Environmental Drivers of Trace Element Variability in Hypnum cupressiforme Hedw.: A Cross-Regional Moss Biomonitoring Study in Georgia and the Republic of Moldova
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Study Area
3.2. Moss Sampling
3.3. Sample Preparation and Analysis
3.4. Study Design and Data Collection
3.5. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaudhuri, S.; Roy, M. Global Ambient Air Quality Monitoring: Can Mosses Help? A Systematic Meta-Analysis of Literature about Passive Moss Biomonitoring. Environ. Dev. Sustain. 2024, 26, 5735–5773. [Google Scholar] [CrossRef]
- Roblin, B.; Aherne, J. Moss as a Biomonitor for the Atmospheric Deposition of Anthropogenic Microfibres. Sci. Total Environ. 2020, 715, 136973. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Guo, Q.; Zhang, J. A Review on Moss Nitrogen and Isotope Signatures Evidence for Atmospheric Nitrogen Deposition. Sci. Total Environ. 2022, 806, 150765. [Google Scholar] [CrossRef]
- Mahapatra, B.; Dhal, N.K.; Dash, A.K.; Panda, B.P.; Panigrahi, K.C.S.; Pradhan, A. Perspective of Mitigating Atmospheric Heavy Metal Pollution: Using Mosses as Biomonitoring and Indicator Organism. Environ. Sci. Pollut. Res. 2019, 26, 29620–29638. [Google Scholar] [CrossRef] [PubMed]
- Di Palma, A.; Capozzi, F.; Spagnuolo, V.; Giordano, S.; Adamo, P. Atmospheric Particulate Matter Intercepted by Moss-Bags: Relations to Moss Trace Element Uptake and Land Use. Chemosphere 2017, 176, 361–368. [Google Scholar] [CrossRef]
- Lazo, P.; Kika, A.; Qarri, F.; Bekteshi, L.; Allajbeu, S.; Stafilov, T. Air Quality Assessment by Moss Biomonitoring and Trace Metals Atmospheric Deposition. Aerosol Air Qual. Res. 2022, 22, 220008. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Q.; Liu, C.; Fang, Y. Using Moss to Assess Airborne Heavy Metal Pollution in Taizhou, China. Int. J. Environ. Res. Public Health 2017, 14, 430. [Google Scholar] [CrossRef]
- Cowden, P.; Aherne, J. Assessment of Atmospheric Metal Deposition by Moss Biomonitoring in a Region under the Influence of a Long Standing Active Aluminium Smelter. Atmos. Environ. 2019, 201, 84–91. [Google Scholar] [CrossRef]
- Gatziolis, D.; Jovan, S.; Donovan, G.; Amacher, M.; Monleon, V. Elemental Atmospheric Pollution Assessment via Moss-Based Measurements in Portland, Oregon; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2016; Volume 55, p. 938. [Google Scholar]
- Mentese, S.; Yayintas, Ö.T.; Bas, B.; İrkin, L.C.; Yilmaz, S. Heavy Metal and Mineral Composition of Soil, Atmospheric Deposition, and Mosses with Regard to Integrated Pollution Assessment Approach. Environ. Manag. 2021, 67, 833–851. [Google Scholar] [CrossRef]
- Zheng, G.; Gu, J.; Zhao, W.; Zhang, Y.; Guan, Z.; Lei, M.; He, C. Spatial, Geographical, Climatic, and Edaphic Influences on Moss Community Structure: A Case Study from Qinhuangdao, China. Forests 2024, 15, 424. [Google Scholar] [CrossRef]
- De Agostini, A.; Cortis, P.; Cogoni, A. Monitoring of Air Pollution by Moss Bags around an Oil Refinery: A Critical Evaluation over 16 Years. Atmosphere 2020, 11, 272. [Google Scholar] [CrossRef]
- Nickel, S.; Schröder, W. Correlating Elements Content in Mosses Collected in 2015 across Germany with Spatially Associated Characteristics of Sampling Sites and Their Surroundings. Environ. Sci. Eur. 2019, 31, 1–21. [Google Scholar] [CrossRef]
- Aničić, M.; Tomašević, M.; Tasić, M.; Rajšić, S.; Popović, A.; Frontasyeva, M.V.; Lierhagen, S.; Steinnes, E. Monitoring of Trace Element Atmospheric Deposition Using Dry and Wet Moss Bags: Accumulation Capacity versus Exposure Time. J. Hazard. Mater. 2009, 171, 182–188. [Google Scholar] [CrossRef]
- Stafilov, T.; Bačeva Andonovska, K.; Šajn, R.; Jeftimova, M. Assessing the Distribution of Potentially Toxic Elements in Bryophytes in Relation to Surface Soil Contamination in the Veles Region, North Macedonia. Plants 2025, 14, 783. [Google Scholar] [CrossRef] [PubMed]
- Świsłowski, P.; Nowak, A.; Wacławek, S.; Silvestri, D.; Rajfur, M. Bioaccumulation of Trace Elements from Aqueous Solutions by Selected Terrestrial Moss Species. Biology 2022, 11, 1692. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yuan, W.; Feng, X.; Wang, D.; Luo, J. Moss Facilitating Mercury, Lead and Cadmium Enhanced Accumulation in Organic Soils over Glacial Erratic at Mt. Gongga, China. Environ. Pollut. 2019, 254, 112974. [Google Scholar] [CrossRef]
- Radziemska, M.; Mazur, Z.; Bes, A.; Majewski, G.; Gusiatin, Z.M.; Brtnicky, M. Using Mosses as Bioindicators of Potentially Toxic Element Contamination in Ecologically Valuable Areas Located in the Vicinity of a Road: A Case Study. Int. J. Environ. Res. Public Health 2019, 16, 3963. [Google Scholar] [CrossRef]
- Zhou, X.; Li, J.; Yan, P.; Lu, N.; Lu, L.; Ni, Q.; Zhang, J.; Fang, Y. Mosses as Biomonitors of Atmospheric Trace Metal and Nitrogen Deposition: Spatial Distribution and Temporal Trend in Yancheng, China. Plants 2025, 14, 1315. [Google Scholar] [CrossRef]
- Kempter, H.; Krachler, M.; Shotyk, W.; Zaccone, C. Validating Modelled Data on Major and Trace Element Deposition in Southern Germany Using Sphagnum Moss. Atmos. Environ. 2017, 167, 656–664. [Google Scholar] [CrossRef]
- Urošević, M.A.; Krmar, M.; Radnović, D.; Jovanović, G.; Jakšić, T.; Vasić, P.; Popović, A. The Use of Moss as an Indicator of Rare Earth Element Deposition over Large Area. Ecol. Indic. 2020, 109, 105828. [Google Scholar] [CrossRef]
- Schröder, W.; Nickel, S. Moss Species-Specific Accumulation of Atmospheric Deposition? Environ. Sci. Eur. 2019, 31, 1–18. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, P.; Hou, X.; Wang, D.; Liu, X.; Liu, Q.; Dong, G.; Zhou, J.; Jiang, H.; Tang, L. Long-Range Transboundary Transport of Iodine-129 from South Asia to the Southern Tibetan Plateau Revealed by Moss and Lichen. Environ. Sci. Technol. Lett. 2024, 11, 323–328. [Google Scholar] [CrossRef]
- Yurukova, L.; Tsakiri, E.; Cayir, A. Cross-Border Response of Moss, Hypnum Cupressiforme Hedw., to Atmospheric Deposition in Southern Bulgaria and Northeastern Greece. Bull. Environ. Contam. Toxicol. 2009, 83, 174–179. [Google Scholar] [CrossRef]
- Coşkun, M.; Yurukova, L.; Çayir, A.; Coşkun, M.; Gecheva, G. Cross-Border Response of Mosses to Heavy Metal Atmospheric Deposition in Southeastern Bulgaria and European Turkey. Environ. Monit. Assess. 2009, 157, 529–537. [Google Scholar] [CrossRef]
- Stebel, K.; Christensen, G.; Derome, J.; Grekelä, I. State of the Environment in the Norwegian, Finnish and Russian Border Area. Finn. Environ. 2007, 6, 2007. [Google Scholar]
- Betsou, C.; Tsakiri, E.; Kazakis, N.; Vasilev, A.; Frontasyeva, M.; Ioannidou, A. Atmospheric Deposition of Trace Elements in Greece Using Moss Hypnum Cupressiforme Hedw. as Biomonitors. J. Radioanal. Nucl. Chem. 2019, 320, 597–608. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Hramco, C.; Duliu, O.G.; Vergel, K.; Culicov, O.A.; Frontasyeva, M.V.; Duca, G. Air Pollution Study in the Republic of Moldova Using Moss Biomonitoring Technique. Bull. Environ. Contam. Toxicol. 2017, 98, 262–269. [Google Scholar] [CrossRef]
- Chaligava, O.; Shetekauri, S.; Badawy, W.M.; Frontasyeva, M.V.; Zinicovscaia, I.; Shetekauri, T.; Kvlividze, A.; Vergel, K.; Yushin, N. Characterization of Trace Elements in Atmospheric Deposition Studied by Moss Biomonitoring in Georgia. Arch. Environ. Contam. Toxicol. 2021, 80, 350–367. [Google Scholar] [CrossRef] [PubMed]
- Frontasyeva, M.; Harmens, H.; Uzhinskiy, A.; Chaligava, O. Mosses as Biomonitors of Air Pollution: 2015/2016 Survey on Heavy Metals, Nitrogen and POPs in Europe and Beyond. In Report of the ICP Vegetation Moss Survey Coordination Centre; Joint Institute for Nuclear Research: Dubna, Russia, 2020. [Google Scholar]
- Oishi, Y. Moss as an Indicator of Transboundary Atmospheric Nitrogen Pollution in an Alpine Ecosystem. Atmos. Environ. 2019, 208, 158–166. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Chaligava, O.; Yushin, N.; Grozdov, D.; Vergel, K.; Hramco, C. Moss Biomonitoring of Atmospheric Trace Element Pollution in the Republic of Moldova. Arch. Environ. Contam. Toxicol. 2022, 82, 355–366. [Google Scholar] [CrossRef]
- Aboal, J.R.; Fernández, J.A.; Boquete, T.; Carballeira, A. Is It Possible to Estimate Atmospheric Deposition of Heavy Metals by Analysis of Terrestrial Mosses? Sci. Total Environ. 2010, 408, 6291–6297. [Google Scholar] [CrossRef] [PubMed]
- Bejan, I.; Sochircă, V.; Nagacevschi, T.; Ţîţu, P. Spatial Study of Soil Erosion in the Republic of Moldova. Present Environ. Sustain. Dev. 2022, 16, 259–271. [Google Scholar] [CrossRef]
- Chaligava, O.; Zinicovscaia, I.; Peshkova, A.; Yushin, N.; Frontasyeva, M.; Vergel, K.; Nurkassimova, M.; Cepoi, L. Major and Trace Airborne Elements and Ecological Risk Assessment: Georgia Moss Survey 2019–2023. Plants 2024, 13, 3298. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Hramco, C.; Chaligava, O.; Yushin, N.; Grozdov, D.; Vergel, K.; Duca, G. Accumulation of Potentially Toxic Elements in Mosses Collected in the Republic of Moldova. Plants 2021, 10, 471. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments; Taylor & Francis: Boca Raton, FL, USA, 2015; ISBN 9781482212792. [Google Scholar]
- Tarita, A.; Braşoveanu, V.; Jigău, G. The Content of Heavy Metals in the Soils of the State Protected Natural Areas in the South-Eastern Area of the Republic of Moldova. Lucrări Ştiinţifice. Seria Horticultură 2021, 64, 147–154. [Google Scholar]
- Gambashidze, G.O.; Urushadze, T.F.; Blum, W.E.; Mentler, A.F. Heavy Metals in Some Soils of Western Georgia. Eurasian Soil. Science 2014, 47, 834–843. [Google Scholar] [CrossRef]
- UNECE. Environmental Performance Reviews: Republic of Moldova: 3rd Review; United Nations: Geneva, Switzerland, 2014. [Google Scholar]
- UNECE. Environmental Performance Reviews: Georgia: 3rd Review; United Nations: Geneva, Switzerland, 2016. [Google Scholar]
- Aničić Urošević, M.; Ilić, M.; Radnović, D.; Vergel, K.; Yushin, N.; Chaligava, O.; Zinicovscaia, I. Comparative Biomonitoring of Airborne Potentially Toxic Elements Using Mosses (Hypnum cupressiforme, Brachythecium spp.) and Lichen (Evernia prunastri) over Remote Areas. Environ. Sci. Pollut. Res. 2024, 31, 48296–48312. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, F.; Di Palma, A.; Sorrentino, M.C.; Adamo, P.; Giordano, S.; Spagnuolo, V. Morphological Traits Influence the Uptake Ability of Priority Pollutant Elements by Hypnum Cupressiforme and Robinia Pseudoacacia Leaves. Atmosphere 2020, 11, 148. [Google Scholar] [CrossRef]
- Renaudin, M.; Leblond, S.; Meyer, C.; Rose, C.; Lequy, E. The Coastal Environment Affects Lead and Sodium Uptake by the Moss Hypnum Cupressiforme Used as an Air Pollution Biomonitor. Chemosphere 2018, 193, 506–513. [Google Scholar] [CrossRef]
- Beck, H.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Lutsko, N.J.; Dufour, A.; Zeng, Z.; Jiang, X.; van Dijk, A.I.J.M.; Miralles, D.G. High-Resolution (1 Km) Köppen-Geiger Maps for 1901–2099 Based on Constrained CMIP6 Projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef]
- World Meteorological Organization. WMO Guidelines on the Calculation of Climate Normals; WMO: Geneva, Switzerland, 2017. [Google Scholar]
- Pesaresi, M.; Schiavina, M.; Politis, P.; Freire, S.; Krasnodębska, K.; Uhl, J.H.; Carioli, A.; Corbane, C.; Dijkstra, L.; Florio, P. Advances on the Global Human Settlement Layer by Joint Assessment of Earth Observation and Population Survey Data. Int. J. Digit. Earth 2024, 17, 2390454. [Google Scholar] [CrossRef]
- Yan, G.; Tang, G.; Lu, D.; Ma, J.; Yang, X.; Li, F. Distinguishing the Intervalley Plain from the Intermountain Flat for Landform Mapping Using the Sightline Algorithm. ISPRS Int. J. Geoinf. 2024, 13, 86. [Google Scholar] [CrossRef]
- Woods, T.; McKeen, T.; Cunningham, A.; Priyatikanto, R.; Sorichetta, A.; Tatem, A.; Bondarenko, M. WorldPop High Resolution, Harmonised Annual Global Geospatial Covariates. Version 1.0. 2025. Available online: https://eprints.soton.ac.uk/500663/ (accessed on 10 May 2025).
- Yamazaki, D.; Ikeshima, D.; Neal, J.C.; O’Loughlin, F.; Sampson, C.C.; Kanae, S.; Bates, P.D. MERIT DEM: A New High-Accuracy Global Digital Elevation Model and Its Merit to Global Hydrodynamic Modeling. In Proceedings of the AGU Fall Meeting, New Orleans, LA, USA, 11–15 December 2017; Volume 2017, p. H12C-04. [Google Scholar]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Patil, I. Visualizations with Statistical Details: The’ggstatsplot’approach. J. Open Source Softw. 2021, 6, 3167. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 10 May 2025).
Characteristic | Original/Initial Data | Adjusted Data | ||
---|---|---|---|---|
Georgia | Moldova | Georgia | Moldova | |
N = 70 | N = 41 | N = 55 | N = 30 | |
Land Cover * | ||||
Coniferous forest | 4 (5.7%) | 0 | 4 (7.3%) | 0 |
Deciduous forest | 38 (54%) | 0 | 28 (51%) | 0 |
Mixed forest | 28 (40%) | 41 (100%) | 23 (42%) | 30 (100%) |
Terrain * | ||||
Plain | 6 (8.6%) | 19 (46%) | 2 (3.6%) | 9 (30%) |
Slope | 64 (91%) | 22 (54%) | 53 (96%) | 21 (70%) |
Köppen–Geiger climate classification * | ||||
BSk (Arid, steppe, cold) | 0 | 4 (9.8%) | 0 | 3 (10%) |
Cfa (Temperate, no dry season, hot summer) | 36 (51%) | 0 | 23 (42%) | 0 |
Cfb (Temperate, no dry season, warm summer) | 2 (2.9%) | 0 | 2 (3.6%) | 0 |
Dfa (Cold, no dry season, hot summer) | 4 (5.7%) | 20 (49%) | 4 (7.3%) | 16 (53%) |
Dfb (Cold, no dry season, warm summer) | 28 (40%) | 17 (41%) | 26 (47%) | 11 (37%) |
Population density * | ||||
Very low density | 49 (70%) | 17 (41%) | 38 (69%) | 13 (43%) |
Low density | 10 (14%) | 8 (20%) | 8 (15%) | 8 (27%) |
Rural | 6 (8.6%) | 9 (22%) | 6 (11%) | 5 (17%) |
Suburban | 5 (7.1%) | 6 (15%) | 3 (5.5%) | 4 (13%) |
Urban | 0 | 1 (2.4%) | 0 | 0 |
Elevation zones * | ||||
Lowland (0–500 m) | 20 (29%) | 41 (100%) | 12 (22%) | 30 (100%) |
Foothill (500–1000 m) | 32 (46%) | 0 | 27 (49%) | 0 |
Low-mountain (1000–1500 m) | 14 (20%) | 0 | 12 (22%) | 0 |
Upper-mountain (1500–2500 m) | 4 (5.7%) | 0 | 4 (7.3%) | 0 |
Precipitation ** | ||||
Average Annual Precipitation in mm | 848 (629, 1135) | 362 (347, 383) | 744 (629, 1033) | 362 (347, 383) |
Altitude ** | ||||
Meters above mean sea level | 749 (442, 1020) | 148 (94, 200) | 820 (557, 1133) | 144(96, 199) |
Topographic slope ** | ||||
Topographic slope in degrees | 11 (6, 18) | 4 (2, 6) | 12 (8, 19) | 5 (2, 6) |
Element content in mg/kg ** | ||||
Al | 2288 (1660, 2840) | 3430 (2680, 4750) | 2184 (1636, 2771) | 3245 (2680, 4270) |
Ba | 29 (21, 43) | 53 (41, 71) | 26 (19, 35) | 50 (41, 60) |
Cd | 0.13 (0.11, 0.17) | 0.11 (0.08, 0.15) | 0.13 (0.11, 0.15) | 0.09 (0.08, 0.12) |
Co | 0.96 (0.69, 1.19) | 0.94 (0.71, 1.28) | 0.92 (0.67, 1.12) | 0.94 (0.71, 1.28) |
Cr | 3.88 (2.91, 4.99) | 5.40 (4.40, 8.90) | 3.80 (2.89, 4.50) | 5.35 (4.40, 8.20) |
Cu | 7.29 (6.16, 8.86) | 8.62 (7.14, 9.38) | 6.76 (5.64, 7.63) | 7.83 (6.70, 9.05) |
Fe | 1898 (1367, 2436) | 2190 (1790, 3100) | 1798 (1335, 2208) | 2130 (1790, 3070) |
Mn | 132 (88, 179) | 93 (74, 144) | 111 (86, 160) | 87 (71, 106) |
Ni | 4.40 (3.52, 5.46) | 4.10 (3.30, 5.30) | 4.31 (3.42, 5.22) | 3.72 (3.24, 4.80) |
Pb | 4.78 (3.88, 5.92) | 3.14 (2.77, 3.70) | 4.47 (3.60, 5.19) | 3.00 (2.75, 3.29) |
Sr | 36 (31, 42) | 51 (39, 68) | 36 (32, 41) | 50 (42, 67) |
V | 5.5 (4.2, 7.4) | 5.4 (4.0, 8.0) | 5.34 (4.11, 6.86) | 5.20 (4.00, 6.90) |
Zn | 27 (23, 32) | 39 (33, 46) | 26 (22, 30) | 36 (31, 43) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaligava, O.; Zinicovscaia, I.; Cepoi, L. Environmental Drivers of Trace Element Variability in Hypnum cupressiforme Hedw.: A Cross-Regional Moss Biomonitoring Study in Georgia and the Republic of Moldova. Plants 2025, 14, 2040. https://doi.org/10.3390/plants14132040
Chaligava O, Zinicovscaia I, Cepoi L. Environmental Drivers of Trace Element Variability in Hypnum cupressiforme Hedw.: A Cross-Regional Moss Biomonitoring Study in Georgia and the Republic of Moldova. Plants. 2025; 14(13):2040. https://doi.org/10.3390/plants14132040
Chicago/Turabian StyleChaligava, Omari, Inga Zinicovscaia, and Liliana Cepoi. 2025. "Environmental Drivers of Trace Element Variability in Hypnum cupressiforme Hedw.: A Cross-Regional Moss Biomonitoring Study in Georgia and the Republic of Moldova" Plants 14, no. 13: 2040. https://doi.org/10.3390/plants14132040
APA StyleChaligava, O., Zinicovscaia, I., & Cepoi, L. (2025). Environmental Drivers of Trace Element Variability in Hypnum cupressiforme Hedw.: A Cross-Regional Moss Biomonitoring Study in Georgia and the Republic of Moldova. Plants, 14(13), 2040. https://doi.org/10.3390/plants14132040