The Physiological Mechanisms and Hurdles of Efficient Water–Nitrogen Utilization in Maize Production: A Review
Abstract
1. Introduction
2. Grain Number Drives the Response of Maize Productivity to Water and Nitrogen Stresses
2.1. Grain Set During the Critical Period
2.2. Effect of Water Availability on Grain Number of Maize
2.3. Effect of Nitrogen Availability on Grain Number of Maize
2.4. The Potential Mechanism of Regulating Young Ear Differentiation Through Signal Transduction Rather than Nutrition
3. Deficit Irrigation Enhances Water Use Efficiency While Maintaining Grain Yield of Maize
3.1. Deficit Irrigation Affects Maize Productivity and Water Use Efficiency
3.2. Deficit Irrigation Affects Architecture and Function of Maize Root System
3.3. Deficit Irrigation Affects Phytohormone and Metabolism Within Maize Plant
4. Cytokinin May Serve as a Hub for Both Maize Productivity and EfficientWater–Nitrogen Utilization
4.1. Dual Role of Cytokinin in Young Ear Development Regulated by Water and Nitrogen Availability
4.2. Cytokinin Mediates the Transmission of Nitrogen Signals from the Root System to the Shoot
4.3. Cytokinin Coupled with Nitrogen Promotes Grain Set in Maize
4.4. Moderate Water Deficit May Synergistically Improve Water and Nitrogen Efficiency by Stimulating Grain Set Through Cytokinin
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Wang, X.; Tan, W.; Zhou, S.; Xu, Y.; Cui, T.; Gao, H.; Chen, M.; Dong, X.; Sun, H.; Yang, J.; et al. Converting maize production with low emergy cost and high economic return for sustainable development. Renew. Sustain. Energy Rev. 2021, 136, 110443. [Google Scholar] [CrossRef]
- National Bureau of Statistics. 2024. Available online: https://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 15 May 2025).
- Li, J.; Xu, X.; Liu, L.; Deng, X.; Wang, S. Impact of irrigation on cropland yield potential and scenario-based optimization in Northeast China. Agric. Water Manag. 2025, 314, 109522. [Google Scholar] [CrossRef]
- Salvia, A.L.; Leal Filho, W.; Brandli, L.L.; Griebeler, J.S. Assessing research trends related to Sustainable Development Goals: Local and global issues. J. Clean. Prod. 2019, 208, 841–849. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, B.M. Effects of climate change and drought tolerance on maize growth. Plants 2023, 12, 3548. [Google Scholar] [CrossRef] [PubMed]
- Sah, R.P.; Chakraborty, M.; Prasad, K.; Pandit, M.; Tudu, V.K.; Chakravarty, M.K.; Narayan, S.C.; Rana, M.; Moharana, D. Impact of water deficit stress in maize: Phenology and yield components. Sci. Rep. 2020, 10, 2944. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, X.; Zhou, T.; Zhang, W.; Hu, S.; Clark, R. Understanding and attribution of extreme heat and drought events in 2022: Current situation and future challenges. Adv. Atmos. Sci. 2023, 40, 1941–1951. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Sheng, Z.; Manevski, K.; Andersen, M.N.; Han, S.; Li, H.; Yang, Y. Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework. Agric. Water Manag. 2021, 249, 106793. [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 2020, 6, eaaz6031. [Google Scholar] [CrossRef]
- Pei, H.; Scanlon, B.R.; Shen, Y.; Reedy, R.C.; Long, D.; Liu, C. Impacts of varying agricultural intensification on crop yield and groundwater resources: Comparison of the North China Plain and US High Plains. Environ. Res. Lett. 2015, 10, 044013. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 2021, 158, 76–82. [Google Scholar] [CrossRef]
- Wen, G.; Ma, B. Optimizing crop nitrogen use efficiency: Integrating root performance and machine learning into nutrient management. Adv. Agron. 2024, 187, 311. [Google Scholar] [CrossRef]
- Meng, Q.; Chen, X.; Zhang, F.; Cao, M.; Cui, Z.; Bai, J.; Yue, S.; Chen, S.; Müller, T. In-season root-zone nitrogen management strategies for improving nitrogen use efficiency in high-yielding maize production in China. Pedosphere 2021, 22, 294–303. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Zhu, Y.; Huang, X.; Li, S.; Wu, X.; Zhao, Y.; Bao, Z.; Qin, L.; Jin, Y.; et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature 2022, 612, 292–300. [Google Scholar] [CrossRef]
- Li, Z.; Ren, L.; Pan, H.; Ji, Y.; Zhang, N.; Meruyert, M.; Assiyae, A.; Zhang, W.; Liu, E.; Siddique, K.H.; et al. Ridge-furrow film mulching combined with biochar addition enhances maize productivity and reduces nitrogen loss, but increases soil moisture consumption in semi-arid areas. Plant Soil 2025, 1–19. [Google Scholar] [CrossRef]
- Qi, D.; Hu, T.; Song, X. Effects of nitrogen application rates and irrigation regimes on grain yield and water use efficiency of maize under alternate partial root-zone irrigation. J. Integr. Agric. 2020, 19, 2792–2806. [Google Scholar] [CrossRef]
- Mueller, S.M.; Messina, C.D.; Vyn, T.J. The role of the exponential and linear phases of maize (Zea mays L.) ear growth for determination of kernel number and kernel weight. Eur. J. Agron. 2019, 111, 125939. [Google Scholar] [CrossRef]
- Adriaanse, F.G.; Human, J.J. Effect of time of application and nitrate: Ammonium ratio on maize grain yield, grain N concentration and soil mineral N concentration in a semi-arid region. Field Crops Res 1993, 34, 57–70. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Li, W.; Li, P.; Zhu, R.; Zhong, Y.; Zhang, W.; Li, T. The optimal ammonium-nitrate ratio for various crops: A Meta-analysis. Field Crops Res. 2024, 307, 109240. [Google Scholar] [CrossRef]
- Carrera, C.S.; Savin, R.; Slafer, G.A. Critical period for yield determination across grain crops. Trends Plant Sci. 2024, 29, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.R.; Zhao, D. Sterility caused by floral organ degeneration and abiotic stresses in Arabidopsis and cereal grains. Front. Plant Sci. 2016, 7, 1503. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Liu, J.; Wang, Y.; Jiang, C.; Zhou, Z.; Zhuo, L.; Li, W.; Fernie, A.R.; Jackson, D.; et al. The additive function of YIGE2 and YIGE1 in regulating maize ear length. Plant J. 2024, 119, 1327–1335. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, B.; Yang, Z.; Liu, Y.; Yang, S.; Shi, Y.; Jiang, C.; Qin, F. Manipulating ZmEXPA4 expression ameliorates the drought-induced prolonged anthesis and silking interval in maize. Plant Cell 2021, 33, 2058–2071. [Google Scholar] [CrossRef]
- McClung, C.R.; Lou, P.; Hermand, V.; Kim, J.A. The importance of ambient temperature to growth and the induction of flowering. Front. Plant Sci. 2016, 7, 1266. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, Y.; Sun, J.; Mao, F.; Yao, Q.; Li, B.; Wang, Y.; Gao, Y.; Dong, X.; Liao, S.; et al. From the floret to the canopy: High temperature tolerance during flowering. Plant Commun. 2023, 4, 100629. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Xu, F.; Wang, Y.; Zhong, W.; Dong, L.; Shi, Y.; Tang, T.J.; Sheng, H.J.; Jackson, D.; Yang, F. Glutaredoxins regulate maize inflorescence meristem development via redox control of TGA transcriptional activity. Nat Plants 2021, 7, 1589–1601. [Google Scholar] [CrossRef] [PubMed]
- Thilakarathne, A.S.; Liu, F.; Zou, Z. Plant signaling hormones and transcription factors: Key regulators of plant responses to growth, development, and stress. Plants 2025, 14, 1070. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, C.; Wang, Y.; Sha, Y.; Hao, Z.; Chen, F.; Yuan, L.; Mi, G. Nitrogen allocation and remobilization contributing to low-nitrogen tolerance in stay-green maize. Field Crops Res. 2021, 263, 108078. [Google Scholar] [CrossRef]
- Liu, Z.; Sha, Y.; Huang, Y.; Hao, Z.; Guo, W.; Ke, L.; Chen, F.; Yuan, L.; Mi, G. Efficient nitrogen allocation and reallocation into the ear in relation to the superior vascular system in low-nitrogen tolerant maize hybrid. Field Crops Res. 2022, 284, 108580. [Google Scholar] [CrossRef]
- Tang, Y.; Guo, J.; Jagadish, S.K.; Yang, S.; Qiao, J.; Wang, Y.; Xie, K.; Wang, H.; Yang, Q.; Deng, L.; et al. Ovary abortion in field-grown maize under water-deficit conditions is determined by photo-assimilation supply. Field Crops Res. 2023, 293, 108830. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, M.; Warrington, D.N. Responses of different physiological indices for maize (Zea mays) to soil water availability. Pedosphere 2011, 21, 639–649. [Google Scholar] [CrossRef]
- Wang, B.; Liu, C.; Zhang, D.; He, C.; Zhang, J.; Li, Z. Effects of maize organ-specific drought stress response on yields from transcriptome analysis. BMC Plant Biol. 2019, 19, 335. [Google Scholar] [CrossRef]
- Kapoor, K.; Mira, M.M.; Ayele, B.T.; Nguyen, T.N.; Hill, R.D.; Stasolla, C. Phytoglobins regulate nitric oxide-dependent abscisic acid synthesis and ethylene-induced program cell death in developing maize somatic embryos. Planta 2018, 247, 1277–1291. [Google Scholar] [CrossRef]
- Xin, L.; Fu, Y.; Ma, S.; Li, C.; Wang, H.; Gao, Y.; Wang, X. Effects of post-anthesis irrigation on the activity of starch synthesis-related enzymes and wheat grain quality under different nitrogen conditions. Plants 2023, 12, 4086. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Li, F.; Zhuang, Y.; Li, Q.; Zhang, Z.; Zhang, L.; Zhao, H.; Bian, S.; Wang, H.; Zhao, R.; et al. The effect of drip irrigation quota on biochemical activities and yield-related traits in different drought-tolerant maize varieties. Agriculture 2023, 13, 1682. [Google Scholar] [CrossRef]
- Zhai, L.; Xu, P.; Zhang, Z.; Li, S.; Xie, R.; Zhai, L.; Wei, B. Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai Plain of China. Soil Tillage Res. 2017, 170, 167–174. [Google Scholar] [CrossRef]
- Gong, W.; Vinarao, R.; Proud, C.; Wood, S.; Snell, P.; Fukai, S.; Mitchell, J. Genomic regions and molecular markers associated with deeper rooting to improve grain yield in aerobic rice (Oryza sativa L.) production systems. Rice 2025, 18, 24. [Google Scholar] [CrossRef]
- Hu, Y.; Zeeshan, M.; Wang, G.; Pan, Y.; Liu, Y.; Zhou, X. Supplementary irrigation and varying nitrogen fertilizer rate mediate grain yield, soil-maize nitrogen accumulation and metabolism. Agric. Water Manag. 2023, 276, 108066. [Google Scholar] [CrossRef]
- Lynch, J.P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef]
- Gao, Y.; Lynch, J.P. Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). J. Exp. Bot. 2016, 67, 4545–4557. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, K.; Dong, S.; Liu, P.; Zhao, B.; Zhang, J. Effects of integrated agronomic practices management on root growth and development of summer maize. Eur. J. Agron. 2017, 84, 140–151. [Google Scholar] [CrossRef]
- Tian, P.; Liu, J.; Zhao, Y.; Huang, Y.; Lian, Y.; Wang, Y.; Ye, Y. Nitrogen rates and plant density interactions enhance radiation interception, yield, and nitrogen use efficiencies of maize. Front. Plant Sci. 2022, 13, 974714. [Google Scholar] [CrossRef]
- Xia, Z.; Gong, Y.; Yang, Y.; Wu, M.; Bai, J.; Zhang, S.; Lu, H. Effects of root-zone warming, nitrogen supply and their interactions on root-shoot growth, nitrogen uptake and photosynthetic physiological characteristics of maize. Plant Physiol. Biochem. 2024, 214, 108887. [Google Scholar] [CrossRef]
- Gheith, E.M.S.; El-Badry, O.Z.; Lamlom, S.F.; Ali, H.M.; Siddiqui, M.H.; Ghareeb, R.Y.; El-Sheikh, M.H.; Jebril, J.; Abdelsalam, N.R.; Kandil, E.E. Maize (Zea mays L.) productivity and nitrogen use efficiency in response to nitrogen application levels and time. Front. Plant Sci. 2022, 13, 941343. [Google Scholar] [CrossRef]
- Galindo, F.S.; Pagliari, P.H.; da Silva, E.C.; de Lima, B.H.; Fernandes, G.C.; Thiengo, C.C.; Bernardes, J.V.; Jalal, A.; Oliveira, C.E.; de Sousa Vilela, L.; et al. Impact of nitrogen fertilizer sustainability on corn crop yield: The role of beneficial microbial inoculation interactions. BMC Plant Biol. 2024, 24, 268. [Google Scholar] [CrossRef]
- Ning, L.; Wang, Y.; Shi, X.; Zhou, L.; Ge, M.; Liang, S.; Wu, Y.; Zhang, T.; Zhao, H. Nitrogen-dependent binding of the transcription factor PBF1 contributes to the balance of protein and carbohydrate storage in maize endosperm. Plant Cell 2023, 35, 409–434. [Google Scholar] [CrossRef]
- Liu, Z.; Hao, Z.; Sha, Y.; Huang, Y.; Guo, W.; Ke, L.; Chen, F.; Yuan, L.; Mi, G. High responsiveness of maize grain yield to nitrogen supply is explained by high ear growth rate and efficient ear nitrogen allocation. Field Crops Res. 2022, 286, 108610. [Google Scholar] [CrossRef]
- Paponov, I.A.; Paponov, M.; Sambo, P.; Engels, C. Differential regulation of kernel set and potential kernel weight by nitrogen supply and carbohydrate availability in maize genotypes contrasting in nitrogen use efficiency. Front. Plant Sci. 2020, 11, 586. [Google Scholar] [CrossRef] [PubMed]
- Below, F.E.; Cazetta, J.O.; Seebauer, J.R. Carbon/nitrogen interactions during ear and kernel development of maize. Physiol. Model. Kernel Set Maize 2000, 29, 15–24. [Google Scholar] [CrossRef]
- Figueroa, C.M.; Lunn, J.E. A tale of two sugars: Trehalose 6-phosphate and sucrose. Plant Physiol. 2016, 172, 7–27. [Google Scholar] [CrossRef]
- Jones, R.J.; Setter, T.L. Hormonal regulation of early kernel development. Physiol. Model. Kernel Set Maize 2000, 29, 25–42. [Google Scholar] [CrossRef]
- Liu, L.; Gallagher, J.; Arevalo, E.D.; Chen, R.; Skopelitis, T.; Wu, Q.; Bartlett, M.; Jackson, D. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat. Plants 2021, 7, 287–294. [Google Scholar] [CrossRef]
- Ning, P.; Peng, Y.; Fritschi, F.B. Carbohydrate dynamics in maize leaves and developing ears in response to nitrogen application. Agronomy 2018, 8, 302. [Google Scholar] [CrossRef]
- Wu, K.; Wang, S.; Song, W.; Zhang, J.; Wang, Y.; Liu, Q.; Yu, J.; Ye, Y.; Li, S.; Chen, J.; et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 2020, 367, eaaz2046. [Google Scholar] [CrossRef]
- Stepanovic, S.; Rudnick, D.; Kruger, G. Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska. Agric. Water Manag. 2021, 244, 106610. [Google Scholar] [CrossRef]
- Abdelghany, A.M.; Farouk, A.S.; Alwakel, E.S.; Ebaid, M.; Naser, M.; Lamlom, S.F.; Shehab, A.A. Improving maize yield in newly reclaimed soils: Effects of irrigation, mulching, and foliar treatments. BMC Plant Biol. 2025, 25, 634. [Google Scholar] [CrossRef]
- Tian, X.; Yang, T.; Li, Z.; Liu, Y. Effects of long-term organic fertilizer and straw on soil quality and crop yield in a rapeseed-maize rotation system. PLoS ONE 2025, 20, e0322223. [Google Scholar] [CrossRef]
- Li, H.; Mei, X.; Wang, J.; Huang, F.; Hao, W.; Li, B. Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China. Agric. Water Manag. 2021, 244, 106534. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.; Waskom, R.M.; Niu, Y.; Siddique, K.H. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef]
- Gao, J.; Liu, N.; Wang, X.; Niu, Z.; Liao, Q.; Ding, R.; Du, T.; Kang, S.; Tong, L. Maintaining grain number by reducing grain abortion is the key to improve water use efficiency of maize under deficit irrigation and salt stress. Agric. Water Manag. 2024, 294, 108727. [Google Scholar] [CrossRef]
- Gao, J.; Li, L.; Ding, R.; Kang, S.; Du, T.; Tong, L.; Kang, J.; Xu, W.; Tang, G. Grain yield and water productivity of maize under deficit irrigation and salt stress: Evidences from field experiment and literatures. Agric. Water Manag. 2025, 307, 109260. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Fan, J.; Zhang, F.; Wang, X. Effects of soil water deficit at different growth stages on maize growth, yield, and water use efficiency under alternate partial root-zone irrigation. Water 2021, 13, 148. [Google Scholar] [CrossRef]
- Kang, S.; Shi, W.; Zhang, J. An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Res. 2000, 67, 207–214. [Google Scholar] [CrossRef]
- Ishka, M.R.; Sussman, H.; Hu, Y.; Alqahtani, M.D.; Craft, E.; Sicat, R.; Wang, M.; Yu, L.A.; Ait-Haddou, R.; Li, B.; et al. Natural variation in salt-induced changes in root: Shoot ratio reveals SR3G as a negative regulator of root suberization and salt resilience in Arabidopsis. eLife 2025, 13, RP98896. [Google Scholar] [CrossRef]
- Yuan, C.; Feng, S.; Huo, Z.; Ji, Q. Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China. Agric. Water Manag. 2019, 212, 424–432. [Google Scholar] [CrossRef]
- Ma, W.; Mao, Z.; Yu, Z.; Van Mensvoort, M.E.F.; Driessen, P.M. Effects of saline water irrigation on soil salinity and yield of winter wheat-maize in North China Plain. Irrig. Drain. 2008, 22, 3–18. [Google Scholar] [CrossRef]
- Wang, Q.; Huo, Z.; Zhang, L.; Wang, J.; Zhao, Y. Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China. Agric. Water Manag. 2016, 163, 125–138. [Google Scholar] [CrossRef]
- Ding, S.; Zheng, L.; Tao, T.; Li, Q.; Cai, J.; Zhou, Q.; Zhong, Y.; Wang, X.; Jiang, D. Silver nanoparticles priming for drought tolerance in wheat: Insights from antioxidant system activation and stress memory. Chem. Biol. Technol. Ag. 2025, 12, 57. [Google Scholar] [CrossRef]
- Upadhyay, S.K. Relevance of cross talk between root exudates, hormones, and root-associated microbes in developing sustainable phytoremediation strategies: A comprehensive review. Physiol. Mol. Biol. Plants 2025, 1, 1–21. [Google Scholar] [CrossRef]
- Shaaban, A.; Saudy, H.S.; Eid, M.A.; Zahran, S.F.; Mekdad, A.A. Synergistic effect of indole‒3‒acetic acid and nitrogen on yield, sugar profile, and nitrogen utilization of salt-stressed sugar beet crop. BMC Plant Biol. 2025, 25, 632. [Google Scholar] [CrossRef]
- Shan, J.; Su, F.; Yin, J.; Liu, Y.; Zhu, X.; Zuo, M.; Liu, W.; Lin, C.; Li, X.; Miao, W. The powdery mildew effector Eae1 targets a SAMS enzyme within the ethylene biosynthesis pathway to disrupt plant immunity. Phytopathol. Res. 2025, 7, 44. [Google Scholar] [CrossRef]
- Tariq, A.; Pan, K.; Olatunji, O.A.; Graciano, C.; Li, N.; Li, Z.; Song, D.; Sun, F.; Justine, M.F.; Huang, D.; et al. Role of nitrogen supplementation in alleviating drought-associated growth and metabolic impairments in Phoebe zhennan seedlings. J. Plant Nutr. Soil Sc. 2019, 182, 586–596. [Google Scholar] [CrossRef]
- Li, Y.; Liu, N.; Fan, H.; Su, J.; Fei, C.; Wang, K.; Ma, F.; Kisekka, I. Effects of deficit irrigation on photosynthesis, photosynthate allocation, and water use efficiency of sugar beet. Agric. Water Manag. 2019, 223, 105701. [Google Scholar] [CrossRef]
- Jiang, N.; Zou, T.; Huang, H.; Li, C.; Xia, Y.; Yang, L. Auxin synthesis promotes N metabolism and optimizes root structure enhancing N acquirement in maize (Zea mays L.). Planta 2024, 259, 46. [Google Scholar] [CrossRef]
- Ravazzolo, L.; Boutet-Mercey, S.; Perreau, F.; Forestan, C.; Varotto, S.; Ruperti, B.; Quaggiotti, S. Strigolactones and auxin cooperate to regulate maize root development and response to nitrate. Plant Cell Physiol. 2021, 62, 610–623. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Nguyen, T.Q.; Kisiala, A.B.; Emery, R.N. Beyond transport: Cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. Planta 2021, 254, 45. [Google Scholar] [CrossRef]
- Roitsch, T.; Ehneß, R. Regulation of source/sink relations by cytokinins. Plant Growth Regul. 2000, 32, 359–367. [Google Scholar] [CrossRef]
- Hu, J.; Ren, B.; Chen, Y.; Liu, P.; Zhao, B.; Zhang, J. Exogenous 6-benzyladenine improved the ear differentiation of waterlogged summer maize by regulating the metabolism of hormone and sugar. Front. Plant Sci. 2022, 13, 848989. [Google Scholar] [CrossRef]
- Du, K.; Zhao, W.; Mao, Y.; Lv, Z.; Khattak, W.A.; Ali, S.; Zhou, Z.; Wang, Y. Maize ear growth is stimulated at the fourth day after pollination by cell wall remodeling and changes in lipid and hormone signaling. J. Sci. Food Agric. 2022, 102, 5429–5439. [Google Scholar] [CrossRef]
- Yu, S.; Lo, S.; Ho, T.H.D. Source-sink communication: Regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci. 2015, 20, 844–857. [Google Scholar] [CrossRef] [PubMed]
- Takei, K.; Sakakibara, H.; Taniguchi, M.; Sugiyama, T. Nitrogen-dependent accumulation of cytokinins in root and thetranslocation to leaf: Implication of cytokinin species that induces geneexpression of maize responseregulator. Plant Cell Physiol 2001, 42, 85–93. [Google Scholar] [CrossRef]
- Hluska, T.; Dobrev, P.I.; Tarkowská, D.; Frébortová, J.; Zalabák, D.; Kopečný, D.; Plíhal, O.; Kokáš, F.; Briozzo, P.; Zatloukal, M.; et al. Cytokinin metabolism in maize: Novel evidence of cytokinin abundance, interconversions and formation of a new trans-zeatin metabolic product with a weak anticytokinin activity. Plant Sci. 2016, 247, 127–137. [Google Scholar] [CrossRef]
- Mughal, N.; Shoaib, N.; Chen, J.; He, Y.; Fu, M.; Li, X.; He, Y.; Guo, J.; Deng, J.; Yang, W.; et al. Adaptive roles of cytokinins in enhancing plant resilience and yield against environmental stressors. Chemosphere 2024, 364, 143189. [Google Scholar] [CrossRef] [PubMed]
- Swain, R.; Sahoo, S.; Behera, M.; Rout, G.R. Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. Front. Plant Sci. 2023, 14, 1104874. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, J.; Liu, J.; Zhang, P.; Kudoyarova, G.; Liu, C.; Zhang, K. Spatially distributed cytokinins: Metabolism, signaling, and transport. Plant Commun. 2024, 5, 100936. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, M.; Zhang, L.; Li, Y.; Li, J.; Li, Y.; Pu, Z.X.; Li, D.Y.; Liu, X.N.; Guo, W.; et al. WAV E3 ubiquitin ligases mediate degradation of IAA32/34 in the TMK1-mediated auxin signaling pathway during apical hook development. Proc. Natl. Acad. Sci. USA 2024, 121, e2314353121. [Google Scholar] [CrossRef]
- Gu, J.; Li, Z.; Mao, Y.; Struik, P.C.; Zhang, H.; Liu, L.; Wang, Z.; Yang, J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci. 2018, 274, 320–331. [Google Scholar] [CrossRef]
- Fukudome, A.; Koiwa, H. Cytokinin-overinduced transcription factors and thalianol cluster genes in CARBOXYL-TERMINAL DOMAIN PHOSPHATASE-LIKE 4-silenced Arabidopsis roots during de novo shoot organogenesis. Plant Signal. Behav. 2018, 13, e1513299. [Google Scholar] [CrossRef]
- Korobova, A.V.; Akhiyarova, G.R.; Fedyaev, V.V.; Farkhutdinov, R.G.; Veselov, S.Y.; Kudoyarova, G.R. Participation of nitrate sensor NRT1. 1 in the control of cytokinin level and root elongation under normal conditions and nitrogen deficit. Mosc. Univ. Biol. Sci. Bull. 2019, 74, 221–226. [Google Scholar] [CrossRef]
- Xing, J.; Cao, X.; Zhang, M.; Wei, X.; Zhang, J.; Wan, X. Plant nitrogen availability and crosstalk with phytohormones signallings and their biotechnology breeding application in crops. Plant Biotechnol. J. 2023, 21, 1320–1342. [Google Scholar] [CrossRef] [PubMed]
- Salam, B.B.; Barbier, F.; Danieli, R.; Teper-Bamnolker, P.; Ziv, C.; Spíchal, L.; Aruchamy, K.; Shnaider, Y.; Leibman, D.; Shaya, F.; et al. Sucrose promotes stem branching through cytokinin. Plant Physiol. 2021, 185, 1708–1721. [Google Scholar] [CrossRef] [PubMed]
- Gujjar, R.S.; Roytrakul, S.; Chuekong, W.; Supaibulwatana, K. A synthetic cytokinin influences the accumulation of leaf soluble sugars and sugar transporters, and enhances the drought adaptability in rice. 3 Biotech 2021, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Zhou, X.; Liu, L.; Yang, Y.; Han, S.; Zhang, Y. Impact of water productivity and irrigated area expansion on irrigation water consumption and food production in China in last four decades. Agric. Water Manag. 2024, 304, 109100. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Zhao, Q.; Gao, J.; Liu, Z. The Physiological Mechanisms and Hurdles of Efficient Water–Nitrogen Utilization in Maize Production: A Review. Plants 2025, 14, 1899. https://doi.org/10.3390/plants14131899
Sun X, Zhao Q, Gao J, Liu Z. The Physiological Mechanisms and Hurdles of Efficient Water–Nitrogen Utilization in Maize Production: A Review. Plants. 2025; 14(13):1899. https://doi.org/10.3390/plants14131899
Chicago/Turabian StyleSun, Xichao, Qian Zhao, Jia Gao, and Zheng Liu. 2025. "The Physiological Mechanisms and Hurdles of Efficient Water–Nitrogen Utilization in Maize Production: A Review" Plants 14, no. 13: 1899. https://doi.org/10.3390/plants14131899
APA StyleSun, X., Zhao, Q., Gao, J., & Liu, Z. (2025). The Physiological Mechanisms and Hurdles of Efficient Water–Nitrogen Utilization in Maize Production: A Review. Plants, 14(13), 1899. https://doi.org/10.3390/plants14131899