Advances in Anther Culture-Based Rice Breeding in China
Abstract
:1. Introduction
2. Advances in Rice Anther Culture Technique
3. Factors Affecting Anther Culture in Rice
3.1. Genotype
3.2. Pollen Development, Sampling Period, and Selection of Spikes
3.3. Low-Temperature Pretreatment and Anther Inoculation
3.4. Selection of Medium and Hormone Ratio
3.5. Plantlet Strengthening and Hardening and Contamination Protection
4. Application of Anther Culture in Rice Breeding
Type | Variety Name | Traits | Country | References |
---|---|---|---|---|
Conventional japonica rice | Danfeng 1 | Superior quality, high yield | China | [98] |
Zhonghua 8, Zhonghua 9 | Rice blast resistance | China | [99] | |
Zhonghua 10 | Superior quality, saline-alkaline tolerance | China | [100] | |
1647S | Excellent overall performance | China | [96] | |
Huageng 45 | Saline-alkaline tolerance, lodging resistance, bacterial blight resistance, moderate resistance to rice anthracnose, sheath blight, and false smut | China | [101] | |
Hejiang 21, Longgeng 1, Longgeng 3, Longgeng 4, Longgeng 7, Longgeng 8 | Rice blast resistance, superior quality, high yield | China | [84] | |
Jiudao 26 | Moderately resistant to leaf blast, moderately susceptible to panicle blast, superior quality | China | [102] | |
Zhonghua 15 | Resistance to bacterial blight and rice blast, high yield | China | [103] | |
Huageng 15 | Saline-alkaline tolerance | China | [104] | |
Zhonghua 14, Zhonghua 16 | Saline-alkaline tolerance, drought resistance, lodging resistance | China | [105,106] | |
Longgeng 10, Longgeng 12 | Rice blast resistance, superior quality | China | [107,108] | |
Huayu 13 | Resistance to rice blast, sheath blight and false smut, saline-alkaline tolerance, superior quality, good taste, high yield | China | [109] | |
HD27 | Superior quality, disease resistance, early flowering | China | [110] | |
Chongshang 2022 | Rice blast resistance, lodging resistance, good quality | China | [20] | |
Conventional indica rice | Shuhui 162 | Rice blast resistance, superior quality | China | [111] |
Hua 1B | Good outcrossing characteristics, high combining ability | China | [112] | |
Bicol (IR51500AC11–1) | Saline-alkaline tolerance | Philippines | [90] | |
CR Dhan 10 (CRAC2221–43), Satyakrishna | Resistance to neck blast, sheath rot, and yellow stem borer | India | [88] | |
Hua 2B | Superior quality, stable traits | China | [113] | |
AC-1 | Saline-alkaline tolerance | Bangladesh | [114] | |
Chuanhui 907 | Superior quality, strong combining ability, good restoration ability, rice blast resistance | China | [115] | |
CR Dhan 801 (CRAC2224–1041, IET18720), Phalguni | Resistance to leaf blast and gall midge, moderate resistance to leaf sheath rot, rice stripe virus, yellow stem borer, and brown spot | India | [89] | |
Chuanhui 1618 | Large panicle, superior quality, strong combining ability, good restoration ability, rice blast resistance | China | [116] | |
Hybrid rice | Miai 64S | Stable fertility, high yield, wide compatibility | China | [97] |
1103S, 8906S, 8902S | Stable infertility, practical value | China | [117] | |
Liangyou 1178 | High yield, superior quality, multi-resistance | China | [117] | |
HS-1, HS-2, HS-3 | Good economic traits, outcrossing characteristics and combining ability | China | [118] | |
Hua 1A | Good outcrossing characteristics, high combining ability | China | [112] | |
1286S, 6442S | Stable yield, high yield | China | [119] | |
Jinshan S-1 | Stable infertility, long infertility period, superior quality | China | [120] | |
Huaxiang 7 | High quality rice, high yield, moderate resistance to rice blast disease | China | [121] | |
Xiang 125S | High quality rice with strong compatibility | China | [122] | |
Hua 2A | Stable infertility, high outcrossing rate, superior quality | China | [113] | |
V25S | High outcrossing seed-setting rate, superior quality | China | [123] | |
EH1S | High outcrossing seed-setting rate, rice blast resistance, superior quality | China | [124] |
5. Challenges in Rice Anther Culture Breeding
6. Prospects for Rice Anther Culture Breeding
Author Contributions
Funding
Conflicts of Interest
References
- Wei, X.; Chen, M.; Zhang, Q.; Gong, J.; Liu, J.; Yong, K.; Wang, Q.; Fan, J.; Chen, S.; Hua, H.; et al. Genomic investigation of 18,421 lines reveals the genetic architecture of rice. Science 2024, 385, eadm8762. [Google Scholar] [CrossRef]
- Valera, H.; Pede, V. What do we know about the future of rice in relation to food system transformation. CGIAR Initiative on Foresight. CGIAR News, 2 February 2023. [Google Scholar]
- Mew, T.; Hibino, H.; Savary, S.; Vera-Cruz, C.M.; Opulencia, R.; Hettel, G.P. (Eds.) Rice Diseases: Biology and Selected Management Practices; International Rice Research Institute: Los Baños, Philippines, 2018. [Google Scholar]
- Eckardt, N.A.; Ainsworth, E.A.; Bahuguna, R.N.; Broadley, M.R.; Busch, W.; Carpita, N.C.; Castrillo, G.; Chory, J.; DeHaan, L.R.; Duarte, C.M.; et al. Climate change challenges, plant science solutions. Plant Cell 2023, 35, 24–66. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Zhou, L.; Zha, W.; Xu, H.; Liu, K. Rapid breeding of an early maturing, high-quality, and high-yielding rice cultivar using marker-assisted selection coupled with optimized anther culture. Mol. Breed. 2024, 44, 58. [Google Scholar] [CrossRef]
- Usenbekov, B.; Amirova, A.; Zeinalov, Z.; Meldebekova, A.; Mynbayeva, D.; Berkimbay, K.; Kurbangaliyeva, T. Creation of rice doubled haploids with low amylose content using in vitro anther culture. Braz. J. Biol. 2024, 84, e284946. [Google Scholar] [CrossRef]
- Nadim, M.K.A.; Islam, M.M.; Hoque, M.I.; Hasan, M.J.; Uddin, M.I. Development of blast-resistant rice varieties through marker-assisted selection: Development of blast-resistant rice varieties. Bangladesh J. Agric. 2024, 49, 41–51. [Google Scholar] [CrossRef]
- Ge, S. Rice anther culture and its application to genetics and breeding. Seed 2013, 32, 45–50. [Google Scholar]
- Xiao, G. A summary of research work on anther culture in rice. Hybrid Rice 1992, 2, 44–46. [Google Scholar]
- Yang, C.; Wu, L.; Zhao, C. In vitro regulation of haploid soma clonal micro-buds in indica rice. Chin. J. Rice Sci. 1998, 4, 219–222. [Google Scholar]
- Zhu, Z.; Wang, J.; Sun, J.; Xu, Z.; Zhu, Z.; Ying, X.; Bi, F. A better rice anther medium was established by comparing nitrogen sources. Sci. Sin. (Math.) 1975, 5, 484–490. [Google Scholar]
- Zhang, S.; Jiang, H. Achievements and prospects of application of anther culture to rice breeding. North Rice 2007, 1, 9–12. [Google Scholar]
- Tripathy, S.K.; Lenka, D.; Prusti, A.M.; Mishra, D.; Swain, D.; Beher, S.K. Anther culture in rice: Progress and breeding perspective. Appl. Biol. Res. 2019, 21, 87. [Google Scholar] [CrossRef]
- Iqbal1, J.; Yousa, U. Anther culturing a unique methodology in achieving homozygosity. Asian J. Adv. Agric. Res. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Lantos, C.; Jancsó, M.; Székely, Á.; Nagy, É.; Szalóki, T.; Pauk, J. Improvement of Anther Culture to integrate Doubled Haploid Technology in Temperate Rice (Oryza sativa L.) Breeding. Plants 2022, 11, 3446. [Google Scholar] [CrossRef]
- Samantaray, S.; Ali, J.; Nicolas, K.L.C.; Katara, J.L.; Verma, R.L.; Parameswaran, C.; Devanna, B.N.; Kumar, A.; Dash, B.; Bhuyan, S.S. Doubled Haploids in Rice Improvement: Approaches, Applications, and Future Prospects. In Rice Improvement: Physiological, Molecular Breeding and Genetic Perspectives; Ali, J., Wani, S.H., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 425–447. [Google Scholar]
- Islam, M.T.; Arif, M.R.; Hasan, M.T.; Robin, A.H. Anther Culture in Crop Plants: Progress and Perspectives. Plant Breed. Biotechnol. 2023, 11, 69–96. [Google Scholar] [CrossRef]
- Li, S.; Zha, W.; Zhou, L.; Liu, K.; Yang, G.; You, A. Influence on rice anther culture process on culture result. Hubei Agric. Sci. 2018, 57, 164–167. [Google Scholar]
- Yu, B.; Li, C.; Zeng, S.; Jing, D.; Li, T.; Qia, H.; Zhou, Y.; Yao, W.; Sun, L.; Du, C. Application of anther culture in the breeding of new hybrid rice lines between China and the United States. Jiangsu Agric. Sci. 2017, 45, 65–68. [Google Scholar]
- Huang, W.; Yan, Y.; Wang, K.; Zhan, L.; Hu, Z.; Wu, S. Breeding of a new japonica rice variety with fragrance and soft by anther culture technique and molecular marker-assisted selection method. Acta Agric. Shanghai 2022, 38, 41–46. [Google Scholar]
- Mayakaduwa, R.; Silva, T. Haploid Induction in Indica Rice: Exploring New Opportunities. Plants 2023, 12, 3118. [Google Scholar] [CrossRef]
- Pattnaik, S.S.; Dash, B.; Bhuyan, S.S.; Katara, J.L.; Parameswaran, C.; Verma, R.; Ramesh, N.; Samantaray, S. Anther Culture Efficiency in Quality Hybrid Rice: A Comparison between Hybrid Rice and Its Ratooned Plants. Plants 2020, 9, 1306. [Google Scholar] [CrossRef]
- Dash, B.; Bhuyan, S.S.; Singh, S.K.; Chandravani, M.; Swain, N.; Rout, P.; Katara, J.L.; Parameswaran, C.; Devanna, B.N.; Samantaray, S. Androgenesis in indica rice: A comparative competency in development of doubled haploids. PLoS ONE 2022, 17, e0267442. [Google Scholar] [CrossRef]
- Li, S.; Chen, Z.; Liu, K.; Yang, G.; Wang, F.; Hu, G.; Zhou, L.; Zha, W.; You, A. Study on anther culture condition of indica rice male sterile line. Hubei Agric. Sci. 2015, 54, 4868–4870. [Google Scholar]
- Sarao, N.K.; Gosal, S.S. In vitro androgenesis for accelerated breeding in rice. In Biotechnologies of Crop Improvement; Gosal, S., Wani, S., Eds.; Springer Nature: Cham, Switzerland, 2018; Volume 1, pp. 407–435. [Google Scholar]
- Xue, Q.; Liu, J. Differences found in the anther culture ability and its inheritance in rice varieties(Oryza sativa L subsp Keng). J. Zhejiang Agric. Univ. 1984, 1, 51–55. [Google Scholar]
- Ali, J.; Nicolas, K.L.C.; Akther, S.; Torabi, A.; Ebadi, A.A.; Marfori-Nazarea, C.M.; Mahender, A. Improved Anther Culture Media for Enhanced Callus Formation and Plant Regeneration in Rice (Oryza sativa L.). Plants 2021, 10, 839. [Google Scholar] [CrossRef]
- Ferreres, I.; Ortega, M.; López-Cristoffanini, C.; Nogués, S.; Serrat, X. Colchicine and osmotic stress for improving anther culture efficiency on long grain temperate and tropical japonica rice genotypes. Plant Biotechnol. 2019, 36, 269–273. [Google Scholar] [CrossRef]
- Dash, A.K.; Rao, G.J.N.; Rao, R.N. Effect of genotype on anther culture response in indica rice hybrids of maintainer lines. Oryza Int. J. Rice 2014, 51, 165–167. [Google Scholar]
- Liu, W.; Liu, J.; Nan, X. Effect of different genotypes of japonica rice in cold region on induction of the callus and regeneration from mature embryo. North Rice 2015, 45, 14–17. [Google Scholar]
- Shen, J.; Li, M.; Chen, Y.; Zhang, Z. Breeding by anther culture in rice varieties improvement. Sci. Agric. Sin. 1982, 2, 15–19. [Google Scholar]
- Zou, L.; Zhang, D.; Lin, X.; Xie, Y.; Li, Z. Analysis of combining ability of anther culture characters for photo-sensitive genic mael-sterile rice. J. Huazhong Agric. Univ. 1996, 1, 6–9. [Google Scholar]
- He, P.; Chen, Y.; Sheng, L.; Lu, C.; Zhu, L. Inheritance of pollen callus induction ability in rice. Chin. Sci. Bull. 1997, 8, 866–869. [Google Scholar]
- Chi, M.; Fang, Z.; Li, J.; Fan, J.; Qing, D.; Xu, D. Research progress on the application of anther culture in rice breeding. Jiangsu Agric. Sci. 2011, 39, 111–113. [Google Scholar]
- Tripathy, S. High throughput anther culture response in an upland rice cross ‘Khandagiri x Dular’. J. Environ. Biol. 2022, 43, 420–429. [Google Scholar] [CrossRef]
- Wu, J.; Chang, X.; Li, C.; Zhang, Z.; Zhang, J.; Yin, C.; Ma, W.; Chen, H.; Zhou, F.; Lin, Y. QTLs Related to Rice Callus Regeneration Ability: Localization and Effect Verification of qPRR3. Cells 2022, 11, 4125. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Feng, D.; Cui, H.; Fu, J.; Shu, Q. Screening of japonica rice hybrid combinations with high anther culture efficiency. Mod. Agric. Sci. Technol. 2013, 16, 44–46. [Google Scholar]
- Kostylev, P.; Kalinina, N.; Vozhzhova, N.; Golubova, V.; Chertkova, N. Creation of Rice Doubled Haploids Resistant to Prolonged Flooding Using Anther Culture. Plants 2023, 12, 3681. [Google Scholar] [CrossRef]
- Chen, H.; Qin, R. Main factors affecting rice anther culture. J. Agric. Sci. Technol. 2007, 3, 52–56. [Google Scholar]
- Chen, Y.; Tian, W.; Zheng, S.; Li, L. Influence of some factors on induction frequency and effect of genotype in anther culture of oryza saliva subsp. Indica. Acta Genet. Sin. 1991, 4, 358–365. [Google Scholar]
- Miao, L.; Li, X.; Cui, W.; Liu, Z.; Sun, J. Analysis of anther culture ability and combining ability in the north japonica rice. Liaoning Agric. Sci. 2013, 1, 9–12. [Google Scholar]
- Miao, L.; Li, X.; Zhang, L.; Li, X.; Zhang, S.; Xie, L. The comparison of anther culture features of different north japonica rice genotypes. Liaoning Agric. Sci. 2013, 3, 43–47. [Google Scholar]
- Feng, J.; Lu, Y.; Liu, X.; Xu, X. Pollen development and its stages in rice (Oryza sativa L.). Chin. J. Rice Sci. 2001, 1, 22–29. [Google Scholar]
- Dunwell, J.M. Haploids in flowering plants: Origins and exploitation. Plant Biotechnol. J. 2010, 8, 377–424. [Google Scholar] [CrossRef]
- Mishra, R.; Rao, G.J.N. In vitro androgenesis in rice: Advantages, constraints and future prospects. Rice Sci. 2016, 23, 57–68. [Google Scholar] [CrossRef]
- Lantos, C.; Jancsó, M.; Székely, Á.; Szalóki, T.; Venkatanagappa, S.; Pauk, J. Development of In Vitro Anther Culture for Doubled Haploid Plant Production in Indica Rice (Oryza sativa L.) Genotypes. Plants 2023, 12, 1774. [Google Scholar] [CrossRef] [PubMed]
- Mayakaduwa, D.M.R.G.; Silva, T.D. A cytological indicator allows rapid assessment of microspore maturity, leading to improved in vitro anther response in Indica rice ( Oryza sativa L.). In Vitro Cell. Dev. Biol. Plant 2017, 53, 591–597. [Google Scholar] [CrossRef]
- Zhao, S.; Tian, Y.; Chen, B.; Fang, Z.; Pan, G. Rice anther culture technology and its research progress. China Seed Ind. 2020, 10, 10–13. [Google Scholar]
- Zhang, X.; Wei, F.; Zhang, X.; Sha, Z.; Zhao, S.; Zhang, X.; Wang, Y. Optimization of culture conditions of anther culture in indica/japonica hybrid rice. Acta Agric. Boreali-Occident. Sin. 2017, 26, 544–551. [Google Scholar]
- Wang, B.; Li, X.; Miao, L.; Liu, Z. Anther culture technology and its application and discussion in the north japonica breeding. North Rice 2018, 48, 34–39. [Google Scholar]
- Afza, R.; Shen, M.; Zapata-Arias, F.J.; Xie, J.; Fundi, H.K.; Lee, K.; Bobadilla-Mucino, E.; Kodym, A. Effect of spikelet position on rice anther culture efficiency. Plant Sci. 2000, 153, 155–159. [Google Scholar] [CrossRef]
- Qu, R.; Chen, Y. A preliminary research on the function of enhancement of callus induction frequency by cold pretreatment in rice anther culture. Physiol. Mol. Biol. Plants 1983, 4, 375–381. [Google Scholar]
- Wang, M.; Duan, H.; Jiang, G.; Li, Z. Research progress of rice anther culture technology. Chin. Agric. Sci. Bull. 2022, 38, 18–22. [Google Scholar]
- Wu, D.; Yao, D.; Li, Y.; Wu, J.; Wu, F.; Deng, Q. Research progress of rice anther culture technology and its application in breeding. Hunan Agric. Sci. 2015, 2, 139–142. [Google Scholar]
- Zhao, S.; Chen, B.; Fang, Z.; Pan, G.; Pan, X.; Zhao, H.; Tian, Y. Optimizing of indica rice anther culture system and screening of genotypes with higher anther culture ability. Seed 2023, 42, 135–140. [Google Scholar]
- Li, S.; Zha, W.; Xu, H.; Liu, K.; Zhou, L.; You, A. Optimization of induction conditions for anther culture of indica rice. Hubei Agric. Sci. 2019, 58, 218–223. [Google Scholar]
- Zhao, S.; Pan, G.; Chen, B.; Fang, Z.; Pan, X.; Tian, Y. Comparative study on anther cultivation effects of different genotypes of rice. China Seed Ind. 2022, 9, 70–75. [Google Scholar]
- Silva, T.D. Indica rice anther culture: Can the impasse be surpassed? Plant Cell 2010, 100, 1–11. [Google Scholar] [CrossRef]
- Luo, Q.; Zeng, Q.; Zhou, K.; Hu, Y.; Wang, X. Rice anther culture and its use in rice breeding. Hybrid Rice 2000, 3, 4–5. [Google Scholar]
- Yang, X.; Wang, J.; Li, H.; Li, Y. Studies on the general medium for anther culture of cereals and increasing of the frequency of green pollen-plantlets-in duction of Oryza sativa subsp shien. Physiol. Mol. Biol. Plants 1980, 1, 67–74. [Google Scholar]
- Zha, Z.; Guo, Y.; Yin, D.; Hu, J.; Zheng, X.; Dong, H.; Liu, Y.; Wang, H.; Xue, L.; Xu, D. Effects of Different Media on Anther Culture of Rice. Hubei Agric. Sci. 2022, 61, 202–205. [Google Scholar]
- Hu, J.; Zhou, L.; Zheng, X.; Dong, H.; Fei, Z.; Zha, Z.; You, A.; Xu, D. Research status and prospect of in vitro culture of rice anther. Bull. Agric. Sci. Technol. 2019, 12, 57–61. [Google Scholar]
- Sakina, A.; Mir, S.; Najeeb, S.; Zargar, S.M.; Nehvi, F.A.; Rather, Z.A.; Salgotra, R.K.; Shikari, A.B. Improved protocol for efficacious in vitro androgenesis and development of doubled haploids in temperate japonica rice. PLoS ONE 2020, 15, e0241292. [Google Scholar] [CrossRef]
- Saha, D.; Bhavya, C.; Ashok, T.H. Effect of genotypes and different concentration of growth regulator on callus induction and plant regeneration through anther culture of rice. J. Pharmacogn. Phytochem. 2017, 6, 1354–1358. [Google Scholar]
- Chen, P.; You, Y.; Dai, Z.; Peng, Y. Effect of different mediums on anther culture ability of rice. Fujian Agric. Sci. Technol. 2019, 4, 1–3. [Google Scholar]
- Rahman, Z.A.; Seman, Z.A.; Othman, A.N.; Ghaffar, M.B.A.; Razak, S.A.; Yusof, M.F.M.; Nasir, K.H.; Ahmad, K.; Chow, Y.L.; Subramaniam, S. Efficient callus induction and plant regeneration of Malaysian indica rice MR219 using anther culture. Biocatal. Agric. Biotechnol. 2021, 31, 101865. [Google Scholar] [CrossRef]
- Pallepati, L.; Rao, G.S.; Meka, N.S.; Ratnakumari, P.; Kasireddy, S.; Moumeen, S.K.; Reshma, S.d. Study on the Effect of Different Tissue Culture Medium on Rice Anther Culture and Propagation. J. Agric. Hortic. 2020, 2, 34–36. [Google Scholar]
- Guo, S.; Tang, H.; Wang, Z.; Zhang, H. Establishment of efficient anther culture system for indica and japonica hybrid F1. J. Nanjing Agric. Univ. 2006, 2, 1–5. [Google Scholar]
- Xiang, F.; Song, Z.; Wu, J.; Zeng, X.; Wu, R.; Feng, X.; Gu, Y.; You, A. Effect of variety and phytohormones on anther culture in indica rice. Hubei Agric. Sci. 2008, 47, 1380–1382. [Google Scholar]
- Lentini, Z.; Reyes, P.; Martinez, C.P.; Roca, W.M. Androgenesis of highly recalcitrant rice genotypes with maltose and silver nitrate. Plant Sci. 1995, 110, 127–138. [Google Scholar] [CrossRef]
- Guha-Mukherjee, S. Genotypic differences in the in vitro formation of embryoids from rice pollen. J. Exp. Bot. 1973, 24, 139–144. [Google Scholar] [CrossRef]
- Finnie, S.J.; Powll, W.; Dyer, A.F. The effect of carbohydrate composition and concentration on anther culture response in barley (Hordeum vulgare L.). Plant Breed. 2010, 103, 110–118. [Google Scholar] [CrossRef]
- Kuhlmann, U.; Foroughi-Wehr, B. Production of doubled haploid lines in frequencies sufficient for barley breeding programs. Plant Cell Rep. 1989, 8, 78–81. [Google Scholar] [CrossRef]
- Sun, Z.; Si, H.; Cheng, S.; Zhan, X. Effect of maltose on efficiency of anther culture of rice. Chin. J. Rice Sci. 1993, 4, 227–231. [Google Scholar]
- Zhu, Y.; Chen, B.; Zhang, D. Studies on increasing culture ability of rice anther from inter subspecific hybrids. J. Huazhong Agric. 2001, 4, 314–317. [Google Scholar]
- Zhang, Z.; Xiang, Y.; Zhang, A.; Zhou, X. Studies on rice integrating breeding technique and heterosis utilization. Sci. Agric. Sin. 1998, 6, 78–80. [Google Scholar]
- Ding, Y.; Ji, B. The role of activated carbon in anther culture of different rice combinations. Acta Agric. Jiangxi 2006, 2, 37–40. [Google Scholar]
- Huang, C.; Peng, S.; Yang, G.; Liu, Y.; Guo, T.; Wang, H. Primary research on anther culture of india restorer lines. Guangdong Agric. Sci. 2014, 41, 13–16+22. [Google Scholar]
- Wan Abdullah, W.M.A.N.; Tan, N.P.; Low, L.Y.; Loh, J.Y.; Wee, C.Y.; Md Taib, A.Z.; Ong-Abdullah, J.; Lai, K.S. Calcium lignosulfonate improves proliferation of recalcitrant indica rice callus via modulation of auxin biosynthesis and enhancement of nutrient absorption. Plant Physiol. Biochem. 2021, 161, 131–142. [Google Scholar] [CrossRef]
- Rakesh, B.; Sudheer, W.N.; Nagella, P. Role of polyamines in plant tissue culture: An overview. Plant Cell Tissue Organ. Cult. 2021, 145, 487–506. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Wang, H.; Liu, T.; Su, L.; Li, D. Effects of exogenous spermine on the induction of organ regeneration and vitrification of callus with different natures of lycium ruthenicum murr. North. Hortic. 2021, 11, 119–125. [Google Scholar]
- Tripathy, S.K. Anther culture for double haploid breeding in rice-a way forward. Rice Genom. Genet. 2018, 9, 1–6. [Google Scholar] [CrossRef]
- Kumar, A.; Sandhu, N.; Yadav, S.; Pradhan, S.K.; Anandan, A.; Pandit, E. Rice varietal development to meet future challenges. In The Future Rice Strategy for India; Mohanty, S., Chengappa, P.G., Mruthyunjaya Ladha, J.K., Baruah, S., Kannan, E., Eds.; Academic Press: London, UK, 2017; pp. 161–220. [Google Scholar]
- Jiang, J.; Jin, C.; Hou, C.; Jin, X.; Yang, B. Progress in research and application of rice anther culture. Chin. Agric. Sci. Bull. 2001, 4, 49–52. [Google Scholar]
- Fu, H.; Li, Y. Progress of breeding in rice anther culture. J. Anhui Agric. Sci. 2005, 4, 710–711. [Google Scholar]
- Zhang, X.; Qian, Q.; Chen, J.; Dong, J.; Li, Y.; Wang, Q.; Fu, H. Breeding of rice restorer line with bacterial blight resistance gene Xa39 by using molecular marker assisant selection and anther culture. J. Zhejiang Agric. Sci. 2023, 64, 2607–2610. [Google Scholar]
- Jiang, J. Comprehensive Evaluation of Low-Cd Rice and Molecular Marker-Assisted Development of a Doubled Haploid POPULATION by Anther Culture. Master’s Thesis, Zhejiang University, Hangzhou, China, 2020. [Google Scholar]
- Central Rice Research Institute (CRRI) Annual Report. 2007–2008. p. 34. Available online: https://icar-nrri.in/annual-report/ (accessed on 14 April 2025).
- Central Rice Research Institute (CRRI) Annual Report. 2009–2010. p. 35. Available online: https://icar-nrri.in/annual-report/ (accessed on 14 April 2025).
- Senadhira, D.; Zapata-Arias, F.J.; Gregorio, G.B.; Alejar, M.S.; Cruz, H.C.D.L.; Padolina, T.F. Development of the first salt-tolerant rice cultivar through indica/indica anther culture. Field Crops Res. 2002, 76, 103–110. [Google Scholar] [CrossRef]
- He, P.; Shen, L.; Lu, C.; Chen, Y.; Zhu, L. Genetic analysis and mapping the anther culture response genes in rice (Oryza sativa L.). Acta Genet. Sin. 1998, 4, 337–344. [Google Scholar]
- Wang, P.; Bai, Y.L.; Wang, M.X.; Hu, B.H.; Pu, Z.G.; Zhang, Z.Y.; Zhang, Q.; Xu, D.W.; Luo, W.L.; Chen, Z.Q. Breeding of CMS maintainer lines through anther culture assisted by high-resolution melting-based markers. J. Integr. Agric. 2020, 19, 2965–2973. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y. The flower culture technique was used to purify different plasmic sterile lines. Hybrid. Rice 1995, 2, 27. [Google Scholar]
- Zhang, A.; Xiang, Y.; Zhang, Z.; Wang, J.; Zhou, X. Application of anther culture in breeding of indica and japonica cross-restorer lines of rice. Acta Agron. Sin. 1994, 6, 758–761. [Google Scholar]
- Zhou, Y.; Lin, L.; Jiang, S.; Ji, B.; Mao, D.; Chen, Q.; Li, W. Preliminary analyses of the effect of genetic purification of thermosensitive genic male sterile line peiai 64S by anther culture. Chin. J. Rice Sci. 2000, 2, 56–58. [Google Scholar]
- Liu, J.; Hu, D.; Hong, L.; Liu, B.; Mao, Z.; Li, Z.; Zhang, A. Breeding of photothermosensitive male sterile lines of japonica rice by flower culture technique. Beijing Agric. Sci. 1995, 4, 22–24+37. [Google Scholar]
- Li, X.; Pan, X.; Chen, Z.; Yu, H.; Chen, Z.; Gu, M. Anther culture of photosensttive male sterile rice and the breeding of miai64s. J. Yangzhou Univ. (Agric. Life Sci. Ed.) 1995, 4, 7–12. [Google Scholar]
- China Rice Data Center. Available online: https://ricedata.cn/variety/varis/613663.htm (accessed on 14 April 2025).
- Li, M. New rice varieties Zhonghua No.8 and No.9. Bull. Agric. Sci. Technol. 1983, 7, 9. [Google Scholar]
- Li, M. Rice cultivar—Zhonghua 10. Bull. Agric. Sci. Technol. 1988, 1, 26. [Google Scholar]
- Er, D. A new rice pollen cultivation-Huajing 45. Mod. Agric. 1996, 10, 11. [Google Scholar]
- Jin, S.; Jiang, H.; Li, X.; Zhang, W. Breeding of the new rice variety Jiudao 26 (Jiuhua 3). Jilin Agric. Sci. 2001, 4, 27–28. [Google Scholar]
- Zhonghua 15. ICS, CAAS. 1 January 2002. Available online: https://kns.cnki.net/kcms2/article/abstract?v=fSCzX0TVvUgCCOArvw04NspYsErKeNCai-TjU1V7lMVp93ieeKCfleB0UXPhASxryafWW8AgpsTxquvoJ9wMirFObGvrudcGrYByJppaeIJc_sxDuTOO2m7yER0Q3loB7iqIAOUovqOSCvBA6eG6ugGGnzp7b8oaZRNPZzKIoA-VOKDOcwW-sg==&uniplatform=NZKPT&language=CHS (accessed on 14 April 2025).
- China Rice Data Center. Available online: https://ricedata.cn/variety/varis/605929.htm (accessed on 14 April 2025).
- Li, M. New Rice variety Zhonghua 14 (93-108). China Rural. Sci. Technol. 2000, 7, 21. [Google Scholar]
- Li, M.; Zhang, L.; Lin, Z.; Zhang, Q.; Kuang, B.; Li, W. Breeding of new rice variety Zhonghua 16. Crops 2003, 4, 50. [Google Scholar]
- Guan, S. Breeding and High Yield Cultivation Model of Longjing 10, a New Rice Flower Cultivation Variety. Chin. Agric. Sci. Bull. 2000, 3, 75–76. [Google Scholar]
- Zhang, S. Characteristics and high-yield cultivation techniques of a new rice variety Longjing 12. Crops 2003, 6, 37. [Google Scholar]
- Li, Y.; Zou, M.; Sun, H.; Niu, J.; Wang, J.; Liang, Y. Breeding of new japonica rice variety Huayu 13 with high quality and high yield. Crop Res. 2007, 3, 285–286. [Google Scholar]
- Ye, J.; Ye, H.; Zhai, R.; Zhu, G.; Zhang, X. Zhejing 7A, a japonica rice sterile line bred by anther culture technology. J. Zhejiang Agric. Sci. 2020, 61, 1529–1530. [Google Scholar]
- Rice Restorer Line Shuhui 162. RRI, SAU. 1 January 2001. Available online: https://kns.cnki.net/kcms2/article/abstract?v=fSCzX0TVvUjHZGOyyaYAw_XuOwJaRwfQLbTyYFiwxe5DzlxsZTItMQ_4bKb_CQs5GVNjmOUU1H_n51O29VlFJVrOrfofP2gHG56smMmSSe1Fol3KurlECG2CgCVycaal-ywP9CQnRHMwC4C7EF6R7FT0gg-ysuF-EAfvPkMa2FX1X_-23eAWcw==&uniplatform=NZKPT&language=CHS (accessed on 14 April 2025).
- Li, W.; Chen, Q.; Pan, R.; Zhang, S.; Qi, J.; Lin, G.; Jiang, S.; Lin, L.; Ji, B.; Zheng, X. Breeding of rice cytoplasmic male sterile line 1A. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 1998, 2, 2–5. [Google Scholar]
- Pan, R.; Zheng, B.; Mao, D.; Guan, H.; Chen, Z.; Lin, L.; Zhao, J.; Zhou, Y. Breeding of Quality Rice CMS Line Hua 2 A by Anther Culture. Hybrid. Rice 2009, 24, 12–15. [Google Scholar]
- Thomson, M.J.; Ocampo, M.D.; Egdane, J.; Rahman, M.A.; Sajise, A.G.; Adorada, D.L.; Tumimbang-Raiz, E.; Blumwald, E.; Seraj, Z.I.; Singh, R.K. Characterizing the saltol quantitative trait locus for salinity tolerance in rice. Rice 2010, 3, 148–160. [Google Scholar] [CrossRef]
- Wang, P.; Xiang, Y.; Zhang, Z.; Wang, M.; Cai, P.; Zhang, Z. Breeding and Utilization of Indica Restorer Line Chuanhui 907 with High Combining Ability. Hybrid Rice 2010, 25 (Suppl. S1), 195–197. [Google Scholar]
- Wang, P.; Zhang, Z.; Xiang, Y.; Wang, M.; Cai, P.; Zhang, Z.; Lin, Y. Breeding and Utilization of Indica Restorer Line Chuanhui 1618 with Good Grain Quality and High Combining Ability. Hybrid Rice 2012, 27, 20–22. [Google Scholar]
- Zhu, Y.; Yu, J.; Zhu, R.; Xie, R. Genetic diversity of photosensitive (temperature-sensitive) nuclear sterility in rice and its breeding strategies. Hubei Agric. Sci. 1996, (Suppl. S1), 24–27. Available online: https://kns.cnki.net/kcms2/article/abstract?v=fSCzX0TVvUiaVTQCXSR9cx8G5uxtYiNXrpqa6EbsK6lVXM4gXMW5lTjGh9DggrUWpXDis0ShdwFMa4jVs34CjZ4xwLm7Gcuk93Ulf79ymWt-EM-b0bBpCgahISYjAx09wkiF5ZqPSw6sTNNlyTqp2HOdgtDRqdDJEzl0BApZZ8I=&uniplatform=NZKPT&language=CHS (accessed on 14 April 2025).
- Li, W.; Chen, Q.; Qi, J.; Pan, R.; Jiang, S.; Ji, B.; Lin, G.; Lin, L.; Zhou, Y.; Wu, R.; et al. Breeding report of photosensitive male sterile line Hs-1 in indica rice. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 1996, 3, 4–10. [Google Scholar]
- Research on the Breeding of Indica Dual-Purpose Nuclear Sterile 6442S and 1286S. RRI, JAAS. 1 January 2000. Available online: https://kns.cnki.net/kcms2/article/abstract?v=fSCzX0TVvUinq6_cphBnkpcwwZf-cNYiabZb9h2TefxDm8evtqiUf3n5IKRhFX5HN8CWUzmz7J1_rLivA1xt0UTyypQ8WHFgll8sezPGw8g9aOPRPRuAlL6i3QOqqQ20dnxC6r44UkDL6WzKBw-fJSkYDj5nX5-0YzihEmGSGs4qLjAQ0zu6gQ==&uniplatform=NZKPT&language=CHS (accessed on 14 April 2025).
- Chen, Z.; Lin, L.; Zhou, Y.; Pan, R.; Mao, D.; Wu, J.; Guan, H. Breeding of the Low-temperature Sensitive Genic Male Sterile Line, Jinshan S-1 by means of Anther Culture. Acta Agric. Univ. Jiangxiensis 2005, 5, 648–652+658. [Google Scholar]
- Pu, Z.; Xiang, Y.; Zhang, Z.; Cai, P.; Zhou, X.; Zhang, Z. Huaxiang 7, a NewIndica Hybrid Rice Combination. Hybrid Rice 2007, 5, 85–86. [Google Scholar]
- Feng, S.; Jiang, X.; Zhao, S.; Hou, H.; Xiao, G. A Preliminary Study on Genetic Homogenization of Thermo-sensitive Genic Male Sterile(TGMS) Line Xiang 125S in Rice through Anther Culture. Hybrid Rice 2008, 4, 62–64. [Google Scholar]
- Xu, X.; Xun, F.; Ma, G.; Zhou, H.; Wang, C.; Zhang, H.; Li, S. Breeding of Rice PTGMS Line V25S by Anther Culture. Hybrid Rice 2018, 33, 10–12. [Google Scholar]
- Liu, K.; Li, S.; Xu, H.; Chen, Z.; Yang, G.; You, A. Breeding of high-quality two-line sterile rice line EH1S using anther culture technology. Rural. Econ. Sci.-Technol. 2019, 30, 48–49. [Google Scholar]
- Zeng, L.; Liu, Y. Research progress on browning in plant tissue culture. Anhui Agric. Sci. Bull. 2007, 14, 49–50+152. [Google Scholar]
- Ma, H. Study on the Characteristics of Rice Albino Seedlings Induced by in Planta of Rice. Level of Thesis Master’s, Guangxi University, Nanning, China, 2019. [Google Scholar]
- Zhang, X. Study on the inhibiting effect of several anti-browning agents on the browning phenomenon of pistachio seed embryo culture. Sci. Technol. Tianjin Agric. For. 2018, 1, 7–8+12. [Google Scholar]
- Zhang, K.; Su, J.; Xu, M.; Zhou, Z.; Zhu, X.; Ma, X.; Hou, J.; Tan, L.; Zhu, Z.; Cai, H.; et al. A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nat. Commun. 2020, 11, 443. [Google Scholar] [CrossRef]
- He, M.; Song, D.; Zhang, L.; Huang, S. Common problems and prevention measures in rice anther culture. North Rice 2010, 40, 50–51. [Google Scholar]
- Wang, J.; You, S.; Zhao, A.; Gao, Z.; Chen, X.; Guan, Z. Research on induced doubling technology of maize haploid and its application. J. Hebei Agric. Sci. 2016, 20, 70–75+79. [Google Scholar]
- Fu, L.; Xu, P.; Li, Y.; Zhou, S.; Fan, Y.; Ma, H.; Guo, Z.; Li, Y.; Jiang, Z.; Hu, W. Study on factors affecting microspore culture in wheat. J. Triticeae Crops 2024, 44, 1010–1018. [Google Scholar]
- An, R.; Jia, Q.; Huang, S.; Zhang, Z.; Wei, S.; Zhu, Y.; Mu, J.; Zhang, Y. Creation of new germplasm of high oleic acid rapeseed by microspore culture technology. J. Northwest A&F Univ. (Nat. Sci. Ed.) 2025, 8, 1–8. [Google Scholar]
- Su, P.; Yang, C.; Qu, J.; Yin, Y.; Yu, X.; Zhang, J.; Huang, Q.; Ren, Z.; Li, W. The research on the isolated microspore culture from tobacco material irradiated by the electronic beam. Genom. Appl. Biol. 2015, 34, 1804–1807. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Li, S.; Zha, W.; Li, C.; Zhou, L.; You, A.; Wu, Y. Advances in Anther Culture-Based Rice Breeding in China. Plants 2025, 14, 1586. https://doi.org/10.3390/plants14111586
Chen X, Li S, Zha W, Li C, Zhou L, You A, Wu Y. Advances in Anther Culture-Based Rice Breeding in China. Plants. 2025; 14(11):1586. https://doi.org/10.3390/plants14111586
Chicago/Turabian StyleChen, Xinxing, Sanhe Li, Wenjun Zha, Changyan Li, Lei Zhou, Aiqing You, and Yan Wu. 2025. "Advances in Anther Culture-Based Rice Breeding in China" Plants 14, no. 11: 1586. https://doi.org/10.3390/plants14111586
APA StyleChen, X., Li, S., Zha, W., Li, C., Zhou, L., You, A., & Wu, Y. (2025). Advances in Anther Culture-Based Rice Breeding in China. Plants, 14(11), 1586. https://doi.org/10.3390/plants14111586