Global Warming Impacts Suitable Habitats of the Subtropical Endemic Tree Acer pubinerve Rehder, Newly Recorded in Jiangsu Province, China
Abstract
:1. Introduction
2. Results
2.1. Model Optimization and Precision Evaluation
2.2. Dominant Environmental Factors Impacting the Distribution of Acer pubinerve
2.3. Current Distribution Pattern and Suitable Habitats
2.4. Distribution of Suitable Habitat Under Different Future Climate Scenarios
2.5. The Spatial Changes and Centroid Migration of the Suitable Habitat of Acer pubinerve
3. Discussion
3.1. Optimization and Evaluation of the MaxEnt Model
3.2. Potential Geographical Distribution and Influencing Climate Factors of Acer pubinerve
3.3. Potential Geographic Distribution of Acer pubinerve Under Future Climate Change Scenarios
3.4. Conservation and Utilization of Acer pubinerve
3.5. Problems and Future Directions
4. Materials and Methods
4.1. Species Distribution Data Preparation
4.2. Environmental Data Acquisition and Screening
4.3. MaxEnt Model Construction and Evaluation
4.4. Visualization and Spatial Analysis of Suitable Habitats
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Liu, X.; Ji, J.; Ma, X. Role of Economic Structural Change in the Peaking of China’s CO2 Emissions: An Input-Output Optimization Model. Sci. Total Environ. 2021, 761, 144297. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xu, H.; Chen, L. A Review of the Impacts of Climate Change on Species. Ecol. Rural Environ. J. 2011, 27, 1–6. [Google Scholar]
- Guisan, A.; Zimmermann, N.E. Predictive Habitat Distribution Models in Ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, X.W.; Xiang, W.H.; Chen, L.; Ouyang, S. Predicting Potential Suitable Habitats of Chinese Fir under Current and Future Climatic Scenarios Based on Maxent Model. Ecol. Inform. 2021, 64, 101393. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the Black Box: An Open-Source Release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, X.; Chen, Y.; Li, C.; Ding, S.; Zhang, X.; Luo, L.; Jia, Y.; Zhao, G. Prediction of Potential Distribution and Response of Changium smyrnioides to Climate Change Based on Optimized MaxEnt Model. Plants 2025, 14, 743. [Google Scholar] [CrossRef]
- Deng, C.; Li, J.; Tao, S.; Jin, Y.; Peng, F. Identifying Suitable Regions for Fritillaria unibracteata Cultivation Without Damage from the Pest Eospalax baileyi. Plants 2025, 14, 674. [Google Scholar] [CrossRef]
- Pan, S.; Peng, D.; Li, Y.; Chen, Z.; Zhai, Y.; Liu, C.; Hong, B. Potential global distribution of the guava root-knot nematode Meloidogyne enterolobii under different climate change scenarios using MaxEnt ecological niche modeling. J. Integr. Agric. 2023, 22, 2138–2150. [Google Scholar] [CrossRef]
- Fan, Y.; Yao, W.; Wang, Z.; Fan, X.; Hu, S.; Wang, H.; Ou, J. Predicting Potential Suitable Habitats of Three Rare Wild Magnoliaceae Species (Michelia crassipes, Lirianthe coco, Manglietia insignis) Under Current and Future Climatic Scenarios Based on the Maxent Model. Plants 2025, 14, 506. [Google Scholar] [CrossRef]
- Tan, C.; Ferguson, D.K.; Yang, Y. Impacts of Distribution Data on Accurate Species Modeling: A Case Study of Litsea auriculata (Lauraceae). Plants 2024, 13, 2581. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, M.C.; Gotelli, N.J.; Ellison, A.M. MaxEnt versus MaxLike: Empirical comparisons with ant species distributions. Ecosphere 2013, 4, 1–15. [Google Scholar] [CrossRef]
- Wu, K.; Wang, Y.; Liu, Z.; Huo, W.; Cao, J.; Zhao, G.; Zhang, F.-G. Prediction of potential invasion of two weeds of the genus Avena in Asia under climate change based on Maxent. Sci. Total Environ. 2024, 950, 175192. [Google Scholar] [CrossRef] [PubMed]
- Merow, C.; Smith, M.J.; Silander, J.A., Jr. A Practical Guide to MaxEnt for Modeling Species’ Distributions: What It Does, and Why Inputs and Settings Matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Graham, C.H.; Elith, J.; Hijmans, R.J.; Guisan, A.; Peterson, A.T.; Loiselle, B.A. The Influence of Spatial Errors in Species Occurrence Data Used in Distribution Models. J. Appl. Ecol. 2008, 45, 239–247. [Google Scholar] [CrossRef]
- Editorial Committee of Chinese Flora. Flora of China; Beijing Science Press: Beijing, China, 1981. [Google Scholar]
- Wu, Z.Y.; Raven, P.R.; Hong, D.Y. Flora of China: Vol. 12; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2007. [Google Scholar]
- The Biodiversity Committee of Chinese Academy of Sciences. Catalogue of Life China: 2023 Annual Checklist; The Biodiversity Committee of Chinese Academy of Sciences: Beijing, China, 2023. [Google Scholar]
- Zhejiang Province Plant Editorial Committee. Flora of Zhejiang, Vol. 4; Zhejiang Science and Technology Press: Hangzhou, China, 1992. [Google Scholar]
- Xu, T.Z. A System of Acer. Yunnan Plant Res. 1996, 18, 277–292. [Google Scholar]
- Chinese Tree Flora Editorial Committee. Flora of Chinese Trees, Vol. 1; China Forestry Publishing House: Beijing, China, 1983. [Google Scholar]
- Yang, Q.S.; Fei, X.Y.; Sha, C.L.; Ji, D.C.; Wang, L.Y.; Wang, X.H. Forest Community Characteristics and Standing Volume of Acer pubinerve at Tingtong Mountain, Zhejiang. Fujian For. Sci. Technol. 2016, 43, 55–61. [Google Scholar]
- Liu, Y.; Wang, Y.; Guo, H.; Wu, D.; Wu, S.; Xin, X.; Pei, S. Changes in Potentially Suitable Areas for Fruit Utilization of Acer truncatum in China under Climate Change. Forests 2024, 15, 713. [Google Scholar] [CrossRef]
- Liu, M.L.; Sun, H.Y.; Jiang, X.; Zhou, T.; Zhang, Q.J.; Su, Z.D.; Zhang, Y.N.; Liu, J.-N.; Li, Z.-H. Simulation and Prediction of the Potential Geographical Distribution of Acer cordatum Pax in Different Climate Scenarios. Forests 2022, 13, 1380. [Google Scholar] [CrossRef]
- Liu, D.T.; Yang, J.B.; Chen, S.Y.; Sun, W.B. Potential Distribution of Threatened Maples in China under Climate Change: Implications for Conservation. Glob. Ecol. Conserv. 2022, 40, e02434. [Google Scholar] [CrossRef]
- Sargent, C.S. Trees & Shrubs: Illustrations of New or Little Known Ligneous Plants, Prepared Chiefly from Material at the Arnold Arboretum of Harvard University; The Riverside Press: Cambridge, MA, USA, 1907; Volume 2, Issue 1, p. 26. [Google Scholar]
- Liu, Q.X. Flora of Jiangsu, Vol. 3; Jiangsu Phoenix Science and Technology Press: Nanjing, China, 2015. [Google Scholar]
- Manthey, M.; Box, E.O. Realized Climatic Niches of Deciduous Trees: Comparing Western Eurasia and Eastern North America. J. Biogeogr. 2007, 34, 1028–1040. [Google Scholar] [CrossRef]
- Espeland, E.K.; Kettenring, K.M. Strategic Plant Choices Can Alleviate Climate Change Impacts: A Review. J. Environ. Manag. 2018, 222, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Harbert, R.S.; Nixon, K.C. Climate Reconstruction Analysis Using Coexistence Likelihood Estimation (CRACLE): A Method for the Estimation of Climate Using Vegetation. Am. J. Bot. 2015, 102, 1277–1289. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Tao, Z.X. Predicting the Changes in Suitable Habitats for Six Common Woody Species in Central Asia. Int. J. Biometeorol. 2023, 67, 107–119. [Google Scholar] [CrossRef]
- Thuiller, W. Biodiversity: Climate Change and the Ecologist. Nature 2007, 448, 550–552. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.W.; Fang, Y.M. Response of Quercus chenii Distribution Pattern to Climate Change Since the Last Glacial Maximum. Plant Ecol. J. 2016, 40, 1164–1178. [Google Scholar]
- Ying, L.X.; Liu, Y.; Chen, S.T.; Shen, Z.H. Potential Distribution of Pistacia weinmanniifolia in Southwest China Under Climate Change Scenarios Based on MaxEnt. Biodivers. Sci. 2016, 24, 453–461. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.; Liu, C.; Hou, Y.; Yang, S.; Wang, L.; Zhang, X. Potential Suitable Habitat of Two Economically Important Forest Trees (Acer truncatum and Xanthoceras sorbifolium) in East Asia under Current and Future Climate Scenarios. Forests 2021, 12, 1263. [Google Scholar] [CrossRef]
- Chen, W.Y.; Su, T. Asian Monsoon Shaped the Pattern of Woody Dicotyledon Richness in Humid Regions of China. Plant Divers. 2020, 42, 148–154. [Google Scholar] [CrossRef]
- Lyons, J.; Stewart, J.S.; Mitro, M. Predicted Effects of Climate Warming on the Distribution of 50 Stream Fishes in Wisconsin, USA. J. Fish Biol. 2010, 77, 1867–1898. [Google Scholar] [CrossRef]
- Hagen, S.B.; Jepsen, J.U.; Ims, R.A.; Yoccoz, N.G. Shifting Altitudinal Distribution of Outbreak Zones of Winter Moth Operophtera brumata in Sub-Arctic Birch Forest: A Response to Recent Climate Warming? Ecography 2007, 30, 299–307. [Google Scholar]
- Fang, F.; Zhang, C.X.; Huang, H.J.; Li, Y.; Chen, J.C.; Yang, L.; Wei, S.H. Potential Distribution of the Malignant Weed Aegilops tauschii in Wheat Fields Based on MaxEnt. J. Grassl. Sci. 2013, 22, 62–70. [Google Scholar]
- Khalaf, S.M.H.; Alqahtani, M.S.M.; Ali, M.R.M.; Abdelalim, I.T.T.; Hodhod, M.S. Using Maxent Modeling to Analyze Climate Change Impacts on Pseudomonas syringae van Hall, 1904 Distribution on the Global Scale. Heliyon 2024, 10, e41017. [Google Scholar] [CrossRef]
- Gao, X.Q.; Lin, F.R.; Li, M.; Mei, Y.J.; Li, Y.X.; Bai, Y.L.; He, X.L.; Zheng, Y.Q. Prediction of the Potential Distribution of a Raspberry (Rubus idaeus) in China Based on MaxEnt Model. Sci. Rep. 2024, 14, 24438. [Google Scholar] [CrossRef]
- Wen, G.W.; Huang, Q.L.; Lü, Z.W.; Lai, W.F.; Shi, C.Y.; Zhu, X.R.; Jiang, T.Y.; Zhang, G.F. Ecological Suitability Analysis of Schima superba Under Climate Change Scenarios. Acta Ecol. Sin. 2023, 43, 6617–6626. [Google Scholar]
- Ma, L.N.; Qian, H.S.; Zhang, J.F. Climate Suitability of Schima superba in Subtropical China Under Future Climate Scenarios. Anhui Agric. Sci. 2012, 40, 12127–12131. [Google Scholar]
- Ye, X.Z.; Zhang, M.Z.; Lai, W.F.; Yang, M.M.; Fan, H.H.; Zhang, G.F.; Chen, S.P.; Liu, B. Prediction of the Potential Suitable Distribution of Phoebe bournei Based on MaxEnt Optimization Model. Acta Ecol. Sin. 2021, 41, 8135–8144. [Google Scholar]
- Yan, X.Y.; Wang, S.C.; Duan, Y.; Han, J.; Huang, D.H.; Zhou, J. Current and Future Distribution of the Deciduous Shrub Hydrangea macrophylla in China Estimated by MaxEnt. Ecol. Evol. 2021, 11, 16099–16112. [Google Scholar] [CrossRef]
- Dai, M.J.; Li, X.Y.; Wang, M.Q.; Wen, Y.F. Prediction of the Potential Suitable Area for Cryptomeria japonica and the Impact of Climate Change on Its Distribution. J. Northwest For. Univ. 2022, 37, 26–33, 128. [Google Scholar]
- Zhang, Z.X.; Hou, Y.T.; Liao, S.; Xie, Y.F. China’s Biological Species Directory: Vol. 1 (VI); Science Press: Beijing, China, 2017. [Google Scholar]
- Anhui Plant Flora Collaboration Group. Flora of Anhui, Vol. 3; Anhui Science and Technology Press: Hefei, China, 1990. [Google Scholar]
- Zi, X.Z.; Li, S.C. Anhui Tree Flora; China Forestry Publishing House: Beijing, China, 2015. [Google Scholar]
- Chang, A.; Zhuang, Y.X.; Zheng, P.; Lin, Y.X.; Yang, C.Z.; Qin, Y. A Checklist of Vascular Plants in Fujian Province, China. Biodivers. Sci. 2023, 31, 22537. [Google Scholar]
- Institute of South China Botanical Garden, Chinese Academy of Sciences. Flora of Guangdong, Vol. 3; Guangdong Science and Technology Press: Guangzhou, China, 1995. [Google Scholar]
- Ye, H.G. Flora of Lechang; Guangdong World Publishing Company: Guangzhou, China, 2005. [Google Scholar]
- Wei, Y.G.; Wen, F.; Xin, Z.B.; Fu, L.F. A Checklist of Wild Vascular Plants in Guangxi, China. Biodivers. Sci. 2023, 31, 23078. [Google Scholar] [CrossRef]
- Wei, Y.G. Native Plants and Their Endangered Status in Guangxi; China Forestry Publishing House: Beijing, China, 2018. [Google Scholar]
- Luo, Y.; Deng, L.X. Flora of Guizhou Vascular Plants; China Forestry Publishing House: Beijing, China, 2015. [Google Scholar]
- Ji, L.; Xie, Y.F.; Li, Z.Y.; Xu, T.C.; Yang, B.; Li, B. A Checklist of Wild Vascular Plants in Jiangxi Province, China. Biodivers. Sci. 2022, 30, 22057. [Google Scholar] [CrossRef]
- Liu, R.L.; Zhu, H. A Pictorial Catalog of Woody Plants and Rare Plants of Jiangxi; China Forestry Publishing House: Beijing, China, 2015. [Google Scholar]
- Jin, X.F.; Lu, Y.F.; Ding, B.Y.; Li, G.Y.; Chen, Z.H.; Zhang, F.G. Species Cataloging of the Seed Plants in Zhejiang, East China. Biodivers. Sci. 2022, 30, 21408. [Google Scholar] [CrossRef]
- Ding, B.Y.; Jin, C.; Zhou, Z. Flora of Wenzhou, Vol. 3; China Forestry Publishing House: Beijing, China, 2017. [Google Scholar]
- Valladares, F.; Allen, M.T.; Pearcy, R.W. Photosynthetic Responses to Dynamic Light Under Field Conditions in Six Tropical Rainforest Shrubs Occurring Along a Light Gradient. Oecologia 1997, 111, 505–514. [Google Scholar] [CrossRef]
- Runkle, J.R. Patterns of Disturbance in Some Old-Growth Mesic Forests of Eastern North America. Ecology 1982, 63, 1533–1546. [Google Scholar] [CrossRef]
- Liu, P.F.; Wang, L.; Du, Q.X.; Du, L.Y. Estimation of the Potential Suitable Area for Eucommia ulmoides in China and Its Ecological Characteristics Analysis. Acta Ecol. Sin. 2020, 40, 5674–5684. [Google Scholar]
- Li, S.; Shi, M.C.; Liu, X.Y.; Zhao, H.; Sun, L.S.; Ke, Z.F.; Zhou, H. Precise Suitability Distribution of Pinus massoniana in Hubei Province. Acta Ecol. Sin. 2019, 39, 1960–1968. [Google Scholar]
- GBIF.org. GBIF Occurrence Download; GBIF Secretariat: Copenhagen, Denmark, 2024; Available online: https://www.gbif.org/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c (accessed on 12 March 2024).
- Xing, D.L.; Hao, Z.Q. Maximum Entropy Principle and Its Application in Ecological Research. Biodivers. Sci. 2011, 19, 295–302. [Google Scholar]
- Sillero, N. What Does Ecological Modelling Model? A Proposed Classification of Ecological Niche Models Based on Their Underlying Methods. Ecol. Model. 2011, 222, 1343–1346. [Google Scholar] [CrossRef]
- Chen, X.M.; Lei, Y.C.; Zhang, X.Q.; Jia, H.Y. Effects of Sample Sizes on Accuracy and Stability of Maximum Entropy Model in Predicting Species Distribution. Sci. Silvae Sin. 2012, 48, 53–59. [Google Scholar]
- Yang, X.Q.; Kushwaha, S.; Saran, S.; Xu, J.C.; Roy, P.S. Maxent Modeling for Predicting the Potential Distribution of Medicinal Plant, Justicia adhatoda L. in Lesser Himalayan Foothills. Ecol. Eng. 2013, 51, 83–87. [Google Scholar] [CrossRef]
- Zhou, R.; Ci, X.Q.; Xiao, J.H.; Cao, G.L.; Li, J. Effects of Climate Change on Subtropical Evergreen Broad-Leaved Forest Dominant Species Cinnamomum and Conservation Evaluation. Biodivers. Sci. 2021, 29, 697–711. [Google Scholar] [CrossRef]
Variables | Description | Units | Percent Contribution (%) | Permutation Importance | Correlation | VIF |
---|---|---|---|---|---|---|
bio_1 | Annual mean temperature | °C | – | – | – | – |
bio_2 | Mean diurnal range | °C | 12.6 | 0.1 | 0.4 | 4.4 |
bio_3 | Isothermality | – | 11.5 | 9.9 | 0.5 | 6.2 |
bio_4 | Temperature seasonality | °C | – | – | – | – |
bio_5 | Max temperature of warmest month | °C | – | – | – | – |
bio_6 | Min temperature of coldest month | °C | – | – | – | – |
bio_7 | Temperature annual range | °C | – | – | – | – |
bio_8 | Mean temperature of wettest quarter | °C | 1.6 | 27.4 | 0.4 | 3.0 |
bio_9 | Mean temperature of driest quarter | °C | 24.6 | 54.9 | 0.5 | 4.4 |
bio_10 | Mean temperature of warmest quarter | °C | 24.8 | 0.4 | 0.4 | 4.1 |
bio_11 | Mean temperature of coldest quarter | °C | – | – | – | – |
bio_12 | Annual precipitation | mm | 18.2 | 0.6 | 0.4 | 5.1 |
bio_13 | Precipitation of wettest month | mm | – | – | – | – |
bio_14 | Precipitation of driest month | mm | – | – | – | – |
bio_15 | Precipitation seasonality | – | 1.9 | 6.6 | 0.4 | 3.3 |
bio_16 | Precipitation of wettest quarter | mm | – | – | – | – |
bio_17 | Precipitation of driest quarter | mm | – | – | – | – |
bio_18 | Precipitation of warmest quarter | mm | 4.7 | 0 | 0.4 | 4.1 |
bio_19 | Precipitation of coldest quarter | mm | – | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, J.; Zhang, X.; Yang, Z.; Tan, C.; Yang, Y. Global Warming Impacts Suitable Habitats of the Subtropical Endemic Tree Acer pubinerve Rehder, Newly Recorded in Jiangsu Province, China. Plants 2025, 14, 1895. https://doi.org/10.3390/plants14131895
Miao J, Zhang X, Yang Z, Tan C, Yang Y. Global Warming Impacts Suitable Habitats of the Subtropical Endemic Tree Acer pubinerve Rehder, Newly Recorded in Jiangsu Province, China. Plants. 2025; 14(13):1895. https://doi.org/10.3390/plants14131895
Chicago/Turabian StyleMiao, Jie, Xinyu Zhang, Zhi Yang, Chao Tan, and Yong Yang. 2025. "Global Warming Impacts Suitable Habitats of the Subtropical Endemic Tree Acer pubinerve Rehder, Newly Recorded in Jiangsu Province, China" Plants 14, no. 13: 1895. https://doi.org/10.3390/plants14131895
APA StyleMiao, J., Zhang, X., Yang, Z., Tan, C., & Yang, Y. (2025). Global Warming Impacts Suitable Habitats of the Subtropical Endemic Tree Acer pubinerve Rehder, Newly Recorded in Jiangsu Province, China. Plants, 14(13), 1895. https://doi.org/10.3390/plants14131895