Mutualism and Dispersal Heterogeneity Shape Stability, Biodiversity, and Structure of Theoretical Plant–Pollinator Meta-Networks
Abstract
1. Introduction
2. Results
2.1. Stability
2.2. Total Abundance
2.3. Unevenness
2.4. Compositional Similarity
2.5. Nestedness and Modularity
3. Discussion
3.1. Mutualistic Interactions Enhance Meta-Network Stability and Structure
3.2. Dispersal Stabilises Networks Through Complementary Mechanisms
3.3. Dispersal Heterogeneity Between Local Networks Drives Species Abundance, Evenness, and Similarity Patterns
4. Materials and Methods
4.1. Meta-Network Model
4.2. Dispersal Heterogeneity Between Local Networks and Across Species
4.3. Simulation and Parameterisation
4.4. Network Structures and Metrics
4.4.1. Stability Measured by the Leading Eigenvalue
4.4.2. Total Abundance
4.4.3. Unevenness Measured by Gini Coefficient
4.4.4. Compositional Similarity Measured by Morisita–Horn Index
4.4.5. Nestedness and Modularity
5. Conclusions
Limitations and Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chesson, P. Mechanisms of Maintenance of Species Diversity. Annu. Rev. Ecol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef]
- Woodward, G. Biodiversity, Ecosystem Functioning and Food Webs in Fresh Waters: Assembling the Jigsaw Puzzle. Freshw. Biol. 2009, 54, 2171–2187. [Google Scholar] [CrossRef]
- Liang, J.; Gamarra, J.G.P.; Picard, N.; Zhou, M.; Pijanowski, B.; Jacobs, D.F.; Reich, P.B.; Crowther, T.W.; Nabuurs, G.J.; de-Miguel, S.; et al. Co-Limitation towards Lower Latitudes Shapes Global Forest Diversity Gradients. Nat. Ecol. Evol. 2022, 6, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Rodger, J.G.; Bennett, J.M.; Razanajatovo, M.; Knight, T.M.; van Kleunen, M.; Ashman, T.L.; Steets, J.A.; Hui, C.; Arceo-Gómez, G.; Burd, M.; et al. Widespread Vulnerability of Flowering Plant Seed Production to Pollinator Declines. Sci. Adv. 2021, 7, eabd3524. [Google Scholar] [CrossRef] [PubMed]
- Nnakenyi, C.A.; Traveset, A.; Heleno, R.; Minoarivelo, H.O.; Hui, C. Fine-tuning the Nested Structure of Pollination Networks by Adaptive Interaction Switching, Biogeography and Sampling Effect in the Galápagos Islands. Oikos 2019, 128, 1413–1423. [Google Scholar] [CrossRef]
- Yahaya, M.M.; Rodger, J.G.; Landi, P.; Hui, C. Emergence of Structure in Plant–Pollinator Networks: Low Floral Resource Constrains Network Specialisation. Oikos 2024, 2024, e10533. [Google Scholar] [CrossRef]
- Bascompte, J.; Jordano, P. Mutualistic Networks: The Architecture of Biodiversitv. Annu. Rev. 2007, 38, 567–593. [Google Scholar]
- Emer, C.; Galetti, M.; Pizo, M.A.; Guimarães, P.R.; Moraes, S.; Piratelli, A.; Jordano, P. Seed-Dispersal Interactions in Fragmented Landscapes—A Metanetwork Approach. Ecol. Lett. 2018, 21, 484–493. [Google Scholar] [CrossRef]
- Landi, P.; Minoarivelo, H.O.; Brännström, Å.; Hui, C.; Dieckmann, U. Complexity and Stability of Ecological Networks: A Review of the Theory. Popul. Ecol. 2018, 0, 319–345. [Google Scholar] [CrossRef]
- Hagen, M.; Kissling, W.D.; Rasmussen, C.; De Aguiar, M.A.M.; Brown, L.E.; Carstensen, D.W.; Alves-Dos-Santos, I.; Dupont, Y.L.; Edwards, F.K.; Genini, J.; et al. Biodiversity, Species Interactions and Ecological Networks in a Fragmented World. Adv. Ecol. Res. 2012, 46, 89–210. [Google Scholar]
- Devoto, M.; Bailey, S.; Memmott, J. Ecological Meta-Networks Integrate Spatial and Temporal Dynamics of Plant-Bumble Bee Interactions. Oikos 2013, 123, 714–720. [Google Scholar] [CrossRef]
- Mohammed, M.M.A.; Landi, P.; Minoarivelo, H.O.; Hui, C. Frugivory and Seed Dispersal: Extended Bi-Stable Persistence and Reduced Clustering of Plants. Ecol. Modell. 2018, 380, 31–39. [Google Scholar] [CrossRef]
- Thompson, J. The Coevolutionary Process; University of Chicago Press: Chicago, IL, USA, 1994. [Google Scholar]
- Ollerton, J. Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 353–376. [Google Scholar] [CrossRef]
- Bastolla, U.; Fortuna, M.A.; Pascual-García, A.; Ferrera, A.; Luque, B.; Bascompte, J. The Architecture of Mutualistic Networks Minimizes Competition and Increases Biodiversity. Nature 2009, 458, 1018–1020. [Google Scholar] [CrossRef] [PubMed]
- Bascompte, J.; García, M.B.; Ortega, R.; Rezende, E.L.; Pironon, S. Mutualistic Interactions Reshuffle the Effects of Climate Change on Plants across the Tree of Life. Sci. Adv. 2019, 5, eaav2539. [Google Scholar] [CrossRef]
- Valdovinos, F.S. Mutualistic Networks: Moving Closer to a Predictive Theory. Ecol. Lett. 2019, 22, 1517–1534. [Google Scholar] [CrossRef]
- Bronstein, J.L. Mutualism; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Allesina, S.; Tang, S. Stability Criteria for Complex Ecosystems. Nature 2012, 483, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Minoarivelo, H.O.; Hui, C. Alternative Assembly Processes from Trait-Mediated Co-Evolution in Mutualistic Communities. J. Theor. Biol. 2018, 454, 146–153. [Google Scholar] [CrossRef]
- Lurgi, M.; Montoya, D.; Montoya, J.M. The Effects of Space and Diversity of Interaction Types on the Stability of Complex Ecological Networks. Theor. Ecol. 2016, 9, 3–13. [Google Scholar] [CrossRef]
- Loreau, M.; Mouquet, N.; Gonzalez, A. Biodiversity as Spatial Insurance in Heterogeneous Landscapes. Proc. Natl. Acad. Sci. USA 2003, 100, 12765–12770. [Google Scholar] [CrossRef]
- Shanafelt, D.W.; Dieckmann, U.; Jonas, M.; Franklin, O.; Loreau, M.; Perrings, C. Biodiversity, Productivity, and the Spatial Insurance Hypothesis Revisited. J. Theor. Biol. 2015, 380, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Gravel, D.; Massol, F.; Leibold, M.A. Stability and Complexity in Model Meta-Ecosystems. Nat. Commun. 2016, 7, 12457. [Google Scholar] [CrossRef]
- Mougi, A.; Kondoh, M. Food-Web Complexity, Meta-Community Complexity and Community Stability. Sci. Rep. 2016, 6, 24478. [Google Scholar] [CrossRef]
- Levin, S.A. The Problem of Pattern and Scale in Ecology. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- Thebault, E.; Fontaine, C. Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks. Science 2010, 329, 853–856. [Google Scholar] [CrossRef]
- Plitzko, S.J.; Drossel, B. The Effect of Dispersal between Patches on the Stability of Large Trophic Food Webs. Theor. Ecol. 2015, 8, 233–244. [Google Scholar] [CrossRef]
- Tan, C.; Wang, Y.; Wu, H. A Consumer–Resource System with Source–Sink Populations and Asymmetric Dispersal. Phys. A Stat. Mech. Its Appl. 2020, 540, 123145. [Google Scholar] [CrossRef]
- Magurran, A.E.; McGill, B.J. Biological Diversity: Frontiers in Measurement and Assessment; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Schuler, M.S.; Chase, J.M.; Knight, T.M. Habitat Patch Size Alters the Importance of Dispersal for Species Diversity in an Experimental Freshwater Community. Ecol. Evol. 2017, 7, 5774–5783. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Z.; Gao, M.; Hui, C.; Han, X.Z.; Shi, H. Impact of Predator Pursuit and Prey Evasion on Synchrony and Spatial Patterns in Metapopulation. Ecol. Modell. 2005, 185, 245–254. [Google Scholar] [CrossRef]
- Ramanantoanina, A.; Hui, C.; Ouhinou, A. Effects of Density-Dependent Dispersal Behaviours on the Speed and Spatial Patterns of Range Expansion in Predator-Prey Metapopulations. Ecol. Modell. 2011, 222, 3524–3530. [Google Scholar] [CrossRef]
- Shen, D.; Langenheder, S.; Jürgens, K. Dispersal Modifies the Diversity and Composition of Active Bacterial Communities in Response to a Salinity Disturbance. Front. Microbiol. 2018, 9, 2188. [Google Scholar] [CrossRef] [PubMed]
- Gianuca, A.T.; Declerck, S.A.J.; Lemmens, P.; De Meester, L. Effects of Dispersal and Environmental Heterogeneity on the Replacement and Nestedness Components of β-Diversity. Ecology 2017, 98, 525–533. [Google Scholar] [CrossRef]
- Borthagaray, A.I.; Barreneche, J.M.; Abades, S.; Arim, M. Modularity along Organism Dispersal Gradients Challenges a Prevailing View of Abrupt Transitions in Animal Landscape Perception. Ecography 2014, 37, 564–571. [Google Scholar] [CrossRef]
- Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The Metacommunity Concept: A Framework for Multi-Scale Community Ecology. Ecol. Lett. 2004, 7, 601–613. [Google Scholar] [CrossRef]
- Loreau, M.; Mouquet, N.; Holt, R.D. Meta-Ecosystems: A Theoretical Framework for a Spatial Ecosystem Ecology. Ecol. Lett. 2003, 6, 673–679. [Google Scholar] [CrossRef]
- Gounand, I.; Harvey, E.; Little, C.J.; Altermatt, F. Meta-Ecosystems 2.0: Rooting the Theory into the Field. Trends Ecol. Evol. 2018, 33, 36–46. [Google Scholar] [CrossRef]
- Massol, F.; Gravel, D.; Mouquet, N.; Cadotte, M.W.; Fukami, T.; Leibold, M.A. Linking Community and Ecosystem Dynamics through Spatial Ecology. Ecol. Lett. 2011, 14, 313–323. [Google Scholar] [CrossRef] [PubMed]
- García-Callejas, D.; Molowny-Horas, R.; Araújo, M.B.; Gravel, D. Spatial Trophic Cascades in Communities Connected by Dispersal and Foraging. Ecology 2019, 100, e02820. [Google Scholar] [CrossRef]
- Suweis, S.; Simini, F.; Banavar, J.R.; Maritan, A. Emergence of Structural and Dynamical Properties of Ecological Mutualistic Networks. Nature 2013, 500, 449–452. [Google Scholar] [CrossRef]
- Hale, K.R.S.; Valdovinos, F.S.; Martinez, N.D. Mutualism Increases Diversity, Stability, and Function of Multiplex Networks That Integrate Pollinators into Food Webs. Nat. Commun. 2020, 11, 2182. [Google Scholar] [CrossRef]
- Filotas, E.; Grant, M.; Parrott, L.; Rikvold, P.A. Positive Interactions and the Emergence of Community Structure in Metacommunities. J. Theor. Biol. 2010, 266, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Chomicki, G.; Weber, M.; Antonelli, A.; Bascompte, J.; Kiers, E.T. The Impact of Mutualisms on Species Richness. Trends Ecol. Evol. 2019, 34, 698–711. [Google Scholar] [CrossRef]
- Okuyama, T.; Holland, J.N. Network Structural Properties Mediate the Stability of Mutualistic Communities. Ecol. Lett. 2008, 11, 208–216. [Google Scholar] [CrossRef]
- Olesen, J.M.; Bascompte, J.; Dupont, Y.L.; Jordano, P. The Modularity of Pollination Networks. Proc. Natl. Acad. Sci. USA 2007, 104, 19891–19896. [Google Scholar] [CrossRef] [PubMed]
- Gouhier, T.C.; Guichard, F.; Gonzalez, A. Synchrony and Stability of Food Webs in Metacommunities. Am. Nat. 2010, 175, E16–E34. [Google Scholar] [CrossRef]
- Townsend, D.L.; Gouhier, T.C. Spatial and Interspecific Differences in Recruitment Decouple Synchrony and Stability in Trophic Metacommunities. Theor. Ecol. 2019, 12, 319–327. [Google Scholar] [CrossRef]
- Devoto, M.; Bailey, S.; Craze, P.; Memmott, J. Understanding and Planning Ecological Restoration of Plant—Pollinator Networks. Ecol. Lett. 2012, 15, 319–328. [Google Scholar] [CrossRef]
- Kaiser-Bunbury, C.N.; Blülthgen, N. Integrating Network Ecology with Applied Conservation: A Synthesis and Guide to Implementation. AoB Plants 2015, 7, plv076. [Google Scholar] [CrossRef]
- Rudnick, D.; Ryan, S.J.; Beier, P.; Dieffenbach, F. The Role of Landscape Connectivity in Planning and Implementing Conservation and Restoration Priorities. Issues Ecol. 2012, 16, 1–23. [Google Scholar]
- Ferreira, P.A.; Boscolo, D.; Viana, B.F. What Do We Know about the Effects of Landscape Changes on Plant-Pollinator Interaction Networks? Ecol. Indic. 2013, 31, 35–40. [Google Scholar] [CrossRef]
- Borchardt, K.E.; Morales, C.L.; Aizen, M.A.; Toth, A.L. Plant–Pollinator Conservation from the Perspective of Systems-Ecology. Curr. Opin. Insect Sci. 2021, 47, 154–161. [Google Scholar] [CrossRef]
- Holling, C.S. Some Characteristics of Simple Types of Predation and Parasitism. Can. Entomol. 1959, 91, 385–398. [Google Scholar] [CrossRef]
- Wilson, J.R.U.; Dormontt, E.E.; Prentis, P.J.; Lowe, A.J.; Richardson, D.M. Something in the Way You Move: Dispersal Pathways Affect Invasion Success. Trends Ecol. Evol. 2009, 24, 136–144. [Google Scholar] [CrossRef]
- Tao, T.; Vu, V.; Krishnapur, M. Random Matrices: Universality of ESDs and the Circular Law. Ann. Probab. 2010, 38, 2023–20654. [Google Scholar] [CrossRef]
- Gini, C. Variabilità e Mutabilità (Variability and Mutability). In Memorie di Metodologica Statistica (Edited by Ettore Pizetti, and Tullio Salvemini); Libreria Eredi Virgilio Veschi: Rome, Italy, 1912. [Google Scholar]
- Morisita, M. Measuring of the Dispersion and Analysis of Distribution Patterns. Mem. Fac. Sci. Kyushu Univ. Ser. E 1959, 2, 215–235. [Google Scholar]
- Horn, H.S. Measurement of “Overlap” in Comparative Ecological Studies. Am. Nat. 1966, 100, 419–424. [Google Scholar] [CrossRef]
- Bascompte, J.; Jordano, P.; Melian, C.J.; Olesen, J.M. The Nested Assembly of Plant-Animal Mutualistic Networks. Proc. Natl. Acad. Sci. USA 2003, 100, 9383–9387. [Google Scholar] [CrossRef]
- Dormann, C.F.; Frund, J.; Bluthgen, N.; Gruber, B. Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks. Open Ecol. J. 2009, 2, 7–24. [Google Scholar] [CrossRef]
- Almeida-Neto, M.; Ulrich, W. A Straightforward Computational Approach for Measuring Nestedness Using Quantitative Matrices. Environ. Model. Softw. 2011, 26, 173–178. [Google Scholar] [CrossRef]
- Beckett, S.J. Improved Community Detection in Weighted Bipartite Networks. R. Soc. Open Sci. 2016, 3, 140536. [Google Scholar] [CrossRef]
- Li, Y.; Bearup, D.; Liao, J. Habitat Loss Alters Effects of Intransitive Higher-Order Competition on Biodiversity: A New Metapopulation Framework. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201571. [Google Scholar] [CrossRef] [PubMed]
Parameters | Meaning | Assigned Values | Units |
---|---|---|---|
1—presence or | – | ||
– | |||
– | |||
– | |||
– | |||
−1 | – | ||
Handling time | 0.1 | ||
Mean of dispersal rate | – | ||
Standard deviation of dispersal rate across species | 0.01—for homogeneous, and 0.5—for heterogeneous | – | |
Number of local networks | 10 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onyeagoziri, C.A.; Minoarivelo, H.O.; Hui, C. Mutualism and Dispersal Heterogeneity Shape Stability, Biodiversity, and Structure of Theoretical Plant–Pollinator Meta-Networks. Plants 2025, 14, 2127. https://doi.org/10.3390/plants14142127
Onyeagoziri CA, Minoarivelo HO, Hui C. Mutualism and Dispersal Heterogeneity Shape Stability, Biodiversity, and Structure of Theoretical Plant–Pollinator Meta-Networks. Plants. 2025; 14(14):2127. https://doi.org/10.3390/plants14142127
Chicago/Turabian StyleOnyeagoziri, Chinenye Assumpta, Henintsoa Onivola Minoarivelo, and Cang Hui. 2025. "Mutualism and Dispersal Heterogeneity Shape Stability, Biodiversity, and Structure of Theoretical Plant–Pollinator Meta-Networks" Plants 14, no. 14: 2127. https://doi.org/10.3390/plants14142127
APA StyleOnyeagoziri, C. A., Minoarivelo, H. O., & Hui, C. (2025). Mutualism and Dispersal Heterogeneity Shape Stability, Biodiversity, and Structure of Theoretical Plant–Pollinator Meta-Networks. Plants, 14(14), 2127. https://doi.org/10.3390/plants14142127