Chitosan Nanoparticles: An Alternative for In Vitro Multiplication of Sugarcane (Saccharum spp.) in Semi-Automated Bioreactors
Abstract
:1. Introduction
2. Results
2.1. Effect of CsNPs on In Vitro Multiplication
2.2. Effect of Csnps on Photosynthetic Pigment Contents
2.3. Effect of CsNPs on Phenolic Content, Lipid Peroxidation, Hydrogen Peroxide Content, and Antioxidant Capacity
2.4. Acclimatization
3. Discussion
3.1. Evaluation of Chitosan Nanoparticles During In Vitro Multiplication
3.2. Effect of CsNPs on Photosynthetic Pigment
3.3. Effect of Chitosan Nanoparticles on Biochemical Parameters
3.3.1. Lipid Peroxidation
3.3.2. Phenolic Content
3.3.3. Hydrogen Peroxide
3.3.4. Antioxidant Capacity
4. Materials and Methods
4.1. Plant Material, In Vitro Establishment, and Culture Conditions
4.2. Evaluation of Chitosan Nanoparticles During In Vitro Shoot Multiplication
4.3. Chlorophyll (Chl) Determination
4.4. Carotenoid Determination
4.5. Lipid Peroxidation Determination
4.6. Phenolic Content Determination
4.7. Hydrogen Peroxide Content
4.8. Antioxidant Capacity
4.9. Experimental Design and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Teulon, J.M.; Godon, C.; Chantalat, L.; Moriscot, C.; Cambedouzou, J.; Odorico, M.; Ravaux, J.; Podor, R.; Gerdil, A.; Habert, A.; et al. On the operational aspects of measuring nanoparticle sizes. Nanomaterials 2019, 9, 18. [Google Scholar] [CrossRef]
- Thakur, A.; Kumar, A. Recent Advances on Rapid Detection and Remediation of Environmental Pollutants Utilizing Nanomaterials-Based (Bio)Sensors. Sci. Total Environ. 2022, 834, 155219. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Farooq, M.; Wakeel, A. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef]
- Hafez, M.; Khalil, H.F. Nanoparticles in Sustainable Agriculture: Recent Advances, Challenges, and Future Prospects. Commun. Soil Sci. Plant Anal. 2024, 55, 2181–2196. [Google Scholar] [CrossRef]
- Ochatt, S.; Abdollahi, M.R.; Akin, M.; Bello, J.B.; Eimert, K.; Faisal, M.; Nhut, D.T. Application of nanoparticles in plant tissue cultures: Minuscule size but huge effects. Plant Cell Tissue Organ Cult. 2023, 155, 323–326. [Google Scholar] [CrossRef]
- Joudeh, N.; Linke, D. Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehen sive Review for Biologists. J. Nanobiotechnol. 2022, 20, 262. [Google Scholar] [CrossRef]
- Hafeez, M.; Shaheen, R.; Akram, B.; Ahmed, M.N.; Ul-Abdin, Z.; Haq, S.; Din, S.U.; Zeb, M.; Khan, M.A. Green synthesis of nickel oxide nanoparticles using populus ciliata leaves extract and their potential antibacterial applications. S. Afr. J. Chem. 2021, 75, 168–173. [Google Scholar] [CrossRef]
- Thuy, N.P.; Ngan, V.T.T.; Trai, N.N.; Phong, V.T.; Ai, T.N.; Thi, Q.V.C.; Khang, D.T. Potential Effects of Nanochitosan on Rice Under Salinity. Pak. J. Bot. 2024, 56, 19–26. [Google Scholar] [CrossRef]
- Alyasi, H.; Mackey, H.R.; McKay, G. Removal of cadmium from waters by adsorption using nanochitosan. Energy Environ. 2020, 31, 517–534. [Google Scholar] [CrossRef]
- Zubair, M.; Fatima, N.; Nadeem, H.; Hussain, S.; Shahzad, T.; Afzal, M.; Fatima, S.; Imran, M.; Siddique, M.H. Ecotoxicology of nanoparticles. Nanoparticle Toxic. Compat. 2024, 161, 225–244. [Google Scholar]
- Habood, E.A.M.; Sayed, R.M.; Rizk, S.A.; El-Sharkawy, A.Z.E.; Badr, N.F. Nanochitosan to control the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). J. Radiat. Res. Appl. Sci. 2022, 15, 7–17. [Google Scholar] [CrossRef]
- Sangeeta, G.P.V.; Nagasree, K.P.; Namratha, J.R.; Kumar, M.M.K. Synthesis, screening and docking analysis of novel benzimidazolium compounds as potent anti microbial agents targeting FtsZ protein. Microb. Pathog. 2018, 124, 258–265. [Google Scholar] [CrossRef]
- Jericó Jabín, B.-B.; Spinosos-Castillo, L.; Mancilla-Álvarez, E. Hormesis in plant tissue culture. Plant Cell Tissue Organ Cult. 2024, 159, 16. [Google Scholar] [CrossRef]
- Agri, U.; Chaudhary, P.; Sharma, A.; Kukreti, B. Physiological response of maize plants and its rhizospheric microbiome under the influence of potential bioinoculants and nanochitosan. Plant Soil 2022, 474, 451–468. [Google Scholar] [CrossRef]
- Arya, S.S.; Rookes, J.E.; Cahill, D.M.; Lenka, S.K. Chitosan nanoparticles and their combination with methyl jasmonate for the elicitation of phenolics and flavonoids in plant cell suspension cultures. Int. J. Biol. Macromol. 2022, 214, 632–641. [Google Scholar] [CrossRef]
- Elsahhar, S.; Shahba, M.; Elsayed, T.; Mikhail, M.; Galal, A. Effect of chitosan nanoparticles (CS-NPs) on in vitro regeneration response and production of potato virus Y (PVY)-free plants of potato. Agronomy 2022, 12, 2901. [Google Scholar] [CrossRef]
- Darwesh, O.; Zaied, N.; Hassan, S. Control of microbial contamination during the micropropagation process of some fruit trees. PeerJ 2024, 13, e19255. [Google Scholar] [CrossRef]
- Attaran Dowom, S.; Karimian, Z.; Mostafaei Dehnavi, M.; Samiei, L. Chitosan nanoparticles improve physiological and biochemi cal responses of Salvia abrotanoides (Kar.) under drought stress. BMC Plant Biol. 2022, 22, 364. [Google Scholar] [CrossRef]
- Ha, N.M.C.; Nguyen, T.H.; Wang, S.L.; Nguyen, A.D. Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Res. Chem. Intermed. 2019, 45, 51–63. [Google Scholar] [CrossRef]
- Chandra, S.; Chakraborty, N.; Dasgupta, A.; Sarkar, J.; Panda, K.; Acharya, K. Chitosan Nanoparticles: A Positive Modulator of Innate Immune Responses in Plants. Sci. Rep. 2015, 5, 15195. [Google Scholar] [CrossRef]
- Asgari-Targhi, G.; Iranbakhsh, A.; Ardebili, Z.O. Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol. Biochem. 2018, 127, 393–402. [Google Scholar] [CrossRef]
- Alhaithloul, H.A.; Awad, N.S.; Shoala, T.; Alqahtani, M.M.; Alzuaibr, F.M.; Alasmari, A.; Abdein, M.A. Compariso of various hormone combinations and the potential of chitosan nanoparticles for growth stimulation in Astragalus spp. Plant Cell Tissue Organ Cult. 2024, 157, 74. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Osakabe, N.; Paola, R.D.; Siracusa, R.; Fusco, R.; Amico, R.D.; Impellizzeri, D.; Cuzzocrea, S.; Fritsh, T.; Abdelhameed, A.S.; et al. Hormesis defines the limits of lifespan. Ageing Res. Rev. 2023, 91, 102074. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Khati, P.; Kumar, A.; Kumar, R.; Sharma, A. Impact of nanochitosan and Bacillus spp. on health, productivity and defense response in Zea mays under field condition. 3 Biotech 2021, 11, 237. [Google Scholar] [CrossRef]
- Riseh, R.S.; Vazvani, M.G.; Vatankhah, M.; Kennedy, J.F. Chitosan Coating of Seeds Improves the Germination and Growth Performance of Plants: A Review. Int. J. Biol. Macromol. 2024, 278, 134750. [Google Scholar] [CrossRef] [PubMed]
- Maslova, T.G.; Markovskaya, E.F.; Slemnev, N.N. Functions of Carotenoids in Leaves of Higher Plants (Review). Biol. Bull. Rev. 2021, 11, 476–487. [Google Scholar] [CrossRef]
- Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant carotenoids: Recent advances and future perspectives. Hort. Res. 2022, 2, 3. [Google Scholar] [CrossRef]
- Mortensen, A.; Skibsted, L.; Truscott, T. The interaction of dietary carotenoids with radical species. Arch. Biochem. Biophys. 2001, 385, 13–19. [Google Scholar] [CrossRef]
- Das, S.; Mukherjee, A. Impact of Plant Growth-Promoting Microbes (PGPM) in Plant Disease Management by Inducing Non enzymatic Antioxidants. In Antioxidants in Plant-Microbe Interaction; Singh, H.B., Vaishnav, A., Sayyed, R., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Hidangmayum, A.; Dwivedi, P.; Katiyar, D.; Hemantaranjan, A. Application of Chitosan on Plant Responses with Special Reference to Abiotic Stress. Physiol. Mol. Biol. Plants 2019, 25, 313–326. [Google Scholar] [CrossRef]
- Ingle, P.U.; Shende, S.S.; Shingote, P.R.; Mishra, S.S.; Sarda, V.; Wasule, D.L.; Rajput, V.D.; Minkina, T.; Rai, M.; Sushkova, S. Chitosan nanoparticles (ChNPs): A versatile growth promoter in modern agricultural production. Heliyon 2022, 8, e11893. [Google Scholar] [CrossRef]
- Khati, P.; Chaudhary, P.; Gangola, S.; Bhatt, P.; Sharma, A. Nanochitosan supports growth of Zea mays and also maintains soil health following growth. 3 Biotech 2017, 7, 81. [Google Scholar] [CrossRef] [PubMed]
- Behboudi, F.; Tahmasebi-Sarvestani, Z.; Kassaee, M.Z.; Modarres-Sanavy, S.A.M.; Sorooshzadeh, A.; Mokhtassi-Bidgoli, A. Evaluation of chitosan nanoparticles effects with two application methods on wheat under drought stress. J. Plant Nutr. 2019, 42, 1439–1451. [Google Scholar] [CrossRef]
- Bakhoum, G.; Sadak, M.; Tawfic, M. Chitosan and chitosan nanoparticle effect on growth, productivity and some biochemical aspects of Lupinustermis L plant under drought conditions. Egypt. J. Chem. 2022, 65, 537–549. [Google Scholar] [CrossRef]
- Haghaninia, M.; Rasouli, F.; Javanmard, A.; Mahdavinia, G.; Azizi, S.; Nicoletti, R.; Murariu, O.C.; Tallarita, A.V.; Caruso, G. Improvement of Physiological Features and Essential Oil Content of Thymus vulgaris after Soil Amendment with Chitosan Nanoparticles under Chromium Toxicity. Horticulturae 2024, 10, 659. [Google Scholar] [CrossRef]
- Imara, D.A.; Ghebrial, E.W.; EL-Abeid, S.E.; Hussein, E.M.; Elsayed, M.I.; Yousef, R.S. Reduction of oxidative damage caused by Fusarium falciforme and Fusarium foetens in schefflera plants using chitosan nanoparticles loaded with l-proline or indole butyric acid. Chem. Biol. Technol. Agric. 2024, 11, 167. [Google Scholar] [CrossRef]
- Chibu, H.; Shibayama, H. Effects of chitosan applications on the growth of several crops. In Chitin and Chitosan in Life Science; Uragami, T., Kurita, K., Fukamizo, T., Eds.; Kodansha Scientific Press: Yamaguchi, Japan, 2001; pp. 235–239. [Google Scholar]
- Turan, N.B.; Erkan, H.S.; Engin, G.O.; Bilgili, M.S. Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—A review. Process Saf. Environ. Prot. 2019, 130, 238–249. [Google Scholar] [CrossRef]
- Sadak, M.S.; Tawfik, M.M.; Bakhoum, G.S. Role of chitosan and chitosan-based nanoparticles on drought tolerance in plants: Probabilities and prospects. In Role of Chitosan and Chitosan-Based Nanomaterials in Plant Sciences; Elsevier: Amsterdam, The Netherlands, 2022; pp. 475–501. [Google Scholar]
- Tewari, R.K.; Yadav, N.; Gupta, R.; Kumar, R. Oxidative stress under macronutrient deficiency. J. Soil Sci. Plant Nutr. 2021, 21, 832–859. [Google Scholar] [CrossRef]
- García-Caparrós, P.; De Filippis, L.; Gul, A.; Hasanuzzaman, M.; Ozturk, M.; Altay, V.; Lao, M.T. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: A Review. Bot. Rev. 2021, 87, 421–466. [Google Scholar] [CrossRef]
- Arif, Y.; Siddiqui, H.; Hayat, S. Role of chitosan nanoparticles in regulation of plant physiology under abiotic stress. In Sustainable Agriculture Reviews 53: Nanoparticles: A New Tool to Enhance Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2022; pp. 399–413. [Google Scholar]
- Alenazi, M.M.; El-Ebidy, A.M.; El-shehaby, O.A.; Seleiman, M.F.; Aldhuwaib, K.J.; Abdel-Aziz, H.M.M. Chitosan and Chitosan Nanoparticles Differentially Alleviate Salinity Stress in Phaseolus vulgaris L. Plants. Plants 2024, 13, 398. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Saini, N.; Anmol, A.; Kumar, S.; Bakshi, M.; Dhiman, Z. Exploring Phenolic Compounds as Natural Stress Alleviators in Plants-a Comprehensive Review. Physiol. Mol. Plant Pathol. 2024, 133, 102383. [Google Scholar] [CrossRef]
- Tariq, A.; Ambreen, A. Plant Phenolics Production: A Strategy for Biotic Stress Management; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Hajihashemi, S.; Kazemi, S. The potential of foliar application of nano-chitosan-encapsulated nano-silicon donor in amelioration the adverse effect of salinity in the wheat plant. BMC Plant Biol. 2022, 22, 148. [Google Scholar] [CrossRef] [PubMed]
- Hajihashemi, S.; Ehsanpour, A.A. Antioxidant response of Stevia rebaudiana B. to polyethylene glycol and paclobutrazol treatments under in vitro culture. Appl. Biochem. Biotechnol. 2014, 172, 4038–4052. [Google Scholar] [CrossRef]
- Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of Phenolic Compounds in Plant-Defensive Mechanisms. In Plant Phenolics in Sustainable Agriculture; Lone, R., Shuab, R., Kamili, A., Eds.; Springer: Singapore, 2020; pp. 517–532. [Google Scholar]
- Černý, M.; Habánová, H.; Berka, M.; Luklová, M.; Brzobohatý, B. Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks. Int. J. Mol. Sci. 2018, 19, 2812. [Google Scholar] [CrossRef] [PubMed]
- Dumanovic, J.; Nepovimova, E.; Natic, M.; Kuc, K.; Jaćević, V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Front. Plant Sci. 2021, 11, 552969. [Google Scholar] [CrossRef]
- Ali, E.; El-Shehawi, A.; Ibrahim, O.; Abdul-Hafeez, E.; Moussa, M.; Hassan, F. A Vital Role of Chitosan Nanoparticles in Improvisation the Drought Stress Tolerance in Catharanthus roseus (L.) Through Biochemical and Gene Expression Modulation. Plant Physiol. Biochem. 2021, 161, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Arnaud, D. Hydrogen peroxide metabolism and functions in plants. New phytologist. 2019, 221, 1197–1214. [Google Scholar] [CrossRef]
- Sen, S.K.; Chouhan, D.; Das, D.; Ghosh, R.; Mandal, P. Improvisation of Salinity Stress Response in Mung Bean through Solid Matrix Priming with Normal and Nano-Sized Chitosan. Int. J. Biol. Macromol. 2020, 145, 108–123. [Google Scholar] [CrossRef]
- Hassan, F.A.S.; Ali, E.; Gaber, A.; Fetouh, M.I.; Mazrou, R. Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiol. Biochem. 2021, 162, 291–300. [Google Scholar] [CrossRef]
- Wang, A.; Li, J.; Al-Huqail, A.A.; Al-Harbi, M.S.; Ali, E.F.; Wang, J.; Ding, Z.; Rekaby, S.A.; Ghoneim, A.M.; Eissa, M.A. Mechanisms of Chitosan NPs in the Regulation of Cold Stress Resistance in Banana Plants. Nanomaterials 2021, 11, 2670. [Google Scholar] [CrossRef]
- Dumont, S.; Rivoal, J. Consequences of Oxidative Stress on Plant Glycolytic and Respiratory Metabolism. Front. Plant Sci. 2019, 10, 166. [Google Scholar] [CrossRef] [PubMed]
- Kiss, A.; Papp, V.A.; Pál, A.; Prokisch, J.; Mirani, S.; Toth, B.E.; Alshaal, T. Comparative Study on Antioxidant Capacity of Diverse Food Matrices: Applicability, Suitability and Inter-Correlation of Multiple Assays to Assess Polyphenol and Antioxidant Status. Antioxidants 2025, 14, 317. [Google Scholar] [CrossRef]
- Kırca, A.; Arslan, E. Antioxidant capacity and total phenolic content of selected plants from Turkey. Int. J. Food Sci. Technol. 2008, 43, 2038–2046. [Google Scholar] [CrossRef]
- Parcheta, M.; Świsłocka, R.; Orzechowska, S.; Akimowicz, M.; Choińska, R.; Lewandowski, W. Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties. Materials 2021, 14, 1984. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.G.; El-Awadi, M.; Sadak, M.S. Chitosan and its Nanoform Regulates Physiological Processes and Antioxidant Mechanisms to Improve Drought Stress Tolerance of Vicia faba Plant. J Soil Sci Plant Nutr. 2024, 24, 5696–5709. [Google Scholar] [CrossRef]
- Ramírez-Rodríguez, S.C.; Preciado-Rangel, P.; Ortega-Ortiz, H.; González-Morales, S. Chitosan nanoparticles as biostimulant in lettuce (Lactuca sativa L.) plants. Phyton-Int. J. Exp. Bot. 2024, 93, 777–787. [Google Scholar] [CrossRef]
- Allam, E.; El-Darier, S.; Ghattass, Z.; Fakhry, A.; Elghobashy, R.M. Application of chitosan nanopriming on plant growth and secondary metabolites of Pancratium maritimum L. BMC Plant Biol. 2024, 24, 466. [Google Scholar] [CrossRef] [PubMed]
- Nandhini, R.; Rajeswari, E.; Harish, S.; Sivakumar, V.; Gangai Selvi, R. Role of chitosan nanoparticles in sustainable plant disease management. J. Nanopart. Res. 2025, 27, 13. [Google Scholar] [CrossRef]
- Hadacek, F.; Bachmann, G.; Engelmeier, D.; Chobot, V. Hormesis and a chemical Raison D’être for secondary plant metabolites. Dose Response 2011, 9, 79–116. [Google Scholar] [CrossRef]
- Balusamy, S.R.; Rahimi, S.; Sukweenadhi, J.; Sunderraj, S.; Shanmugam, R.; Thangavelu, L.; Mijakovic, I.; Perumalsamy, H. Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydr. Polym. 2022, 284, 119189. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell. 2005, 17, 1866–1875. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Sorcia-Morales, M.; Gómez-Merino, F.C.; Sánchez-Segura, L.; Spinoso-Castillo, J.L.; Bello-Bello, J.J. Multi-walled carbon nanotubes improved development during in vitro multiplication of sugarcane (Saccharum spp.) in a semi-automated bioreactor. Plants 2021, 10, 2015. [Google Scholar] [CrossRef]
- Lorenzo, J.C.; González, B.L.; Escalona, M.; Teisson, C.; Borroto, C. Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tissue Organ Cult. 1998, 54, 197–200. [Google Scholar] [CrossRef]
- Spinoso-Castillo, J.L.; Pérez-Sato, J.A.; Schettino-Salomón, S.S.; Bello-Bello, J.J. An alternative method for medium-term in vitro conservation of different plant species through gibberellin inhibitors. Vitr. Cell. Dev. Biol.-Plant. 2022, 58, 606–614. [Google Scholar] [CrossRef]
- Biehler, E.; Mayer, F.; Hoffman, L.; Krause, E.; Bohn, T. Comparison of 3 spectrophotometric in frequently consumed fruits and vegetables. J. Food Sci. 2010, 75, C55–C56. [Google Scholar] [CrossRef]
- Payet, B.; Shum Cheong Sing, A.; Smadja, J. Comparison of the concentrations of phenolic constituents in cane sugar manufacturing products with their antioxidant activities. J. Agric. Food Chem. 2006, 54, 7270–7276. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
Chitosan Nanoparticles (mg L−1) | Response (%) | Number of Shoots Per Explant | Shoot Length (cm) | Number of Leaves Per Shoot | Fresh Weight (g) | Dry Weight (g) | Dry Matter (%) |
---|---|---|---|---|---|---|---|
0 | 100 ± 0.00 a | 26.33 ± 0.88 b | 3.81 ± 0.12 c | 3.48 ± 0.13 bc | 2.68 ± 0.31 b | 0.23 ± 0.02 ab | 8.93 ± 0.29 a |
25 | 100 ± 0.00 a | 32.42 ± 1.10 a | 5.78 ± 0.09 a | 4.38 ± 0.12 a | 5.53 ± 1.03 a | 0.48 ± 0.07 a | 9.00 ± 0.53 a |
50 | 100 ± 0.00 a | 34.33 ± 1.40 a | 5.00 ± 0.15 b | 3.68 ± 0.14 b | 3.71 ± 0.61 ab | 0.44 ± 0.07 ab | 11.56 ± 2.42 a |
100 | 83 ± 3.33 b | 18.00 ± 1.96 c | 2.56 ± 0.11 d | 3.00 ± 0.10 c | 2.52 ±0.32 b | 0.26 ± 0.10 ab | 9.60 ± 2.56 a |
200 | 66 ± 3.33 c | 9.42 ± 0.36 d | 2.10 ± 0.09 d | 2.37 ± 0.11 d | 1.79 ± 0.09 b | 0.16 ± 0.01 b | 9.02 ± 0.92 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancilla-Álvarez, E.; Serrano-Fuentes, M.K.; Fuentes-Torres, M.A.; Sánchez-Páez, R.; Bello-Bello, J.J. Chitosan Nanoparticles: An Alternative for In Vitro Multiplication of Sugarcane (Saccharum spp.) in Semi-Automated Bioreactors. Plants 2025, 14, 1697. https://doi.org/10.3390/plants14111697
Mancilla-Álvarez E, Serrano-Fuentes MK, Fuentes-Torres MA, Sánchez-Páez R, Bello-Bello JJ. Chitosan Nanoparticles: An Alternative for In Vitro Multiplication of Sugarcane (Saccharum spp.) in Semi-Automated Bioreactors. Plants. 2025; 14(11):1697. https://doi.org/10.3390/plants14111697
Chicago/Turabian StyleMancilla-Álvarez, Eucario, María Karen Serrano-Fuentes, María Angélica Fuentes-Torres, Ricardo Sánchez-Páez, and Jericó Jabín Bello-Bello. 2025. "Chitosan Nanoparticles: An Alternative for In Vitro Multiplication of Sugarcane (Saccharum spp.) in Semi-Automated Bioreactors" Plants 14, no. 11: 1697. https://doi.org/10.3390/plants14111697
APA StyleMancilla-Álvarez, E., Serrano-Fuentes, M. K., Fuentes-Torres, M. A., Sánchez-Páez, R., & Bello-Bello, J. J. (2025). Chitosan Nanoparticles: An Alternative for In Vitro Multiplication of Sugarcane (Saccharum spp.) in Semi-Automated Bioreactors. Plants, 14(11), 1697. https://doi.org/10.3390/plants14111697