Genome-Wide Identification and Analysis of DNA Methyltransferase and Demethylase Gene Families in Sweet Potato and Its Diploid Relative
Abstract
:1. Introduction
2. Results
2.1. Genome-Wide Identification of C5-MTase and dMTase Genes in Sweet Potato
2.2. Phylogenetic Analysis of C5-MTase and dMTase in Sweet Potato and Other Plant Species
2.3. Chromosomal Location of IbC5-MTase and IbdMTase Genes
2.4. Synteny Analysis Between Diploid and Hexaploid Sweet Potato Genomes
2.5. Conserved Motif and Gene Structure Analysis
2.6. Cis-Acting Element Analysis of C5-MTase and dMTase
2.7. Expression Patterns of IbC5-MTase and IbdMTase Genes During Storage Root Development
3. Discussion
4. Materials and Methods
4.1. Identification of the C5-MTase and dMTase Genes in Sweet Potato
4.2. Sequence Alignment and Phylogenetic Analysis
4.3. Gene Structures, Conserved Motif, and Domain Analysis
4.4. Chromosomal Distribution and Gene Duplication
4.5. Cis-Acting Element Analysis for C5-MTase and dMTase Promoters
4.6. RNA Extraction and Sequencing
4.7. Transcriptome Analysis
4.8. qRT-PCR Validation of IbC5-MTase and IbdMTase Gene Expression
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, X.J.; Chen, T.; Zhu, J.K. Regulation and function of DNA methylation in plants and animals. Cell Res. 2011, 21, 442–465. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Kong, J.; Qin, C.; Yu, S.; Tan, J.; Chen, Y.R.; Wu, C.; Wang, H.; Shi, Y.; Li, C.; et al. Requirement of CHROMOMETHYLASE3 for somatic inheritance of the spontaneous tomato epimutation colourless non-ripening. Sci. Rep. 2015, 5, 9192. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Romero, M.A.; Cota, I.; Casadesus, J. DNA methylation in bacteria: From the methyl group to the methylome. Curr. Opin. Microbiol. 2015, 25, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Law, J.A.; Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11, 204–220. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.K. Epigenetic regulation of stress responses in plants. Curr. Opin. Plant Biol. 2009, 12, 133–139. [Google Scholar] [CrossRef]
- Yang, H.; Chang, F.; You, C.; Cui, J.; Zhu, G.; Wang, L.; Zheng, Y.; Qi, J.; Ma, H. Whole-genome DNA methylation patterns and complex associations with gene structure and expression during flower development in Arabidopsis. Plant J. 2015, 81, 268–281. [Google Scholar] [CrossRef]
- Liu, R.; Lang, Z. The mechanism and function of active DNA demethylation in plants. J. Integr. Plant Biol. 2020, 62, 148–159. [Google Scholar] [CrossRef]
- Liu, G.; Xia, Y.; Liu, T.; Dai, S.; Hou, X. The DNA methylome and association of differentially methylated regions with differential gene expression during heat stress in Brassica rapa. Int. J. Mol. Sci. 2018, 19, 1414. [Google Scholar] [CrossRef]
- Zhang, B.; Tieman, D.M.; Jiao, C.; Xu, Y.; Chen, K.; Fei, Z.; Giovannoni, J.J.; Klee, H.J. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proc. Natl. Acad. Sci. USA 2016, 113, 12580–12585. [Google Scholar] [CrossRef]
- Ma, L.; Hatlen, A.; Kelly, L.J.; Becher, H.; Wang, W.; Kovarik, A.; Leitch, I.J.; Leitch, A.R. Angiosperms are unique among land plant lineages in the occurrence of key genes in the RNA-Directed DNA methylation (RdDM) pathway. Genome Biol. Evol. 2015, 7, 2648–2662. [Google Scholar] [CrossRef]
- Zhang, H.; Lang, Z.; Zhu, J.K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 2018, 19, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.G.; Sobral, R.S.; Magalhaes, A.P.; Morais-Cecilio, L.; Costa, M.M.R. Genome-Wide identification of epigenetic regulators in Quercus suber L. Int. J. Mol. Sci. 2020, 21, 3783. [Google Scholar] [CrossRef] [PubMed]
- Naumann, U.; Daxinger, L.; Kanno, T.; Eun, C.; Long, Q.; Lorkovic, Z.J.; Matzke, M.; Matzke, A.J. Genetic evidence that DNA methyltransferase DRM2 has a direct catalytic role in RNA-directed DNA methylation in Arabidopsis thaliana. Genetics 2011, 187, 977–979. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Aufsatz, W.; Zilberman, D.; Mette, M.F.; Huang, M.S.; Matzke, M.; Jacobsen, S.E. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr. Biol. 2003, 13, 2212–2217. [Google Scholar] [CrossRef]
- La, H.; Ding, B.; Mishra, G.P.; Zhou, B.; Yang, H.; Bellizzi Mdel, R.; Chen, S.; Meyers, B.C.; Peng, Z.; Zhu, J.K.; et al. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice. Proc. Natl. Acad. Sci. USA 2011, 108, 15498–15503. [Google Scholar] [CrossRef]
- Shi, J.; Dong, A.; Shen, W.H. Epigenetic regulation of rice flowering and reproduction. Front. Plant Sci. 2014, 5, 803. [Google Scholar] [CrossRef]
- Penterman, J.; Zilberman, D.; Huh, J.H.; Ballinger, T.; Henikoff, S.; Fischer, R.L. DNA demethylation in the Arabidopsis genome. Proc. Natl. Acad. Sci. USA 2007, 104, 6752–6757. [Google Scholar] [CrossRef]
- Ogneva, Z.; Dubrovina, A.; Kiselev, K. Age-associated alterations in DNA methylation and expression of methyltransferase and demethylase genes in Arabidopsis thaliana. Biol. Plant 2016, 60, 628–634. [Google Scholar] [CrossRef]
- Sharma, R.; Mohan Singh, R.K.; Malik, G.; Deveshwar, P.; Tyagi, A.K.; Kapoor, S.; Kapoor, M. Rice cytosine DNA methyltransferases—Gene expression profiling during reproductive development and abiotic stress. FEBS J. 2009, 276, 6301–6311. [Google Scholar] [CrossRef]
- Pan, Z.; Li, Z.; Han, Y.; Sun, J. Genome-wide identification and expression analysis of the DMP and MTL genes in Sweetpotato (Ipomoea batatas L.). Genes 2024, 15, 354. [Google Scholar] [CrossRef]
- Wang, Q.; Qu, Y.; Yu, Y.; Mao, X.; Fu, X. Genome-wide identification and comparative analysis of DNA methyltransferase and demethylase gene families in two ploidy Cyclocarya paliurus and their potential function in heterodichogamy. BMC Genom. 2023, 24, 287. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhang, S.; Zhou, C.; Chen, L.; Fu, H.; Li, X.; Lin, Y.; Lai, Z.; Guo, Y. Genome-wide investigation and transcriptional analysis of cytosine-5 DNA methyltransferase and DNA demethylase gene families in tea plant (Camellia sinensis) under abiotic stress and withering processing. PeerJ 2020, 8, e8432. [Google Scholar] [CrossRef] [PubMed]
- Victoria, D.; Aliki, K.; Venetia, K.; Georgios, M.; Zoe, H. Spatial and temporal expression of cytosine-5 DNA methyltransferase and DNA demethylase gene families of the Ricinus communis during seed development and drought stress. Plant Growth Regul. 2018, 84, 81–94. [Google Scholar] [CrossRef]
- Liu, K.; Shimbo, T.; Song, X.; Wade, P.A.; Min, J. Proteins that read DNA methylation. Adv. Exp. Med. Biol. 2022, 1389, 269–293. [Google Scholar] [CrossRef]
- Ma, L.; Xing, L.; Li, Z.; Jiang, D. Epigenetic control of plant abiotic stress responses. J. Genet. Genom. 2025, 52, 129–144. [Google Scholar] [CrossRef]
- Lang, Z.; Wang, Y.; Tang, K.; Tang, D.; Datsenka, T.; Cheng, J.; Zhang, Y.; Handa, A.K.; Zhu, J.K. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc. Natl. Acad. Sci. USA 2017, 114, E4511–E4519. [Google Scholar] [CrossRef]
- Jullien, P.E.; Susaki, D.; Yelagandula, R.; Higashiyama, T.; Berger, F. DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana. Curr. Biol. 2012, 22, 1825–1830. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Latzel, V.; Fischer, M.; Bossdorf, O. Understanding the evolutionary potential of epigenetic variation: A comparison of heritable phenotypic variation in epiRILs, RILs, and natural ecotypes of Arabidopsis thaliana. Heredity 2018, 121, 257–265. [Google Scholar] [CrossRef]
- Huang, H.; Liu, R.; Niu, Q.; Tang, K.; Zhang, B.; Zhang, H.; Chen, K.; Zhu, J.K.; Lang, Z. Global increase in DNA methylation during orange fruit development and ripening. Proc. Natl. Acad. Sci. USA 2019, 116, 1430–1436. [Google Scholar] [CrossRef]
- Cheng, J.; Niu, Q.; Zhang, B.; Chen, K.; Yang, R.; Zhu, J.K.; Zhang, Y.; Lang, Z. Downregulation of RdDM during strawberry fruit ripening. Genome Biol. 2018, 19, 212. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, X.; You, Q.; Han, L.; Shi, J.; Yang, J.; Cui, W.; Zhang, H.; Chao, Q.; Zhu, Y.; et al. Analysis of DNA methylation in potato tuber in response to light exposure during storage. Plant Physiol. Biochem. 2022, 170, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Sohindji, F.S.; Quenum, F.J.-B.; Fassinou-Hotegni, N.V.; Oke, A.A.; Adje, C.O.; Achigan-Dako, E.G. Crossing possibility for breeding promising orange-fleshed sweetpotato genotypes in Benin. Czech J. Genet. Plant Breed. 2023, 59, 253. [Google Scholar] [CrossRef]
- Firon, N.; LaBonte, D.; Villordon, A.; Kfir, Y.; Solis, J.; Lapis, E.; Perlman, T.S.; Doron-Faigenboim, A.; Hetzroni, A.; Althan, L.; et al. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genom. 2013, 14, 460. [Google Scholar] [CrossRef] [PubMed]
- Nieto Feliner, G.; Casacuberta, J.; Wendel, J.F. Genomics of evolutionary novelty in hybrids and polyploids. Front. Genet. 2020, 11, 792. [Google Scholar] [CrossRef]
- Soltis, D.E.; Albert, V.A.; Leebens-Mack, J.; Bell, C.D.; Paterson, A.H.; Zheng, C.; Sankoff, D.; de Pamphilis, C.W.; Wall, P.K.; Soltis, P.S. Polyploidy and angiosperm diversification. Am. J. Bot. 2009, 96, 336–348. [Google Scholar] [CrossRef]
- Song, X.M.; Wang, J.P.; Sun, P.C.; Ma, X.; Yang, Q.H.; Hu, J.J.; Sun, S.R.; Li, Y.X.; Yu, J.G.; Feng, S.Y.; et al. Preferential gene retention increases the robustness of cold regulation in Brassicaceae and other plants after polyploidization. Hortic. Res. 2020, 7, 20. [Google Scholar] [CrossRef]
- Yu, R.M.; Zhang, N.; Zhang, B.W.; Liang, Y.; Pang, X.X.; Cao, L.; Chen, Y.D.; Zhang, W.P.; Yang, Y.; Zhang, D.Y. Genomic insights into biased allele loss and increased gene numbers after genome duplication in autotetraploid Cyclocarya paliurus. BMC Biol. 2023, 21, 168. [Google Scholar] [CrossRef]
- Cheng, M.C.; Liao, P.M.; Kuo, W.W.; Lin, T.P. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 2013, 162, 1566–1582. [Google Scholar] [CrossRef]
- Liang, B.; Wu, J.; Chen, Y.; Wang, B.; Gao, F.; Li, Y.; Zhu, G. Genome and Transcriptome analysis of NF-Y transcription factors in sweet potato under salt stress. Horticulturae 2024, 10, 798. [Google Scholar] [CrossRef]
- Vandepoele, K.; Quimbaya, M.; Casneuf, T.; De Veylder, L.; Van de Peer, Y. Unraveling transcriptional control in Arabidopsis using cis-regulatory elements and coexpression networks. Plant Physiol. 2009, 150, 535–546. [Google Scholar] [CrossRef]
- Khan, M.K.; Pandey, A.; Hamurcu, M.; Vyhnánek, T.; Zargar, S.M.; Kahraman, A.; Topal, A.; Gezgin, S. Exploring strigolactones for inducing abiotic stress tolerance in plants. Czech J. Genet. Plant Breed. 2024, 60, 55–69. [Google Scholar] [CrossRef]
- Ma, J.; Aloni, R.; Villordon, A.; Labonte, D.; Kfir, Y.; Zemach, H.; Schwartz, A.; Althan, L.; Firon, N. Adventitious root primordia formation and development in stem nodes of ‘Georgia Jet’ sweetpotato, Ipomoea batatas. Am. J. Bot. 2015, 102, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Sergeeva, L.; Ligterink, W.; Aloni, R.; Zemach, H.; Doron-Faigenboim, A.; Yang, J.; Zhang, P.; Shabtai, S.; Firon, N. Gibberellin Promotes Sweetpotato Root Vascular Lignification and Reduces Storage-Root Formation. Front. Plant Sci. 2019, 10, 1320. [Google Scholar] [CrossRef] [PubMed]
- Ku, A.T.; Huang, Y.S.; Wang, Y.S.; Ma, D.; Yeh, K.W. IbMADS1 (Ipomoea batatas MADS-box 1 gene) is involved in tuberous root initiation in sweet potato (Ipomoea batatas). Ann. Bot. 2008, 102, 57–67. [Google Scholar] [CrossRef]
- Mierziak, J.; Wojtasik, W.; Kulma, A.; Dziadas, M.; Kostyn, K.; Dyminska, L.; Hanuza, J.; Zuk, M.; Szopa, J. 3-Hydroxybutyrate is active compound in flax that upregulates genes involved in DNA methylation. Int. J. Mol. Sci. 2020, 21, 2887. [Google Scholar] [CrossRef]
- Lin, Y.; Li, Y.; Zhu, H.; Tang, L.; Xu, J. Comparative transcriptome and metabolome analysis of sweet potato (Ipomoea batatas (L.) Lam.) tuber development. Front. Plant Sci. 2024, 15, 1511602. [Google Scholar] [CrossRef]
- Abdulsalami, H.A.; Lim, Y.; Cho, H. Genetic elements controlling starch biosynthesis and secondary growth in root and tuber crops. J. Plant Biotechnol. 2024, 51, 111–120. [Google Scholar] [CrossRef]
- Zanetti, M.E.; Blanco, F.; Ferrari, M.; Ariel, F.; Benoit, M.; Niebel, A.; Crespi, M. Epigenetic control during root development and symbiosis. Plant Physiol. 2024, 196, 697–710. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res 2019, 47, W270–W275. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Wang, X.; Sun, Y.; Joseph, P.V.; Paterson, A.H. Detection of colinear blocks and synteny and evolutionary analyses based on utilization of MCScanX. Nat. Protoc. 2024, 19, 2206–2229. [Google Scholar] [CrossRef]
- Lescot, M.; Dehais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouze, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
Gene Name | Gene ID | ORF (bp) | Amino Acid (aa) | Molecular Weight (Da) | pI | Instability Index | Aliphatic Index | GRAVY Value |
---|---|---|---|---|---|---|---|---|
Cytosine-5 DNA methyltransferases in diploid | ||||||||
ItMET1 | Itr2xGene015493 | 4665 | 1555 | 175,114.63 | 5.75 | 41.63 | 74.93 | −0.514 |
ItMET2 | Itr2xGene009786 | 1941 | 647 | 72,644.74 | 8.91 | 42.44 | 77.3 | −0.472 |
ItMET3 | Itr2xGene009785 | 6138 | 2046 | 231,505.64 | 6.23 | 48.17 | 82.97 | −0.37 |
ItCMT2 | Itr2xGene021773 | 3312 | 1104 | 124,150.65 | 5.76 | 57.45 | 77.59 | −0.552 |
ItCMT3 | Itr2xGene030412 | 2682 | 894 | 99,407.08 | 5.1 | 36.39 | 79.04 | −0.456 |
ItDRM1 | Itr2xGene024374 | 885 | 295 | 33,366.13 | 7.75 | 44.48 | 95.76 | −0.257 |
ItDRM2 | Itr2xGene026296 | 1779 | 593 | 66,766.51 | 4.85 | 47.94 | 81.05 | −0.443 |
ItDRM3 | Itr2xGene002910 | 2532 | 844 | 95,713.01 | 5.12 | 43.39 | 76.92 | −0.538 |
Demethylases in diploid | ||||||||
ItROS1a | Itr2xGene027250 | 5277 | 1759 | 196,236.06 | 5.84 | 47.61 | 71.98 | −0.67 |
ItROS1b | Itr2xGene008953 | 5169 | 1723 | 191,952.08 | 6.37 | 52.02 | 68.36 | −0.761 |
ItDML3 | Itr2xGene003152 | 5121 | 1707 | 191,203.84 | 8.17 | 53.73 | 72.37 | −0.633 |
ItDME1 | Itr2xGene018529 | 6009 | 2003 | 223,140.95 | 8.31 | 49.07 | 69.44 | −0.724 |
ItDME2 | Itr2xGene016302 | 5673 | 1891 | 210,000.1 | 7.56 | 46.96 | 69.79 | −0.701 |
Cytosine-5 DNA methyltransferases in autohexaploid | ||||||||
IbMET1 | Iba6xGene015870 | 4665 | 1555 | 175,034.49 | 5.73 | 41.87 | 74.44 | −0.521 |
IbMET2 | Iba6xGene010270 | 2787 | 929 | 104,312.43 | 7.7 | 44.07 | 74.68 | −0.448 |
IbMET3 | Iba6xGene010269 | 6483 | 2161 | 243,939.95 | 6.13 | 48.29 | 84.07 | −0.332 |
IbCMT2 | Iba6xGene023300 | 3558 | 1186 | 133,423.13 | 6.14 | 58.99 | 76.75 | −0.571 |
IbCMT3 | Iba6xGene031894 | 2682 | 894 | 99,448.23 | 5.08 | 35.96 | 79.36 | −0.448 |
IbDRM1 | Iba6xGene025585 | 1746 | 582 | 65,522.3 | 4.92 | 45.39 | 79.4 | −0.534 |
IbDRM2 | Iba6xGene027558 | 1599 | 533 | 60,203.28 | 5.16 | 47.26 | 80.26 | −0.454 |
IbDRM3 | Iba6xGene004347 | 2532 | 844 | 95,683.91 | 5.12 | 42.77 | 77.04 | −0.541 |
Demethylases in autohexaploid | ||||||||
IbROS1a | Iba6xGene030318 | 5448 | 1816 | 202,863.41 | 5.69 | 48.71 | 71.28 | −0.693 |
IbROS1b | Iba6xGene009389 | 5238 | 1746 | 194,639.05 | 6.56 | 51.81 | 68.02 | −0.78 |
IbDME1 | Iba6xGene016753 | 5769 | 1923 | 213,397.76 | 7.71 | 47.1 | 68.88 | −0.713 |
IbDME2 | Iba6xGene018826 | 6012 | 2004 | 223,396.42 | 8.31 | 50.12 | 69.41 | −0.717 |
IbDML3 | Iba6xGene004621 | 5163 | 1721 | 192,880.62 | 7.17 | 53.2 | 72.57 | −0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Qiao, S.; Yang, Y.; Wang, F.; Song, W.; Tan, W.; Li, Y.; Zhu, Y. Genome-Wide Identification and Analysis of DNA Methyltransferase and Demethylase Gene Families in Sweet Potato and Its Diploid Relative. Plants 2025, 14, 1735. https://doi.org/10.3390/plants14111735
Yang S, Qiao S, Yang Y, Wang F, Song W, Tan W, Li Y, Zhu Y. Genome-Wide Identification and Analysis of DNA Methyltransferase and Demethylase Gene Families in Sweet Potato and Its Diploid Relative. Plants. 2025; 14(11):1735. https://doi.org/10.3390/plants14111735
Chicago/Turabian StyleYang, Songtao, Shuai Qiao, Yan Yang, Fang Wang, Wei Song, Wenfang Tan, Yongping Li, and Youlin Zhu. 2025. "Genome-Wide Identification and Analysis of DNA Methyltransferase and Demethylase Gene Families in Sweet Potato and Its Diploid Relative" Plants 14, no. 11: 1735. https://doi.org/10.3390/plants14111735
APA StyleYang, S., Qiao, S., Yang, Y., Wang, F., Song, W., Tan, W., Li, Y., & Zhu, Y. (2025). Genome-Wide Identification and Analysis of DNA Methyltransferase and Demethylase Gene Families in Sweet Potato and Its Diploid Relative. Plants, 14(11), 1735. https://doi.org/10.3390/plants14111735