Evaluation of Blast Resistance in Zinc-Biofortified Rice
Abstract
1. Introduction
2. Results
2.1. Response of the Rice Genotypes to Inoculation with Two Isolates of Magnaporthe oryzae
2.2. Blast Disease Response of Rice Genotypes with Foliar Zinc Fertilizer Application
2.3. Agronomic Traits and Their Correlation with the Severity of Panicle Blast Under Field Conditions
2.4. Agronomic Traits and Their Correlation with Foliar Blast Severity
3. Discussion
4. Materials and Methods
4.1. Site of This Study
4.2. Rice Germplasm
4.3. Fungal Isolates and Preparation of the Inoculum
4.4. Sowing and Inoculation of the Rice Seedlings in a Growth Chamber
4.5. Preparation and Application of Foliar Zinc Fertilizer
4.6. Zinc Content Analysis
4.7. Collection of Agronomic Trait Data
4.8. Scoring of Panicle Blast Severity Data
4.9. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boliko, M.C. FAO and the situation of food security and nutrition in the world. J. Nutr. Sci. Vitaminol. 2019, 65, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Atera, E.A.; Onyancha, F.N.; Majiwa, E.B. Production and marketing of rice in Kenya: Challenges and opportunities. J. Dev. Agric. Econ. 2018, 10, 64–70. [Google Scholar]
- Prasad, R.; Shivay, Y.S.; Kumar, D. Current status, challenges, and opportunities in rice production. In Rice Production Worldwide; Springer: Cham, Switzerland, 2017; pp. 1–32. [Google Scholar]
- Kihoro, J.; Bosco, N.J.; Murage, H.; Ateka, E.; Makihara, D. Investigating the impact of rice blast disease on the livelihood of the local farmers in greater Mwea region of Kenya. Springerplus 2013, 2, 308. [Google Scholar] [CrossRef] [PubMed]
- Asibi, A.E.; Chai, Q.; Coulter, J.A. Rice blast: A disease with implications for global food security. Agronomy 2019, 9, 451. [Google Scholar] [CrossRef]
- Agbowuro, G.; Afolabi, M.; Olamiriki, E.; Awoyemi, S. Rice blast disease (Magnaporthe oryzae): A menace to rice production and humanity. Int. J. Pathog. Res. 2020, 4, 32–39. [Google Scholar] [CrossRef]
- Wilson, R.A. Magnaporthe oryzae. Trends Microbiol. 2021, 29, 663–664. [Google Scholar] [CrossRef]
- Sood, G.; Kapoor, A. Effect of time of application and splitting of nitrogen on rice blast. Indian Phytopathol. 2002, 53, 283–286. [Google Scholar]
- Kaur, S.; Tiwari, V.; Kumari, A.; Chaudhary, E.; Sharma, A.; Ali, U.; Garg, M. Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture. J. Biotechnol. 2023, 361, 12–29. [Google Scholar] [CrossRef]
- Gallego, B.; Martos, S.; Cabot, C.; Barceló, J.; Poschenrieder, C. Zinc hyperaccumulation substitutes for defense failures beyond salicylate and jasmonate signaling pathways of Alternaria brassicicola attack in Noccaea caerulescens. Physiol. Plant. 2017, 159, 401–415. [Google Scholar] [CrossRef]
- Tripathi, R.; Tewari, R.; Singh, K.; Keswani, C.; Minkina, T.; Srivastava, A.K.; De Corato, U.; Sansinenea, E. Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection. Front. Plant Sci. 2022, 13, 883970. [Google Scholar] [CrossRef]
- Huang, S.; Wang, P.; Yamaji, N.; Ma, J.F. Plant Nutrition for Human Nutrition: Hints from Rice Research and Future Perspectives. Mol. Plant 2020, 13, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S.; Beck, F.W.; Snell, D.C.; Kucuk, O. Zinc in cancer prevention. Nutr. Cancer 2009, 61, 879–887. [Google Scholar] [CrossRef] [PubMed]
- El Dib, R.; Gameiro, O.L.; Ogata, M.S.; Modolo, N.S.; Braz, L.G.; Jorge, E.C.; do Nascimento Junior, P.; Beletate, V. Zinc supplementation for the prevention of type 2 diabetes mellitus in adults with insulin resistance. Cochrane Database Syst. Rev. 2015, 5, CD005525. [Google Scholar] [CrossRef]
- Li, J.; Cao, D.; Huang, Y.; Chen, B.; Chen, Z.; Wang, R.; Dong, Q.; Wei, Q.; Liu, L. Zinc intakes and health outcomes: An umbrella review. Front. Nutr. 2022, 9, 798078. [Google Scholar] [CrossRef] [PubMed]
- Calayugan, M.I.C.; Swamy, B.M.; Nha, C.T.; Palanog, A.D.; Biswas, P.S.; Descalsota-Empleo, G.I.; Min, Y.M.M.; Inabangan-Asilo, M.A. Zinc-biofortified rice: A sustainable food-based product for fighting zinc malnutrition. In Rice Improvement: Physiological, Molecular Breeding and Genetic Perspectives; Springer International Publishing: Cham, Switzerland, 2021; pp. 449–470. [Google Scholar]
- Bastakoti, S. Role of zinc in management of plant diseases: A review. Cogent Food Agric. 2023, 9, 2194483. [Google Scholar] [CrossRef]
- Islam, A.S.; Bhuiyan, R.; Khan, M.A.I.; Akter, S.; Islam, M.R.; Khokon, M.A.R.; Latif, M.A. Synergistic Antifungal Activity of Green Synthesized Zinc Oxide Nanoparticles and Fungicide Against Rhizoctonia solani Causing Rice Sheath Blight Disease. Appl. Biochem. Biotechnol. 2024, 197, 587–612. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- IRRI. Standard Evaluation System (SES) for Rice, 5th ed.; Philippines International Rice Research Institute: Manila, Philippines, 2013. [Google Scholar]
- Mutiga, S.K.; Orwa, P.; Nganga, E.M.; Kyallo, M.M.; Rotich, F.; Gichuhi, E.; Kimani, J.M.; Mwongera, D.T.; Were, V.M.; Yanoria, M.J. Characterization of blast resistance in a diverse rice panel from sub-Saharan Africa. Phytopathology 2023, 113, 1278–1288. [Google Scholar] [CrossRef]
- Mutiga, S.K.; Rotich, F.; Ganeshan, V.D.; Mwongera, D.; Mgonja, E.; Were, V.; Harvey, J.; Zhou, B.; Wasilwa, L.; Feng, C. Assessment of the virulence spectrum and its association with genetic diversity in Magnaporthe oryzae populations from sub-Saharan Africa. Phytopathology 2017, 107, 852–863. [Google Scholar] [CrossRef]
- Li, Z.; Ahammed, G.J. Plant stress response and adaptation via anthocyanins: A review. Plant Stress 2023, 10, 100230. [Google Scholar] [CrossRef]
- Zhao, S.; Blum, J.A.; Ma, F.; Wang, Y.; Borejsza-Wysocka, E.; Ma, F.; Cheng, L.; Li, P. Anthocyanin accumulation provides protection against high light stress while reducing photosynthesis in apple leaves. Int. J. Mol. Sci. 2022, 23, 12616. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Jalil, S.; Cao, H.; Tsago, Y.; Sunusi, M.; Chen, Z.; Shi, C.; Jin, X. The purple leaf (pl6) mutation regulates leaf color by altering the anthocyanin and chlorophyll contents in rice. Plants 2020, 9, 1477. [Google Scholar] [CrossRef] [PubMed]
- Joko, T.; Kristamtini, K.; Sumarno, S.; Andriyanto, R. The resistance of local pigmented rice varieties against bacterial leaf blight. J. Perlindungan Tanam. Indones. 2019, 23, 205–210. [Google Scholar] [CrossRef]
- Stomph, T.J.; Jiang, W.; Van Der Putten, P.E.; Struik, P.C. Zinc allocation and re-allocation in rice. Front. Plant Sci. 2014, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Kamran, A.; Ghazanfar, M.; Khan, J.S.; Pervaiz, S.; Siddiqui, M.H.; Alamri, S. Zinc absorption through leaves and subsequent translocation to the grains of bread wheat after foliar spray. Agriculture 2023, 13, 1775. [Google Scholar] [CrossRef]
- van de Mortel, J.E.; Almar Villanueva, L.; Schat, H.; Kwekkeboom, J.; Coughlan, S.; Moerland, P.D.; Ver Loren van Themaat, E.; Koornneef, M.; Aarts, M.G.M. Large Expression Differences in Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin Biosynthesis Distinguish Roots of Arabidopsis thaliana and the Related Metal Hyperaccumulator Thlaspi caerulescens. Plant Physiol. 2006, 142, 1127–1147. [Google Scholar] [CrossRef]
- Cabot, C.; Martos, S.; Llugany, M.; Gallego, B.; Tolrà, R.; Poschenrieder, C. A role for zinc in plant defense against pathogens and herbivores. Front. Plant Sci. 2019, 10, 1171. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Y.; Gao, L.; Cao, X.; Ye, J.; Li, G. The dual roles of zinc sulfate in mitigating peach gummosis. Plant Dis. 2016, 100, 345–351. [Google Scholar] [CrossRef]
- Poschenrieder, C.; Tolrà, R.; Barceló, J. Can metals defend plants against biotic stress? Trends Plant Sci. 2006, 11, 288–295. [Google Scholar] [CrossRef]
- Fones, H.; Preston, G.M. The impact of transition metals on bacterial plant disease. FEMS Microbiol. Rev. 2013, 37, 495–519. [Google Scholar] [CrossRef] [PubMed]
- Mutiga, S.K.; Rotich, F.; Were, V.M.; Kimani, J.M.; Mwongera, D.T.; Mgonja, E.; Onaga, G.; Konate, K.; Razanaboahirana, C.; Bigirimana, J. Integrated strategies for durable rice blast resistance in sub-Saharan Africa. Plant Dis. 2021, 105, 2749–2770. [Google Scholar] [CrossRef] [PubMed]
- Fukuta, Y.; Araki, E.; Yanoria, M.J.; Imbe, T.; Tsunematsu, H.; Kato, H.; Ebron, L.; Mercado-Escueta, D.; Khush, G. Development of Differential Varieties for Blast Resistance in IRRI-Japan Collaborative Research Project. In Rice Blast: Interaction with Rice and Control; Springer: Berlin/Heidelberg, Germany, 2004; pp. 229–233. [Google Scholar]
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Laboratory methods of soil and plant analysis: A working manual second edition. Sacred Afr. Nairobi 2002, 21, 25–26. [Google Scholar]
- Sultana, S.; Khatun, H.A.; Faruquee, M.; Islam, M.M.U.; Tonny, H.J.; Islam, M.R. Comparison between acid digestion (ICP-OES) and X-ray fluorescence (XRF) spectrometry for zinc concentration determination in rice (Oryza sativa L.). Foods 2023, 12, 1044. [Google Scholar] [CrossRef]
- Sholikhah, U.; Handoyo, T.; Yunus, A. Anthocyanin Content in Some Black Rice Cultivars. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
Rice Genotype | * Binary Reaction to Isolate | Foliar Disease Severity (0–9 Scale) | |||
---|---|---|---|---|---|
KE0002 | KE0215 | Mean Severity ± SE | Confidence Limits (95%) | ||
Lower | Upper | ||||
BASMATI 370 | S | S | 5.6 ± 0.2 A | 5.18 | 5.93 |
IRBLK-KA | R | S | 4.7 ± 0.2 AB | 4.29 | 5.04 |
IR 96248-16-2-3-3-B | S | S | 4.5± 0.2 B | 4.09 | 4.85 |
IRBL3-CP4 | S | R | 2.3 ± 0.2 C | 2.15 | 2.91 |
IRBL11-ZH | R | S | 2.3 ± 0.2 C | 1.96 | 2.71 |
IRBLTA 2-RE | R | R | 1.3 ± 0.2 D | 0.96 | 1.71 |
IRBTP16211 (LTH) | R | R | 1.3 ± 0.2 D | 0.87 | 1.63 |
IR 99681-38-1-2 | R | R | 1.1± 0.2 D | 0.76 | 1.52 |
IR 99639-81-3-2 | R | R | 1.1 ± 0.2 D | 0.76 | 1.52 |
BW196 | R | R | 1.1 ± 0.2 D | 0.71 | 1.46 |
IR10M210 | R | S | 1.1 ± 0.2 D | 0.71 | 1.46 |
IR99674-25-3-2 | R | R | 1.1 ± 0.2 D | 0.68 | 1.43 |
IRAT 109 | R | R | 1.0 ± 0.2 D | 0.65 | 1.41 |
IR 99674-60-2-1 | R | R | 1.0 ± 0.2 D | 0.62 | 1.38 |
IR 99636-93-3-3 | R | S | 1.0 ± 0.2 D | 0.59 | 1.35 |
Komboka | R | R | 1.0 ± 0.2 D | 0.57 | 1.32 |
IR08M118 | R | R | 0.9 ± 0.2 D | 0.57 | 1.32 |
ARICA 17 | R | R | 0.9 ± 0.2 D | 0.54 | 1.29 |
IR 99647-26-1-3 | R | R | 0.9 ± 0.2 D | 0.54 | 1.29 |
IR 99637-123-1-3 | R | R | 0.8 ± 0.2 D | 0.40 | 1.16 |
IR 99636-96-1-3 | R | R | 0.8 ± 0.2 D | 0.40 | 1.16 |
IR 97454-60-3-1-B | R | R | 0.8 ± 0.2 D | 0.37 | 1.13 |
IR 99639-33-4-2 | R | R | 0.7 ± 0.2 D | 0.34 | 1.10 |
GENOTYPE | Zinc in the Grain | Zinc in the Leaves | ||||
---|---|---|---|---|---|---|
1 PPM | 2 BLUP | RANK | 3 PPM | BLUP | RANK | |
ARICA 17 | 20.00 | −0.1097 ns | 5 | 196.83 | 59.0923 *** | 18 |
BASMATI 370 | 21.00 | 0.1595 ns | 12 | 63.16 | −34.8033 *** | 2 |
BW196 | 21.00 | 0.1595 ns | 12 | 137.55 | 1.3993 ns | 11 |
IR08M118 | 20.33 | −0.0199 ns | 7 | 119.5 | −31.5948 ** | 4 |
IR10M210 | 21.00 | 0.1595 ns | 12 | 85.52 | −6.5909 ns | 10 |
IR 96248-16-2-3-3-B | 21.00 | 0.1595 ns | 12 | 109.36 | −21.1050 * | 6 |
IR 97454-60-3-1-B | 19.67 | −0.1994 ns | 1 | 264.02 | 37.2548 *** | 15 |
IR 99636-93-3-3 | 20.67 | 0.0698 ns | 11 | 67.03 | −67.2362 *** | 1 |
IR 99636-96-1-3 | 19.67 | −0.1994 ns | 1 | 173.17 | −15.5868 ns | 8 |
IR 99637-123-1-3 | 21.67 | 0.3389 ns | 17 | 209.27 | 38.0934 *** | 16 |
IR 99639-33-4-2 | 20.00 | −0.1097 ns | 5 | 125.48 | 57.06815 *** | 17 |
IR 99639-81-3-2 | 20.33 | −0.0199 ns | 7 | 133.82 | −15.9745 ns | 7 |
IR 99647-26-1-3 | 19.67 | −0.1994 ns | 1 | 87.8 | 6.03515 ns | 12 |
IR99674-25-3-2 | 20.33 | −0.1994 ns | 1 | 141.25 | −29.7181 ** | 5 |
IR 99674-60-2-1 | 20.33 | −0.0199 ns | 7 | 84.77 | −33.0060 ** | 3 |
IR 99681-38-1-2 | 19.67 | −0.0199 ns | 7 | 105.58 | −8.9348 ns | 9 |
IRAT 109 | 21.00 | 0.1595 ns | 12 | 169.1 | 32.1048 ** | 14 |
IRRI 215 | 20.00 | −0.1097 ns | 5 | 170.05 | 15.3992 ns | 13 |
Rice Genotype | Disease Severity (0–9 Scale) | Binary Disease Reaction | ||
---|---|---|---|---|
Mean ± SE | Confidence Limit (95%) | |||
Lower | Upper | |||
IR96248-16-2-3-3-B | 8.28 ± 0.23 A | 7.82 | 8.74 | S |
IRBLK-KA | 7.56 ± 0.23 A | 7.10 | 8.01 | S |
BASMATI 370 | 6.67 ± 0.23 B | 6.21 | 7.13 | S |
BASMATI 217 | 5.7 ± 0.28 C | 5.26 | 6.18 | S |
Zinc in Foliar Fertilizer (%) | Disease Severity (0–9 Scale) | Binary Disease Reaction | ||
---|---|---|---|---|
Mean ± SE | Confidence Limits (95%) | |||
Lower | Upper | |||
0 | 7.67 ± 0.28 A | 7.10 | 8.23 | S |
0.07 | 7.25 ± 0.28 AB | 6.69 | 7.81 | S |
0.05 | 7.17 ± 0.28 AB | 6.60 | 7.73 | S |
0.105 | 7.17 ± 0.28 AB | 6.60 | 7.73 | S |
0.15 | 6.58 ± 0.28 AB | 6.02 | 7.15 | S |
0.2 | 6.50 ± 0.28 B | 5.94 | 7.06 | S |
Genotype | Days to Flowering ± SE | Yield (t ha−1) ± SE | Plant Height (cm) ± SE | Panicle Length (cm) ± SE | Panicle Number ± SE | Tiller Number ± SE | 1000-Grain Weight (g) ± SE | Panicle Blast Severity ± SE |
---|---|---|---|---|---|---|---|---|
BW196 | 97.00 ± 2.23 A | 5.95 ± 0.32A | 98.20 ± 4.31 B | 20.27 ± 0.81 A | 25.93 ± 2.34 A | 30.20 ± 2.02 A | 28.11 ± 1.19 A | 0.00 ± 0.44 D |
IRAT 109 | 92.00 ± 2.23 AB | 2.57 ± 0.32 DEFG | 96.53 ± 4.31 B | 20.67 ± 0.81 A | 15.93 ± 2.34 AB | 18.80 ± 2.02 B | 23.56 ± 1.19 AB | 0.67 ± 0.44 CD |
IR 99636-96-1-3 | 88.00 ± 2.23 ABC | 2.70 ± 0.32 CDEFG | 98.60 ± 4.31 B | 19.27 ± 0.81 A | 13.60 ± 2.34 AB | 14.47 ± 2.02 B | 23.22 ± 1.19 AB | 0.00 ± 0.44 D |
IR99674-25-3-2 | 87.67 ± 2.23 ABC | 2.47 ± 0.32 DEFG | 96.53 ± 4.31 B | 20.33 ± 0.81 A | 12.60 ± 2.34 B | 14.87 ± 2.02 B | 24.56 ± 1.19 AB | 0.33 ± 0.44 D |
IR 99681-38-1-2 | 85.67 ± 2.23 ABCD | 3.64 ± 0.32 BCDE | 104.60 ± 4.31 AB | 21.53 ± 0.81 A | 19.13 ± 2.34 AB | 18.07 ± 2.02 B | 21.45 ± 1.19 B | 0.00 ± 0.44 D |
IR10M210 | 84.33 ± 2.23 BCD | 3.69 ± 0.32 BCDE | 103.13 ± 4.31 AB | 20.13 ± 0.81 A | 16.07 ± 2.34 AB | 17.80 ± 2.02 B | 23.56 ± 1.19 AB | 3.00 ± 0.44 BC |
Komboka | 84.33 ± 2.23 BCD | 4.99 ± 0.32 AB | 101.33 ± 4.31 AB | 20.73 ± 0.81 A | 15.00 ± 2.34 AB | 18.93 ± 2.02 B | 23.22 ± 1.19 AB | 1.00 ± 0.44 CD |
IR 99637-123-1-3 | 84.00 ± 2.23 BCD | 3.05 ± 0.32 CDEF | 92.93 ± 4.31 B | 22.20 ± 0.81 A | 18.00 ± 2.34 AB | 18.73 ± 2.02 B | 21.44 ± 1.19 B | 1.00 ± 0.44 CD |
IR 99639-33-4-2 | 83.67 ± 2.23 BCD | 2.12 ± 0.32 DEFG | 110.07 ± 4.31 AB | 22.40 ± 0.81 A | 17.87 ± 2.34 AB | 18.93 ± 2.02 B | 19.56 ± 1.19 B | 0.00 ± 0.44 D |
IR 99674-60-2-1 | 83.00 ± 2.23 BCD | 2.73 ± 0.32 CDEFG | 101.13 ± 4.31 AB | 20.33 ± 0.81 A | 15.60 ± 2.34 AB | 18.40 ± 2.02 B | 23.44 ± 1.19 AB | 0.00 ± 0.44 D |
IR 99647-26-1-3 | 82.67 ± 2.23 BCD | 2.66 ± 0.32 DEFG | 100.13 ± 4.31 AB | 21.07 ± 0.81 A | 16.27 ± 2.34 AB | 18.27 ± 2.02 B | 22.67 ± 1.19 AB | 0.00 ± 0.44 D |
IR08M118 | 82.00 ± 2.23 BCD | 3.81 ± 0.32 BCD | 107.53 ± 4.31 AB | 21.87 ± 0.81 A | 15.20 ± 2.34 AB | 18.27 ± 2.02 B | 23.67 ± 1.19 AB | 0.00 ± 0.44 D |
IR 99636-93-3-3 | 82.00 ± 2.23 BCD | 2.04 ± 0.32 EFG | 105.00 ± 4.31 AB | 21.20 ± 0.81 A | 19.47 ± 2.34 AB | 21.60 ± 2.02 AB | 20.67 ± 1.19 B | 2.33 ± 0.44 CD |
IR 96248-16-2-3-3-B | 81.67 ± 2.23 BCD | 1.79 ± 0.32 FG | 122.27 ± 4.31 A | 20.87 ± 0.81 A | 14.40 ± 2.34 AB | 16.33 ± 2.02 B | 19.22 ± 1.19 B | 7.00 ± 0.44 A |
IR 99639-81-3-2 | 81.33 ± 2.23 BCD | 2.07 ± 0.32 EFG | 98.80 ± 4.31 B | 20.87 ± 0.81 A | 19.80 ± 2.34 AB | 17.60 ± 2.02 B | 23.45 ± 1.19 AB | 1.00 ± 0.44 CD |
IR 97454-60-3-1-B | 80.67 ± 2.23 BCD | 3.12 ± 0.32 CDEF | 95.20 ± 4.31 B | 19.67 ± 0.81 A | 14.07 ± 2.34 AB | 15.67 ± 2.02 B | 22.22 ± 1.19 AB | 1.00 ± 0.44 CD |
IRBL11-ZH | 80.33 ± 2.23 BCD | 1.53 ± 0.32 FG | 107.73 ± 4.31 AB | 22.33 ± 0.81 A | 19.13 ± 2.34 A B | 21.80 ± 2.02 AB | 20.44 ± 1.19 B | 1.67 ± 0.44 CD |
ARICA 17 | 78.67 ± 2.23 CD | 4.40 ± 0.32 ABC | 100.13 ± 4.31 AB | 21.13 ± 0.81 A | 14.73 ± 2.34 AB | 18.00 ± 2.02 B | 20.89 ± 1.19 B | 1.00 ± 0.44 CD |
BASMATI 370 | 78.67 ± 2.23 CD | 1.02± 0.32 G | 108.60 ± 4.31 AB | 20.00 ± 0.81 A | 13.67 ± 2.34 AB | 17.73 ± 2.02 B | 20.22 ± 1.19 B | 7.00 ± 0.44 A |
IRBTP16211 | 78.00 ± 2.23 CD | 1.99 ± 0.32 EFG | 103.40 ± 4.31 AB | 22.20 ± 0.81 A | 17.47 ± 2.34 AB | 20.67 ± 2.02 AB | 19.44 ± 1.19 B | 1.00 ± 0.44 CD |
IRBL3-CP4 | 76.67 ± 2.23 CD | 1.57 ± 0.32 FG | 106.00 ± 4.31 AB | 19.87 ± 0.81 A | 19.20 ± 2.34 AB | 21.13 ± 2.02 AB | 19.44 ± 1.19 B | 5.00 ± 0.44 AB |
IRBLK-KA | 76.67 ± 2.23 CD | 2.16 ± 0.32 DEFG | 101.27 ± 4.31 AB | 22.93 ± 0.81 A | 19.73 ± 2.34 AB | 22.47 ± 2.02 AB | 21.33 ± 1.19 B | 6.33 ± 0.44 A |
IRBLTA 2-RE | 75.00 ± 2.23 CD | 2.50 ± 0.32 DEFG | 104.67 ± 4.31 AB | 22.60 ± 0.81 A | 17.20 ± 2.34 AB | 19.00 ± 2.02 B | 22.00 ± 1.19 AB | 1.67 ± 0.44 CD |
Row |
Days to Flowering | Yield t/ha |
Foliar Blast Severity |
Plant Height (cm) | Thousand-Grain Weight (g) |
Panicle Number |
Tiller Number |
Panicle Blast Severity |
---|---|---|---|---|---|---|---|---|
Days to flowering | 1 | 0.5397; 0.01138 | −0.4608; 0.0269 | −0.3426; 0.0402 | 0.7267; 0.0013 | 0.2125; 0.5064 | 0.2239; 0.2984 | −0.4774; 0.0015 |
Grain yield t/ha | 1 | −0.4920; 0.00598 | −0.3747; 0.01482 | 0.6772; 0.0007 | 0.2271; 0.54387 | 0.3176; 0.60076 | −0.4922; 0.0076 | |
Foliar blast severity | 1 | 0.5402; 0.0361 | −0.4115; 0.1484 | −0.0643; 0.3023 | 0.0657; 0.2405 | 0.9146; 0.0005 | ||
Plant height (cm) | 1 | −0.5567; 0.0023 | −0.0676; 0.6830 | −0.0208; 0.2863 | 0.5433; 0.0750 | |||
1000-grain weight (g) | 1 | 0.2080; 0.5833 | 0.2493; 0.3101 | −0.4986; 0.0078 | ||||
Panicle number | 1 | 0.8802; 0.000 | −0.0657; 0.7560 | |||||
Tiller number | 1 | 0.0308; 0.5674 |
Rice Genotype | Parentage | 1 Pi Gene | Description |
---|---|---|---|
IR 99636-96-1-3 | IR 83317-AC 124/IR 69428-6-1-1-3-3//IR 83317-AC 71/IR 68144-2B-2-2-3-1-166///IR 36 | Unknown | Zinc-biofortified |
IR99674-25-3-2 | PAU 3105-45-3-2/IR 82802-36-3-3-1-3///IR 91153-AC 82/IR05F102//IR 68144-2B-2-2-3-1-166/6/PR 115/IR01W102/5/BR 802-118-4-2 (BRRI DHAN 29)/IR 68144-2B-2-2-3-1-166//IR 69428-6-1-1-3-3///IR 64/4/IR 70114-5-3-3-3 | Unknown | Zinc-biofortified |
IR 99681-38-1-2 | BR 29*2/IR 69428-6-1-1-3-3 | Unknown | Zinc-biofortified |
IR10M210 | IRRI 123/IR 68144-2B-2-2-3-1-127 | Unknown | Zinc-biofortified |
IR 99637-123-1-3 | IR 68144-2B-2-2-3-1-166/IR05N496//IR 75862-206-2-8-3-B-B-B/IR05N496///IR 83317-AC 15/IR 68144-2B-2-2-3-1-166//IR 83317-AC 71/IR 68144-2B-2-2-3-1-166 | Unknown | Zinc-biofortified |
IR 99639-33-4-2 | IR 83317-AC 116/IR 83317-AC 80//IR 91143-AC 243/IR 83317-AC 25///IR 64 | Unknown | Zinc-biofortified |
IR 99674-60-2-1 | PAU 3105-45-3-2/IR 82802-36-3-3-1-3///IR 91153-AC 82/IR05F102//IR 68144-2B-2-2-3-1-166/6/PR 115/IR01W102/5/BR 802-118-4-2 (BRRI DHAN 29)/IR 68144-2B-2-2-3-1-166//IR 69428-6-1-1-3-3///IR 64/4/IR 70114-5-3-3-3 | Unknown | Zinc-biofortified |
IR 99647-26-1-3 | IR 91152-AC 443/IR 66//IR 91152-AC 438/BR 29 | Unknown | Zinc-biofortified |
IR08M118 | IR 69092-57-3/IRRI 123 | Unknown | Zinc-biofortified |
IR 99636-93-3-3 | IR 83317-AC 124/IR 69428-6-1-1-3-3//IR 83317-AC 71/IR 68144-2B-2-2-3-1-166///IR 36 | Unknown | Zinc-biofortified |
IR 96248-16-2-3-3-B | IR07F289/2*IR 69428-6-1-1-3-3//IR09N481///IR03A568 | Unknown | Zinc-biofortified |
IR 99639-81-3-2 | IR 83317-AC 116/IR 83317-AC 80//IR 91143-AC 243/IR 83317-AC 25///IR 64 | Unknown | Zinc-biofortified |
IR 97454-60-3-1-B | NSIC RC 158/NEGRO//BR 29 | Unknown | Zinc-biofortified |
IRBL11-Zh | LIJIANG XINTUAN HEIGU (AC 59323)*3/ZHAI YE QING 8 | Pi-11 | Blast disease differential line |
IRBTP16211 (LTH) | LIJIANG XINTUAN HEIGU (AC 59323) | Pik-1 | Recurrent parent for blast differential lines |
IRBL 3-CP 4 | LIJIANG XINTUAN HEIGU (AC 59323)*3/C 104 PKT | Pi-3 | Blast disease differential line |
IRBL K-KA | LIJIANG XINTUAN HEIGU (AC 59323)*3/Kanto 51 | Pik | Blast disease differential line |
IRBLTA 2-RE | LIJIANG XINTUAN HEIGU (AC 59323)*3/Reiho | Pita-2 | Blast disease differential line |
ARICA 17 | Scrid017-1-4-4-4-1 | Unknown | A variety cultivated in the highlands of Ethiopia |
BW196 (NIBAM 109) | K 8 (NATURAL MUTANT)/.//HONDARAWALA/C 104 | Unknown | A variety cultivated in Kenya and Tanzania |
IRAT 109 | IRAT 13/IRAT 10 | Unknown | A variety cultivated in Kenya and Tanzania |
BASMATI 370 | NIBAM 11 | Unknown | A popular blast susceptible aromatic variety cultivated in East Africa |
R05N221 (also called Komboka) | IR 74052-297-2-1/IR 71700-247-1-1-2 | Unknown | A variety cultivated in Kenya and Tanzania |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunu, A.; Mwangi, M.; Bonuke, N.; Njoroge, W.; Thuranira, M.; Gichuhi, E.; Musila, R.; Murori, R.; Mutiga, S.K. Evaluation of Blast Resistance in Zinc-Biofortified Rice. Plants 2025, 14, 2016. https://doi.org/10.3390/plants14132016
Nunu A, Mwangi M, Bonuke N, Njoroge W, Thuranira M, Gichuhi E, Musila R, Murori R, Mutiga SK. Evaluation of Blast Resistance in Zinc-Biofortified Rice. Plants. 2025; 14(13):2016. https://doi.org/10.3390/plants14132016
Chicago/Turabian StyleNunu, Anita, Maina Mwangi, Nchore Bonuke, Wagatua Njoroge, Mwongera Thuranira, Emily Gichuhi, Ruth Musila, Rosemary Murori, and Samuel K. Mutiga. 2025. "Evaluation of Blast Resistance in Zinc-Biofortified Rice" Plants 14, no. 13: 2016. https://doi.org/10.3390/plants14132016
APA StyleNunu, A., Mwangi, M., Bonuke, N., Njoroge, W., Thuranira, M., Gichuhi, E., Musila, R., Murori, R., & Mutiga, S. K. (2025). Evaluation of Blast Resistance in Zinc-Biofortified Rice. Plants, 14(13), 2016. https://doi.org/10.3390/plants14132016