Q.; He, R.; Wang, H.; Xu, Z.; Xing, W.; Liu, D. ABA-regulated MAPK signaling pathway promotes hormesis in sugar beet under cadmium exposure. J. Hazard. Mater. 2024, 480, 135968. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Grant, M.; Lim, B.L. NAD(H) and NADP(H) in plants and mammals. Mol. Plant 2025, 18, 938–959. [Google Scholar] [CrossRef] [PubMed]
- Feitosa-Araujo, E.; Da Fonseca-Pereira, P.; Knorr, L.S.; Schwarzländer, M.; Nunes-Nesi, A. NAD meets ABA: Connecting cellular metabolism and hormone signaling. Trends Plant Sci. 2022, 27, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Collado-Arenal, A.M.; Exposito-Rodriguez, M.; Mullineaux, P.M.; Olmedilla, A.; Romero-Puertas, M.C.; Sandalio, L.M. Cadmium exposure induced light/dark- and time-dependent redox changes at subcellular level in Arabidopsis plants. J. Hazard. Mater. 2024, 477, 135164. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, B.; Dong, W.; Li, J.; Wang, D.; Liu, Z.; Gao, C. Comparative transcriptomic and metabolomic analyses provide insights into the responses to NaCl and Cd stress in Tamarix hispida. Sci. Total Environ. 2023, 884, 163889. [Google Scholar] [CrossRef]
- Ou, Y.; Teng, Z.; Shu, Y.; Wang, Y.; Wang, D.; Sun, C.; Lin, X. Linoleic acid alleviates aluminum toxicity by modulating fatty acid composition and redox homeostasis in wheat (Triticum aestivum) seedlings. J. Hazard. Mater. 2025, 487, 137156. [Google Scholar] [CrossRef]
- Song, J.; Sun, Z.; Saud, S.; Fahad, S.; Nawaz, T. Exploring the deleterious effects of heavy metal cadmium on antioxidant defense and photosynthetic pathways in higher plants. Plant Stress 2025, 15, 100716. [Google Scholar] [CrossRef]
- Hu, Z.; Wei, H.; Sun, L.; Russinova, E. Plant steroids on the move: Mechanisms of brassinosteroid export. Trends Biochem. Sci. 2025, 50, 508–519. [Google Scholar] [CrossRef]
- Sun, J.Y.; Guo, R.; Jiang, Q.; Chen, C.Z.; Gao, Y.Q.; Jiang, M.M.; Shen, R.F.; Zhu, X.F.; Huang, J. Brassinosteroid decreases cadmium accumulation via regulating gibberellic acid accumulation and Cd fixation capacity of root cell wall in rice (Oryza sativa). J. Hazard. Mater. 2024, 469, 133862. [Google Scholar] [CrossRef]
- Török, A.I.; Cadar, O.; Kalapos, B.; Pál, M.; Szalai, G.; Mednyánszky, Z.; Gierczik, K.; Székely, A.; Simon-Sarkadi, L.; Kocsy, G. Blue and far-red light modify the adaptation of Lemna minor L. to cadmium stress based on glutathione, phytochelatin, chemical element and free amino acid levels. Plant Stress 2025, 17, 100937. [Google Scholar] [CrossRef]
- Jia, B.; Cui, X.; Zhang, Z.; Li, X.; Hou, Y.; Luo, J.; Guo, W. Arbuscular mycorrhizal fungi regulate amino acid metabolism, phytohormones and glycolysis pathway to promote the growth of Suaeda salsa under combined Cd and NaCl stresses. Plant Physiol. Bioch. 2024, 214, 108921. [Google Scholar] [CrossRef] [PubMed]
- Dhindsa, R.S.; Plumb-dhindsa, P.; Thorpe, T.A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Upadhyaya, A.; Sankhla, D.; Davis, T.D.; Sankhla, N.; Smith, B.N. Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J. Plant Physiol. 1985, 121, 453–461. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011, 12, 323–338. [Google Scholar] [CrossRef]
- Young, M.; Wakefield, M.; Smyth, G.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef]
- Mao, X.Z.; Cai, T.; Olyarchuk, J.; Wei, L.P. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Zhu, J.-G.; Xiao, P.; Wang, K.-L.; Xu, Q.; Wu, M.-X.; Pan, Y.-Z. Physiological and Multi-Omics Analysis in Leaves of Solanum americanum in Response to Cd Toxicity. Plants 2025, 14, 2131. https://doi.org/10.3390/plants14142131
Zhou J, Zhu J-G, Xiao P, Wang K-L, Xu Q, Wu M-X, Pan Y-Z. Physiological and Multi-Omics Analysis in Leaves of Solanum americanum in Response to Cd Toxicity. Plants. 2025; 14(14):2131. https://doi.org/10.3390/plants14142131
Chicago/Turabian StyleZhou, Jiao, Jun-Gang Zhu, Peng Xiao, Kai-Lu Wang, Qian Xu, Meng-Xi Wu, and Yuan-Zhi Pan. 2025. "Physiological and Multi-Omics Analysis in Leaves of Solanum americanum in Response to Cd Toxicity" Plants 14, no. 14: 2131. https://doi.org/10.3390/plants14142131
APA StyleZhou, J., Zhu, J.-G., Xiao, P., Wang, K.-L., Xu, Q., Wu, M.-X., & Pan, Y.-Z. (2025). Physiological and Multi-Omics Analysis in Leaves of Solanum americanum in Response to Cd Toxicity. Plants, 14(14), 2131. https://doi.org/10.3390/plants14142131