Advances in Anther Culture-Based Rice Breeding in China
Abstract
1. Introduction
2. Advances in Rice Anther Culture Technique
3. Factors Affecting Anther Culture in Rice
3.1. Genotype
3.2. Pollen Development, Sampling Period, and Selection of Spikes
3.3. Low-Temperature Pretreatment and Anther Inoculation
3.4. Selection of Medium and Hormone Ratio
3.5. Plantlet Strengthening and Hardening and Contamination Protection
4. Application of Anther Culture in Rice Breeding
Type | Variety Name | Traits | Country | References |
---|---|---|---|---|
Conventional japonica rice | Danfeng 1 | Superior quality, high yield | China | [98] |
Zhonghua 8, Zhonghua 9 | Rice blast resistance | China | [99] | |
Zhonghua 10 | Superior quality, saline-alkaline tolerance | China | [100] | |
1647S | Excellent overall performance | China | [96] | |
Huageng 45 | Saline-alkaline tolerance, lodging resistance, bacterial blight resistance, moderate resistance to rice anthracnose, sheath blight, and false smut | China | [101] | |
Hejiang 21, Longgeng 1, Longgeng 3, Longgeng 4, Longgeng 7, Longgeng 8 | Rice blast resistance, superior quality, high yield | China | [84] | |
Jiudao 26 | Moderately resistant to leaf blast, moderately susceptible to panicle blast, superior quality | China | [102] | |
Zhonghua 15 | Resistance to bacterial blight and rice blast, high yield | China | [103] | |
Huageng 15 | Saline-alkaline tolerance | China | [104] | |
Zhonghua 14, Zhonghua 16 | Saline-alkaline tolerance, drought resistance, lodging resistance | China | [105,106] | |
Longgeng 10, Longgeng 12 | Rice blast resistance, superior quality | China | [107,108] | |
Huayu 13 | Resistance to rice blast, sheath blight and false smut, saline-alkaline tolerance, superior quality, good taste, high yield | China | [109] | |
HD27 | Superior quality, disease resistance, early flowering | China | [110] | |
Chongshang 2022 | Rice blast resistance, lodging resistance, good quality | China | [20] | |
Conventional indica rice | Shuhui 162 | Rice blast resistance, superior quality | China | [111] |
Hua 1B | Good outcrossing characteristics, high combining ability | China | [112] | |
Bicol (IR51500AC11–1) | Saline-alkaline tolerance | Philippines | [90] | |
CR Dhan 10 (CRAC2221–43), Satyakrishna | Resistance to neck blast, sheath rot, and yellow stem borer | India | [88] | |
Hua 2B | Superior quality, stable traits | China | [113] | |
AC-1 | Saline-alkaline tolerance | Bangladesh | [114] | |
Chuanhui 907 | Superior quality, strong combining ability, good restoration ability, rice blast resistance | China | [115] | |
CR Dhan 801 (CRAC2224–1041, IET18720), Phalguni | Resistance to leaf blast and gall midge, moderate resistance to leaf sheath rot, rice stripe virus, yellow stem borer, and brown spot | India | [89] | |
Chuanhui 1618 | Large panicle, superior quality, strong combining ability, good restoration ability, rice blast resistance | China | [116] | |
Hybrid rice | Miai 64S | Stable fertility, high yield, wide compatibility | China | [97] |
1103S, 8906S, 8902S | Stable infertility, practical value | China | [117] | |
Liangyou 1178 | High yield, superior quality, multi-resistance | China | [117] | |
HS-1, HS-2, HS-3 | Good economic traits, outcrossing characteristics and combining ability | China | [118] | |
Hua 1A | Good outcrossing characteristics, high combining ability | China | [112] | |
1286S, 6442S | Stable yield, high yield | China | [119] | |
Jinshan S-1 | Stable infertility, long infertility period, superior quality | China | [120] | |
Huaxiang 7 | High quality rice, high yield, moderate resistance to rice blast disease | China | [121] | |
Xiang 125S | High quality rice with strong compatibility | China | [122] | |
Hua 2A | Stable infertility, high outcrossing rate, superior quality | China | [113] | |
V25S | High outcrossing seed-setting rate, superior quality | China | [123] | |
EH1S | High outcrossing seed-setting rate, rice blast resistance, superior quality | China | [124] |
5. Challenges in Rice Anther Culture Breeding
6. Prospects for Rice Anther Culture Breeding
Author Contributions
Funding
Conflicts of Interest
References
- Wei, X.; Chen, M.; Zhang, Q.; Gong, J.; Liu, J.; Yong, K.; Wang, Q.; Fan, J.; Chen, S.; Hua, H.; et al. Genomic investigation of 18,421 lines reveals the genetic architecture of rice. Science 2024, 385, eadm8762. [Google Scholar] [CrossRef]
- Valera, H.; Pede, V. What do we know about the future of rice in relation to food system transformation. CGIAR Initiative on Foresight. CGIAR News, 2 February 2023. [Google Scholar]
- Mew, T.; Hibino, H.; Savary, S.; Vera-Cruz, C.M.; Opulencia, R.; Hettel, G.P. (Eds.) Rice Diseases: Biology and Selected Management Practices; International Rice Research Institute: Los Baños, Philippines, 2018. [Google Scholar]
- Eckardt, N.A.; Ainsworth, E.A.; Bahuguna, R.N.; Broadley, M.R.; Busch, W.; Carpita, N.C.; Castrillo, G.; Chory, J.; DeHaan, L.R.; Duarte, C.M.; et al. Climate change challenges, plant science solutions. Plant Cell 2023, 35, 24–66. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Zhou, L.; Zha, W.; Xu, H.; Liu, K. Rapid breeding of an early maturing, high-quality, and high-yielding rice cultivar using marker-assisted selection coupled with optimized anther culture. Mol. Breed. 2024, 44, 58. [Google Scholar] [CrossRef]
- Usenbekov, B.; Amirova, A.; Zeinalov, Z.; Meldebekova, A.; Mynbayeva, D.; Berkimbay, K.; Kurbangaliyeva, T. Creation of rice doubled haploids with low amylose content using in vitro anther culture. Braz. J. Biol. 2024, 84, e284946. [Google Scholar] [CrossRef]
- Nadim, M.K.A.; Islam, M.M.; Hoque, M.I.; Hasan, M.J.; Uddin, M.I. Development of blast-resistant rice varieties through marker-assisted selection: Development of blast-resistant rice varieties. Bangladesh J. Agric. 2024, 49, 41–51. [Google Scholar] [CrossRef]
- Ge, S. Rice anther culture and its application to genetics and breeding. Seed 2013, 32, 45–50. [Google Scholar]
- Xiao, G. A summary of research work on anther culture in rice. Hybrid Rice 1992, 2, 44–46. [Google Scholar]
- Yang, C.; Wu, L.; Zhao, C. In vitro regulation of haploid soma clonal micro-buds in indica rice. Chin. J. Rice Sci. 1998, 4, 219–222. [Google Scholar]
- Zhu, Z.; Wang, J.; Sun, J.; Xu, Z.; Zhu, Z.; Ying, X.; Bi, F. A better rice anther medium was established by comparing nitrogen sources. Sci. Sin. (Math.) 1975, 5, 484–490. [Google Scholar]
- Zhang, S.; Jiang, H. Achievements and prospects of application of anther culture to rice breeding. North Rice 2007, 1, 9–12. [Google Scholar]
- Tripathy, S.K.; Lenka, D.; Prusti, A.M.; Mishra, D.; Swain, D.; Beher, S.K. Anther culture in rice: Progress and breeding perspective. Appl. Biol. Res. 2019, 21, 87. [Google Scholar] [CrossRef]
- Iqbal1, J.; Yousa, U. Anther culturing a unique methodology in achieving homozygosity. Asian J. Adv. Agric. Res. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Lantos, C.; Jancsó, M.; Székely, Á.; Nagy, É.; Szalóki, T.; Pauk, J. Improvement of Anther Culture to integrate Doubled Haploid Technology in Temperate Rice (Oryza sativa L.) Breeding. Plants 2022, 11, 3446. [Google Scholar] [CrossRef]
- Samantaray, S.; Ali, J.; Nicolas, K.L.C.; Katara, J.L.; Verma, R.L.; Parameswaran, C.; Devanna, B.N.; Kumar, A.; Dash, B.; Bhuyan, S.S. Doubled Haploids in Rice Improvement: Approaches, Applications, and Future Prospects. In Rice Improvement: Physiological, Molecular Breeding and Genetic Perspectives; Ali, J., Wani, S.H., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 425–447. [Google Scholar]
- Islam, M.T.; Arif, M.R.; Hasan, M.T.; Robin, A.H. Anther Culture in Crop Plants: Progress and Perspectives. Plant Breed. Biotechnol. 2023, 11, 69–96. [Google Scholar] [CrossRef]
- Li, S.; Zha, W.; Zhou, L.; Liu, K.; Yang, G.; You, A. Influence on rice anther culture process on culture result. Hubei Agric. Sci. 2018, 57, 164–167. [Google Scholar]
- Yu, B.; Li, C.; Zeng, S.; Jing, D.; Li, T.; Qia, H.; Zhou, Y.; Yao, W.; Sun, L.; Du, C. Application of anther culture in the breeding of new hybrid rice lines between China and the United States. Jiangsu Agric. Sci. 2017, 45, 65–68. [Google Scholar]
- Huang, W.; Yan, Y.; Wang, K.; Zhan, L.; Hu, Z.; Wu, S. Breeding of a new japonica rice variety with fragrance and soft by anther culture technique and molecular marker-assisted selection method. Acta Agric. Shanghai 2022, 38, 41–46. [Google Scholar]
- Mayakaduwa, R.; Silva, T. Haploid Induction in Indica Rice: Exploring New Opportunities. Plants 2023, 12, 3118. [Google Scholar] [CrossRef]
- Pattnaik, S.S.; Dash, B.; Bhuyan, S.S.; Katara, J.L.; Parameswaran, C.; Verma, R.; Ramesh, N.; Samantaray, S. Anther Culture Efficiency in Quality Hybrid Rice: A Comparison between Hybrid Rice and Its Ratooned Plants. Plants 2020, 9, 1306. [Google Scholar] [CrossRef]
- Dash, B.; Bhuyan, S.S.; Singh, S.K.; Chandravani, M.; Swain, N.; Rout, P.; Katara, J.L.; Parameswaran, C.; Devanna, B.N.; Samantaray, S. Androgenesis in indica rice: A comparative competency in development of doubled haploids. PLoS ONE 2022, 17, e0267442. [Google Scholar] [CrossRef]
- Li, S.; Chen, Z.; Liu, K.; Yang, G.; Wang, F.; Hu, G.; Zhou, L.; Zha, W.; You, A. Study on anther culture condition of indica rice male sterile line. Hubei Agric. Sci. 2015, 54, 4868–4870. [Google Scholar]
- Sarao, N.K.; Gosal, S.S. In vitro androgenesis for accelerated breeding in rice. In Biotechnologies of Crop Improvement; Gosal, S., Wani, S., Eds.; Springer Nature: Cham, Switzerland, 2018; Volume 1, pp. 407–435. [Google Scholar]
- Xue, Q.; Liu, J. Differences found in the anther culture ability and its inheritance in rice varieties(Oryza sativa L subsp Keng). J. Zhejiang Agric. Univ. 1984, 1, 51–55. [Google Scholar]
- Ali, J.; Nicolas, K.L.C.; Akther, S.; Torabi, A.; Ebadi, A.A.; Marfori-Nazarea, C.M.; Mahender, A. Improved Anther Culture Media for Enhanced Callus Formation and Plant Regeneration in Rice (Oryza sativa L.). Plants 2021, 10, 839. [Google Scholar] [CrossRef]
- Ferreres, I.; Ortega, M.; López-Cristoffanini, C.; Nogués, S.; Serrat, X. Colchicine and osmotic stress for improving anther culture efficiency on long grain temperate and tropical japonica rice genotypes. Plant Biotechnol. 2019, 36, 269–273. [Google Scholar] [CrossRef]
- Dash, A.K.; Rao, G.J.N.; Rao, R.N. Effect of genotype on anther culture response in indica rice hybrids of maintainer lines. Oryza Int. J. Rice 2014, 51, 165–167. [Google Scholar]
- Liu, W.; Liu, J.; Nan, X. Effect of different genotypes of japonica rice in cold region on induction of the callus and regeneration from mature embryo. North Rice 2015, 45, 14–17. [Google Scholar]
- Shen, J.; Li, M.; Chen, Y.; Zhang, Z. Breeding by anther culture in rice varieties improvement. Sci. Agric. Sin. 1982, 2, 15–19. [Google Scholar]
- Zou, L.; Zhang, D.; Lin, X.; Xie, Y.; Li, Z. Analysis of combining ability of anther culture characters for photo-sensitive genic mael-sterile rice. J. Huazhong Agric. Univ. 1996, 1, 6–9. [Google Scholar]
- He, P.; Chen, Y.; Sheng, L.; Lu, C.; Zhu, L. Inheritance of pollen callus induction ability in rice. Chin. Sci. Bull. 1997, 8, 866–869. [Google Scholar]
- Chi, M.; Fang, Z.; Li, J.; Fan, J.; Qing, D.; Xu, D. Research progress on the application of anther culture in rice breeding. Jiangsu Agric. Sci. 2011, 39, 111–113. [Google Scholar]
- Tripathy, S. High throughput anther culture response in an upland rice cross ‘Khandagiri x Dular’. J. Environ. Biol. 2022, 43, 420–429. [Google Scholar] [CrossRef]
- Wu, J.; Chang, X.; Li, C.; Zhang, Z.; Zhang, J.; Yin, C.; Ma, W.; Chen, H.; Zhou, F.; Lin, Y. QTLs Related to Rice Callus Regeneration Ability: Localization and Effect Verification of qPRR3. Cells 2022, 11, 4125. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Feng, D.; Cui, H.; Fu, J.; Shu, Q. Screening of japonica rice hybrid combinations with high anther culture efficiency. Mod. Agric. Sci. Technol. 2013, 16, 44–46. [Google Scholar]
- Kostylev, P.; Kalinina, N.; Vozhzhova, N.; Golubova, V.; Chertkova, N. Creation of Rice Doubled Haploids Resistant to Prolonged Flooding Using Anther Culture. Plants 2023, 12, 3681. [Google Scholar] [CrossRef]
- Chen, H.; Qin, R. Main factors affecting rice anther culture. J. Agric. Sci. Technol. 2007, 3, 52–56. [Google Scholar]
- Chen, Y.; Tian, W.; Zheng, S.; Li, L. Influence of some factors on induction frequency and effect of genotype in anther culture of oryza saliva subsp. Indica. Acta Genet. Sin. 1991, 4, 358–365. [Google Scholar]
- Miao, L.; Li, X.; Cui, W.; Liu, Z.; Sun, J. Analysis of anther culture ability and combining ability in the north japonica rice. Liaoning Agric. Sci. 2013, 1, 9–12. [Google Scholar]
- Miao, L.; Li, X.; Zhang, L.; Li, X.; Zhang, S.; Xie, L. The comparison of anther culture features of different north japonica rice genotypes. Liaoning Agric. Sci. 2013, 3, 43–47. [Google Scholar]
- Feng, J.; Lu, Y.; Liu, X.; Xu, X. Pollen development and its stages in rice (Oryza sativa L.). Chin. J. Rice Sci. 2001, 1, 22–29. [Google Scholar]
- Dunwell, J.M. Haploids in flowering plants: Origins and exploitation. Plant Biotechnol. J. 2010, 8, 377–424. [Google Scholar] [CrossRef]
- Mishra, R.; Rao, G.J.N. In vitro androgenesis in rice: Advantages, constraints and future prospects. Rice Sci. 2016, 23, 57–68. [Google Scholar] [CrossRef]
- Lantos, C.; Jancsó, M.; Székely, Á.; Szalóki, T.; Venkatanagappa, S.; Pauk, J. Development of In Vitro Anther Culture for Doubled Haploid Plant Production in Indica Rice (Oryza sativa L.) Genotypes. Plants 2023, 12, 1774. [Google Scholar] [CrossRef] [PubMed]
- Mayakaduwa, D.M.R.G.; Silva, T.D. A cytological indicator allows rapid assessment of microspore maturity, leading to improved in vitro anther response in Indica rice ( Oryza sativa L.). In Vitro Cell. Dev. Biol. Plant 2017, 53, 591–597. [Google Scholar] [CrossRef]
- Zhao, S.; Tian, Y.; Chen, B.; Fang, Z.; Pan, G. Rice anther culture technology and its research progress. China Seed Ind. 2020, 10, 10–13. [Google Scholar]
- Zhang, X.; Wei, F.; Zhang, X.; Sha, Z.; Zhao, S.; Zhang, X.; Wang, Y. Optimization of culture conditions of anther culture in indica/japonica hybrid rice. Acta Agric. Boreali-Occident. Sin. 2017, 26, 544–551. [Google Scholar]
- Wang, B.; Li, X.; Miao, L.; Liu, Z. Anther culture technology and its application and discussion in the north japonica breeding. North Rice 2018, 48, 34–39. [Google Scholar]
- Afza, R.; Shen, M.; Zapata-Arias, F.J.; Xie, J.; Fundi, H.K.; Lee, K.; Bobadilla-Mucino, E.; Kodym, A. Effect of spikelet position on rice anther culture efficiency. Plant Sci. 2000, 153, 155–159. [Google Scholar] [CrossRef]
- Qu, R.; Chen, Y. A preliminary research on the function of enhancement of callus induction frequency by cold pretreatment in rice anther culture. Physiol. Mol. Biol. Plants 1983, 4, 375–381. [Google Scholar]
- Wang, M.; Duan, H.; Jiang, G.; Li, Z. Research progress of rice anther culture technology. Chin. Agric. Sci. Bull. 2022, 38, 18–22. [Google Scholar]
- Wu, D.; Yao, D.; Li, Y.; Wu, J.; Wu, F.; Deng, Q. Research progress of rice anther culture technology and its application in breeding. Hunan Agric. Sci. 2015, 2, 139–142. [Google Scholar]
- Zhao, S.; Chen, B.; Fang, Z.; Pan, G.; Pan, X.; Zhao, H.; Tian, Y. Optimizing of indica rice anther culture system and screening of genotypes with higher anther culture ability. Seed 2023, 42, 135–140. [Google Scholar]
- Li, S.; Zha, W.; Xu, H.; Liu, K.; Zhou, L.; You, A. Optimization of induction conditions for anther culture of indica rice. Hubei Agric. Sci. 2019, 58, 218–223. [Google Scholar]
- Zhao, S.; Pan, G.; Chen, B.; Fang, Z.; Pan, X.; Tian, Y. Comparative study on anther cultivation effects of different genotypes of rice. China Seed Ind. 2022, 9, 70–75. [Google Scholar]
- Silva, T.D. Indica rice anther culture: Can the impasse be surpassed? Plant Cell 2010, 100, 1–11. [Google Scholar] [CrossRef]
- Luo, Q.; Zeng, Q.; Zhou, K.; Hu, Y.; Wang, X. Rice anther culture and its use in rice breeding. Hybrid Rice 2000, 3, 4–5. [Google Scholar]
- Yang, X.; Wang, J.; Li, H.; Li, Y. Studies on the general medium for anther culture of cereals and increasing of the frequency of green pollen-plantlets-in duction of Oryza sativa subsp shien. Physiol. Mol. Biol. Plants 1980, 1, 67–74. [Google Scholar]
- Zha, Z.; Guo, Y.; Yin, D.; Hu, J.; Zheng, X.; Dong, H.; Liu, Y.; Wang, H.; Xue, L.; Xu, D. Effects of Different Media on Anther Culture of Rice. Hubei Agric. Sci. 2022, 61, 202–205. [Google Scholar]
- Hu, J.; Zhou, L.; Zheng, X.; Dong, H.; Fei, Z.; Zha, Z.; You, A.; Xu, D. Research status and prospect of in vitro culture of rice anther. Bull. Agric. Sci. Technol. 2019, 12, 57–61. [Google Scholar]
- Sakina, A.; Mir, S.; Najeeb, S.; Zargar, S.M.; Nehvi, F.A.; Rather, Z.A.; Salgotra, R.K.; Shikari, A.B. Improved protocol for efficacious in vitro androgenesis and development of doubled haploids in temperate japonica rice. PLoS ONE 2020, 15, e0241292. [Google Scholar] [CrossRef]
- Saha, D.; Bhavya, C.; Ashok, T.H. Effect of genotypes and different concentration of growth regulator on callus induction and plant regeneration through anther culture of rice. J. Pharmacogn. Phytochem. 2017, 6, 1354–1358. [Google Scholar]
- Chen, P.; You, Y.; Dai, Z.; Peng, Y. Effect of different mediums on anther culture ability of rice. Fujian Agric. Sci. Technol. 2019, 4, 1–3. [Google Scholar]
- Rahman, Z.A.; Seman, Z.A.; Othman, A.N.; Ghaffar, M.B.A.; Razak, S.A.; Yusof, M.F.M.; Nasir, K.H.; Ahmad, K.; Chow, Y.L.; Subramaniam, S. Efficient callus induction and plant regeneration of Malaysian indica rice MR219 using anther culture. Biocatal. Agric. Biotechnol. 2021, 31, 101865. [Google Scholar] [CrossRef]
- Pallepati, L.; Rao, G.S.; Meka, N.S.; Ratnakumari, P.; Kasireddy, S.; Moumeen, S.K.; Reshma, S.d. Study on the Effect of Different Tissue Culture Medium on Rice Anther Culture and Propagation. J. Agric. Hortic. 2020, 2, 34–36. [Google Scholar]
- Guo, S.; Tang, H.; Wang, Z.; Zhang, H. Establishment of efficient anther culture system for indica and japonica hybrid F1. J. Nanjing Agric. Univ. 2006, 2, 1–5. [Google Scholar]
- Xiang, F.; Song, Z.; Wu, J.; Zeng, X.; Wu, R.; Feng, X.; Gu, Y.; You, A. Effect of variety and phytohormones on anther culture in indica rice. Hubei Agric. Sci. 2008, 47, 1380–1382. [Google Scholar]
- Lentini, Z.; Reyes, P.; Martinez, C.P.; Roca, W.M. Androgenesis of highly recalcitrant rice genotypes with maltose and silver nitrate. Plant Sci. 1995, 110, 127–138. [Google Scholar] [CrossRef]
- Guha-Mukherjee, S. Genotypic differences in the in vitro formation of embryoids from rice pollen. J. Exp. Bot. 1973, 24, 139–144. [Google Scholar] [CrossRef]
- Finnie, S.J.; Powll, W.; Dyer, A.F. The effect of carbohydrate composition and concentration on anther culture response in barley (Hordeum vulgare L.). Plant Breed. 2010, 103, 110–118. [Google Scholar] [CrossRef]
- Kuhlmann, U.; Foroughi-Wehr, B. Production of doubled haploid lines in frequencies sufficient for barley breeding programs. Plant Cell Rep. 1989, 8, 78–81. [Google Scholar] [CrossRef]
- Sun, Z.; Si, H.; Cheng, S.; Zhan, X. Effect of maltose on efficiency of anther culture of rice. Chin. J. Rice Sci. 1993, 4, 227–231. [Google Scholar]
- Zhu, Y.; Chen, B.; Zhang, D. Studies on increasing culture ability of rice anther from inter subspecific hybrids. J. Huazhong Agric. 2001, 4, 314–317. [Google Scholar]
- Zhang, Z.; Xiang, Y.; Zhang, A.; Zhou, X. Studies on rice integrating breeding technique and heterosis utilization. Sci. Agric. Sin. 1998, 6, 78–80. [Google Scholar]
- Ding, Y.; Ji, B. The role of activated carbon in anther culture of different rice combinations. Acta Agric. Jiangxi 2006, 2, 37–40. [Google Scholar]
- Huang, C.; Peng, S.; Yang, G.; Liu, Y.; Guo, T.; Wang, H. Primary research on anther culture of india restorer lines. Guangdong Agric. Sci. 2014, 41, 13–16+22. [Google Scholar]
- Wan Abdullah, W.M.A.N.; Tan, N.P.; Low, L.Y.; Loh, J.Y.; Wee, C.Y.; Md Taib, A.Z.; Ong-Abdullah, J.; Lai, K.S. Calcium lignosulfonate improves proliferation of recalcitrant indica rice callus via modulation of auxin biosynthesis and enhancement of nutrient absorption. Plant Physiol. Biochem. 2021, 161, 131–142. [Google Scholar] [CrossRef]
- Rakesh, B.; Sudheer, W.N.; Nagella, P. Role of polyamines in plant tissue culture: An overview. Plant Cell Tissue Organ. Cult. 2021, 145, 487–506. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Wang, H.; Liu, T.; Su, L.; Li, D. Effects of exogenous spermine on the induction of organ regeneration and vitrification of callus with different natures of lycium ruthenicum murr. North. Hortic. 2021, 11, 119–125. [Google Scholar]
- Tripathy, S.K. Anther culture for double haploid breeding in rice-a way forward. Rice Genom. Genet. 2018, 9, 1–6. [Google Scholar] [CrossRef]
- Kumar, A.; Sandhu, N.; Yadav, S.; Pradhan, S.K.; Anandan, A.; Pandit, E. Rice varietal development to meet future challenges. In The Future Rice Strategy for India; Mohanty, S., Chengappa, P.G., Mruthyunjaya Ladha, J.K., Baruah, S., Kannan, E., Eds.; Academic Press: London, UK, 2017; pp. 161–220. [Google Scholar]
- Jiang, J.; Jin, C.; Hou, C.; Jin, X.; Yang, B. Progress in research and application of rice anther culture. Chin. Agric. Sci. Bull. 2001, 4, 49–52. [Google Scholar]
- Fu, H.; Li, Y. Progress of breeding in rice anther culture. J. Anhui Agric. Sci. 2005, 4, 710–711. [Google Scholar]
- Zhang, X.; Qian, Q.; Chen, J.; Dong, J.; Li, Y.; Wang, Q.; Fu, H. Breeding of rice restorer line with bacterial blight resistance gene Xa39 by using molecular marker assisant selection and anther culture. J. Zhejiang Agric. Sci. 2023, 64, 2607–2610. [Google Scholar]
- Jiang, J. Comprehensive Evaluation of Low-Cd Rice and Molecular Marker-Assisted Development of a Doubled Haploid POPULATION by Anther Culture. Master’s Thesis, Zhejiang University, Hangzhou, China, 2020. [Google Scholar]
- Central Rice Research Institute (CRRI) Annual Report. 2007–2008. p. 34. Available online: https://icar-nrri.in/annual-report/ (accessed on 14 April 2025).
- Central Rice Research Institute (CRRI) Annual Report. 2009–2010. p. 35. Available online: https://icar-nrri.in/annual-report/ (accessed on 14 April 2025).
- Senadhira, D.; Zapata-Arias, F.J.; Gregorio, G.B.; Alejar, M.S.; Cruz, H.C.D.L.; Padolina, T.F. Development of the first salt-tolerant rice cultivar through indica/indica anther culture. Field Crops Res. 2002, 76, 103–110. [Google Scholar] [CrossRef]
- He, P.; Shen, L.; Lu, C.; Chen, Y.; Zhu, L. Genetic analysis and mapping the anther culture response genes in rice (Oryza sativa L.). Acta Genet. Sin. 1998, 4, 337–344. [Google Scholar]
- Wang, P.; Bai, Y.L.; Wang, M.X.; Hu, B.H.; Pu, Z.G.; Zhang, Z.Y.; Zhang, Q.; Xu, D.W.; Luo, W.L.; Chen, Z.Q. Breeding of CMS maintainer lines through anther culture assisted by high-resolution melting-based markers. J. Integr. Agric. 2020, 19, 2965–2973. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y. The flower culture technique was used to purify different plasmic sterile lines. Hybrid. Rice 1995, 2, 27. [Google Scholar]
- Zhang, A.; Xiang, Y.; Zhang, Z.; Wang, J.; Zhou, X. Application of anther culture in breeding of indica and japonica cross-restorer lines of rice. Acta Agron. Sin. 1994, 6, 758–761. [Google Scholar]
- Zhou, Y.; Lin, L.; Jiang, S.; Ji, B.; Mao, D.; Chen, Q.; Li, W. Preliminary analyses of the effect of genetic purification of thermosensitive genic male sterile line peiai 64S by anther culture. Chin. J. Rice Sci. 2000, 2, 56–58. [Google Scholar]
- Liu, J.; Hu, D.; Hong, L.; Liu, B.; Mao, Z.; Li, Z.; Zhang, A. Breeding of photothermosensitive male sterile lines of japonica rice by flower culture technique. Beijing Agric. Sci. 1995, 4, 22–24+37. [Google Scholar]
- Li, X.; Pan, X.; Chen, Z.; Yu, H.; Chen, Z.; Gu, M. Anther culture of photosensttive male sterile rice and the breeding of miai64s. J. Yangzhou Univ. (Agric. Life Sci. Ed.) 1995, 4, 7–12. [Google Scholar]
- China Rice Data Center. Available online: https://ricedata.cn/variety/varis/613663.htm (accessed on 14 April 2025).
- Li, M. New rice varieties Zhonghua No.8 and No.9. Bull. Agric. Sci. Technol. 1983, 7, 9. [Google Scholar]
- Li, M. Rice cultivar—Zhonghua 10. Bull. Agric. Sci. Technol. 1988, 1, 26. [Google Scholar]
- Er, D. A new rice pollen cultivation-Huajing 45. Mod. Agric. 1996, 10, 11. [Google Scholar]
- Jin, S.; Jiang, H.; Li, X.; Zhang, W. Breeding of the new rice variety Jiudao 26 (Jiuhua 3). Jilin Agric. Sci. 2001, 4, 27–28. [Google Scholar]
- Zhonghua 15. ICS, CAAS. 1 January 2002. Available online: https://kns.cnki.net/kcms2/article/abstract?v=fSCzX0TVvUgCCOArvw04NspYsErKeNCai-TjU1V7lMVp93ieeKCfleB0UXPhASxryafWW8AgpsTxquvoJ9wMirFObGvrudcGrYByJppaeIJc_sxDuTOO2m7yER0Q3loB7iqIAOUovqOSCvBA6eG6ugGGnzp7b8oaZRNPZzKIoA-VOKDOcwW-sg==&uniplatform=NZKPT&language=CHS (accessed on 14 April 2025).
- China Rice Data Center. Available online: https://ricedata.cn/variety/varis/605929.htm (accessed on 14 April 2025).
- Li, M. New Rice variety Zhonghua 14 (93-108). China Rural. Sci. Technol. 2000, 7, 21. [Google Scholar]
- Li, M.; Zhang, L.; Lin, Z.; Zhang, Q.; Kuang, B.; Li, W. Breeding of new rice variety Zhonghua 16. Crops 2003, 4, 50. [Google Scholar]
- Guan, S. Breeding and High Yield Cultivation Model of Longjing 10, a New Rice Flower Cultivation Variety. Chin. Agric. Sci. Bull. 2000, 3, 75–76. [Google Scholar]
- Zhang, S. Characteristics and high-yield cultivation techniques of a new rice variety Longjing 12. Crops 2003, 6, 37. [Google Scholar]
- Li, Y.; Zou, M.; Sun, H.; Niu, J.; Wang, J.; Liang, Y. Breeding of new japonica rice variety Huayu 13 with high quality and high yield. Crop Res. 2007, 3, 285–286. [Google Scholar]
- Ye, J.; Ye, H.; Zhai, R.; Zhu, G.; Zhang, X. Zhejing 7A, a japonica rice sterile line bred by anther culture technology. J. Zhejiang Agric. Sci. 2020, 61, 1529–1530. [Google Scholar]
- Rice Restorer Line Shuhui 162. RRI, SAU. 1 January 2001. Available online: https://kns.cnki.net/kcms2/article/abstract?v=fSCzX0TVvUjHZGOyyaYAw_XuOwJaRwfQLbTyYFiwxe5DzlxsZTItMQ_4bKb_CQs5GVNjmOUU1H_n51O29VlFJVrOrfofP2gHG56smMmSSe1Fol3KurlECG2CgCVycaal-ywP9CQnRHMwC4C7EF6R7FT0gg-ysuF-EAfvPkMa2FX1X_-23eAWcw==&uniplatform=NZKPT&language=CHS (accessed on 14 April 2025).
- Li, W.; Chen, Q.; Pan, R.; Zhang, S.; Qi, J.; Lin, G.; Jiang, S.; Lin, L.; Ji, B.; Zheng, X. Breeding of rice cytoplasmic male sterile line 1A. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 1998, 2, 2–5. [Google Scholar]
- Pan, R.; Zheng, B.; Mao, D.; Guan, H.; Chen, Z.; Lin, L.; Zhao, J.; Zhou, Y. Breeding of Quality Rice CMS Line Hua 2 A by Anther Culture. Hybrid. Rice 2009, 24, 12–15. [Google Scholar]
- Thomson, M.J.; Ocampo, M.D.; Egdane, J.; Rahman, M.A.; Sajise, A.G.; Adorada, D.L.; Tumimbang-Raiz, E.; Blumwald, E.; Seraj, Z.I.; Singh, R.K. Characterizing the saltol quantitative trait locus for salinity tolerance in rice. Rice 2010, 3, 148–160. [Google Scholar] [CrossRef]
- Wang, P.; Xiang, Y.; Zhang, Z.; Wang, M.; Cai, P.; Zhang, Z. Breeding and Utilization of Indica Restorer Line Chuanhui 907 with High Combining Ability. Hybrid Rice 2010, 25 (Suppl. S1), 195–197. [Google Scholar]
- Wang, P.; Zhang, Z.; Xiang, Y.; Wang, M.; Cai, P.; Zhang, Z.; Lin, Y. Breeding and Utilization of Indica Restorer Line Chuanhui 1618 with Good Grain Quality and High Combining Ability. Hybrid Rice 2012, 27, 20–22. [Google Scholar]
- Zhu, Y.; Yu, J.; Zhu, R.; Xie, R. Genetic diversity of photosensitive (temperature-sensitive) nuclear sterility in rice and its breeding strategies. Hubei Agric. Sci. 1996, (Suppl. S1), 24–27. Available online: https://kns.cnki.net/kcms2/article/abstract?v=fSCzX0TVvUiaVTQCXSR9cx8G5uxtYiNXrpqa6EbsK6lVXM4gXMW5lTjGh9DggrUWpXDis0ShdwFMa4jVs34CjZ4xwLm7Gcuk93Ulf79ymWt-EM-b0bBpCgahISYjAx09wkiF5ZqPSw6sTNNlyTqp2HOdgtDRqdDJEzl0BApZZ8I=&uniplatform=NZKPT&language=CHS (accessed on 14 April 2025).
- Li, W.; Chen, Q.; Qi, J.; Pan, R.; Jiang, S.; Ji, B.; Lin, G.; Lin, L.; Zhou, Y.; Wu, R.; et al. Breeding report of photosensitive male sterile line Hs-1 in indica rice. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 1996, 3, 4–10. [Google Scholar]
- Research on the Breeding of Indica Dual-Purpose Nuclear Sterile 6442S and 1286S. RRI, JAAS. 1 January 2000. Available online: https://kns.cnki.net/kcms2/article/abstract?v=fSCzX0TVvUinq6_cphBnkpcwwZf-cNYiabZb9h2TefxDm8evtqiUf3n5IKRhFX5HN8CWUzmz7J1_rLivA1xt0UTyypQ8WHFgll8sezPGw8g9aOPRPRuAlL6i3QOqqQ20dnxC6r44UkDL6WzKBw-fJSkYDj5nX5-0YzihEmGSGs4qLjAQ0zu6gQ==&uniplatform=NZKPT&language=CHS (accessed on 14 April 2025).
- Chen, Z.; Lin, L.; Zhou, Y.; Pan, R.; Mao, D.; Wu, J.; Guan, H. Breeding of the Low-temperature Sensitive Genic Male Sterile Line, Jinshan S-1 by means of Anther Culture. Acta Agric. Univ. Jiangxiensis 2005, 5, 648–652+658. [Google Scholar]
- Pu, Z.; Xiang, Y.; Zhang, Z.; Cai, P.; Zhou, X.; Zhang, Z. Huaxiang 7, a NewIndica Hybrid Rice Combination. Hybrid Rice 2007, 5, 85–86. [Google Scholar]
- Feng, S.; Jiang, X.; Zhao, S.; Hou, H.; Xiao, G. A Preliminary Study on Genetic Homogenization of Thermo-sensitive Genic Male Sterile(TGMS) Line Xiang 125S in Rice through Anther Culture. Hybrid Rice 2008, 4, 62–64. [Google Scholar]
- Xu, X.; Xun, F.; Ma, G.; Zhou, H.; Wang, C.; Zhang, H.; Li, S. Breeding of Rice PTGMS Line V25S by Anther Culture. Hybrid Rice 2018, 33, 10–12. [Google Scholar]
- Liu, K.; Li, S.; Xu, H.; Chen, Z.; Yang, G.; You, A. Breeding of high-quality two-line sterile rice line EH1S using anther culture technology. Rural. Econ. Sci.-Technol. 2019, 30, 48–49. [Google Scholar]
- Zeng, L.; Liu, Y. Research progress on browning in plant tissue culture. Anhui Agric. Sci. Bull. 2007, 14, 49–50+152. [Google Scholar]
- Ma, H. Study on the Characteristics of Rice Albino Seedlings Induced by in Planta of Rice. Level of Thesis Master’s, Guangxi University, Nanning, China, 2019. [Google Scholar]
- Zhang, X. Study on the inhibiting effect of several anti-browning agents on the browning phenomenon of pistachio seed embryo culture. Sci. Technol. Tianjin Agric. For. 2018, 1, 7–8+12. [Google Scholar]
- Zhang, K.; Su, J.; Xu, M.; Zhou, Z.; Zhu, X.; Ma, X.; Hou, J.; Tan, L.; Zhu, Z.; Cai, H.; et al. A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nat. Commun. 2020, 11, 443. [Google Scholar] [CrossRef]
- He, M.; Song, D.; Zhang, L.; Huang, S. Common problems and prevention measures in rice anther culture. North Rice 2010, 40, 50–51. [Google Scholar]
- Wang, J.; You, S.; Zhao, A.; Gao, Z.; Chen, X.; Guan, Z. Research on induced doubling technology of maize haploid and its application. J. Hebei Agric. Sci. 2016, 20, 70–75+79. [Google Scholar]
- Fu, L.; Xu, P.; Li, Y.; Zhou, S.; Fan, Y.; Ma, H.; Guo, Z.; Li, Y.; Jiang, Z.; Hu, W. Study on factors affecting microspore culture in wheat. J. Triticeae Crops 2024, 44, 1010–1018. [Google Scholar]
- An, R.; Jia, Q.; Huang, S.; Zhang, Z.; Wei, S.; Zhu, Y.; Mu, J.; Zhang, Y. Creation of new germplasm of high oleic acid rapeseed by microspore culture technology. J. Northwest A&F Univ. (Nat. Sci. Ed.) 2025, 8, 1–8. [Google Scholar]
- Su, P.; Yang, C.; Qu, J.; Yin, Y.; Yu, X.; Zhang, J.; Huang, Q.; Ren, Z.; Li, W. The research on the isolated microspore culture from tobacco material irradiated by the electronic beam. Genom. Appl. Biol. 2015, 34, 1804–1807. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Li, S.; Zha, W.; Li, C.; Zhou, L.; You, A.; Wu, Y. Advances in Anther Culture-Based Rice Breeding in China. Plants 2025, 14, 1586. https://doi.org/10.3390/plants14111586
Chen X, Li S, Zha W, Li C, Zhou L, You A, Wu Y. Advances in Anther Culture-Based Rice Breeding in China. Plants. 2025; 14(11):1586. https://doi.org/10.3390/plants14111586
Chicago/Turabian StyleChen, Xinxing, Sanhe Li, Wenjun Zha, Changyan Li, Lei Zhou, Aiqing You, and Yan Wu. 2025. "Advances in Anther Culture-Based Rice Breeding in China" Plants 14, no. 11: 1586. https://doi.org/10.3390/plants14111586
APA StyleChen, X., Li, S., Zha, W., Li, C., Zhou, L., You, A., & Wu, Y. (2025). Advances in Anther Culture-Based Rice Breeding in China. Plants, 14(11), 1586. https://doi.org/10.3390/plants14111586