Seed Morphometry Reveals Two Major Groups in Spanish Grapevine Cultivars
Abstract
:1. Introduction
2. Results
2.1. Average Contours for Each Cultivar and Their Validation
2.2. A Preliminary Classification of Cultivars by Aspect Ratio and Solidity
2.3. Two New Models
2.4. Classification of 271 Varieties Based on the Similarities of the Average Contours of Their Seeds with Two Models
2.5. Two Groups Defined by the Models Differ in the Shape of Their Seeds
2.6. Comparison Between Two Groups Reveals Difference in J-Index, Aspect Ratio, and Solidity
2.7. Curvature Values Contribute to Define Two Morphotypes
2.8. PCA Defines Three Morphological Types
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Photography
4.3. Morphological Measurements
4.4. Extraction of Fourier Coefficients from the Images in Momocs
4.5. Similarity Between Seed Contours and the Models: J-Index
4.6. Curvature Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Jacquat, C.H.; Martinoli, D. Vitis vinifera L.: Wild or cultivated? Study of the grape pips found at Petra, Jordan; 150 B.C.-A.D. 40. Veget. Hist. Archaeobot. 1999, 8, 25–30. [Google Scholar] [CrossRef]
- Zohary, D. The domestication of the grapevine Vitis vinifera L. in the Near East. In The Origins and Ancient History of Wine; McGovern, P.E., Fleming, S.J., Katz, S.H., Eds.; Gordon and Breach: Amsterdam, The Netherlands, 1995; pp. 23–30. [Google Scholar]
- This, P.; Lacombe, T.; Thomas, M.R. Historical origins and genetic diversity of wine grapes. Trends Genet. 2006, 22, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Galet, P. Dictionnaire Encyclopédique des Cépages; Hachette: Paris, France, 2000. [Google Scholar]
- Lacombe, T.; Audeguin, L.; Boselli, M.; Bucchetti, B.; Cabello, F.; Chatelet, P.; Crespan, M.; D'Onofrio, C.; Eiras Dias, J.; Ercisli, S.; et al. Grapevine European Catalogue: Towards a comprehensive list. Vitis 2011, 50, 65–68. [Google Scholar]
- Lexicon: The Largest Wine Encyclopedia in the World with 26,513 Terms. Available online: https://www.vivc.de/ (accessed on 1 January 2025).
- Chitwood, D.H. The shapes of wine and table grape leaves: An ampelometric study inspired by the methods of Pierre Galet. Plants People Planet 2021, 3, 155–170. [Google Scholar] [CrossRef]
- Somogyi, E.; Lázár, J.; Baranyai, L.; Bodor-Pesti, P.; Nyitrainé Sárdy, D.A. Outline analysis of the grapevine (Vitis vinifera L.) berry shape by elliptic Fourier descriptors. Vitis 2022, 61, 63–70. [Google Scholar] [CrossRef]
- Emanuelli, F.; Lorenzi, S.; Grzeskowiak, L.; Catalano, V.; Stefanini, M.; Troggio, M.; Myles, S.; Martinez-Zapater, J.M.; Zyprian, E.; Moreira, F.M.; et al. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol. 2013, 13, 39. [Google Scholar] [CrossRef]
- Cervera, M.T.; Cabezas, J.A.; Sancha, J.C.; de Martínez, T.F.; Martínez-Zapater, J.M. Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theor. Appl. Genet. 1998, 97, 51–59. [Google Scholar] [CrossRef]
- Sefc, K.M.; Lopes, M.S.; Lefort, F.; Botta, R.; Roubelakis-Angelakis, K.A.; Ibáñez, J.; Pejić, I.; Wagner, H.W.; Glössl, J.; Steinkellner, H. Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor. Appl. Genet. 2000, 100, 498–505. [Google Scholar] [CrossRef]
- Arroyo-García, R.; Ruiz-Garcia, L.; Bolling, L.; Ocete, R.; Lopez, M.A.; Arnold, C.; Ergul, A.; Söylemezoğlu, G.; Uzun, H.I.; Cabello, F.; et al. Multiple origins of cultivated grapevine (Vitis vinifera L. ssp sativa) based on chloroplast DNA polymorphisms. Mol. Ecol. 2006, 15, 3707–3714. [Google Scholar] [CrossRef]
- This, P.; Jung, A.; Boccacci, P.; Borrego, J.; Botta, R.; Costantini, L.; Crespan, M.; Dangl, G.S.; Eisenheld, C.; Ferreira-Monteiro, F.; et al. Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 2004, 109, 1448–1458. [Google Scholar] [CrossRef]
- Ibañez, J.; Velez, M.D.; de Andrés, M.T.; Borrego, J. Molecular markers for establishing distinctness in vegetatively propagated crops: A case study in grapevine. Theor. Appl. Genet. 2009, 119, 1213–1222. [Google Scholar] [CrossRef]
- Santana, J.C.; Heuertz, M.; Arranz, C.; Rubio, J.A.; Martínez-Zapater, J.M.; Hidalgo, E. Genetic structure, srigins, and relationships of grapevine cultivars from the Castilian Plateau of Spain. Am. J. Enol. Vitic. 2010, 61, 214–224. [Google Scholar] [CrossRef]
- Jiménez-Cantizano, A.; Puig-Pujol, A.; Arroyo-García, R. Identification of Vitis vinifera L. local cultivars recovered in Andalusia (Spain) by using microsatellite markers. Horticulturae 2023, 9, 316. [Google Scholar] [CrossRef]
- Santiago, J.L.; Boso, S.; Martín, J.P.; Ortiz, J.M.; Martínez, M.C. Characterisation and identification of grapevine cultivars (Vitis vinifera L.) from Northwestern Spain using microsatellite markers and ampelometric methods. Vitis 2015, 44, 67. [Google Scholar] [CrossRef]
- Röckel, E.; Töpfer, R.; Röckel, F.; Brühl, U.; Hundemer, M.; Mahler-Ries, A. Vitis International Variety Catalogue—Www.vivc.de—2024. Available online: https://www.vivc.de/index.php?r=aboutvivc%2Fdescriptors (accessed on 4 October 2024).
- Lacombe, T.; Boursiquot, J.M.; Laucou, V.; Di Vecchi-Staraz, M.; Péros, J.-P.; This, P. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor. Appl. Genet. 2013, 126, 401–414. [Google Scholar] [CrossRef]
- Ghaffari, S.; Hasnaoui, N.; Zinelabidine, L.H.; Ferchichi, A.; Martínez-Zapater, J.M.; Ibáñez, J. Genetic diversity and parentage of Tunisian wild and cultivated grapevines (Vitis vinifera L.) as revealed by single nucleotide polymorphism (SNP) markers. Tree Genet. Genomes 2014, 10, 1103–1112. [Google Scholar] [CrossRef]
- Zinelabidine, L.H.; Cunha, J.; Eiras-Dias, J.E.; Cabello, F.; Martínez-Zapater, J.M.; Ibáñez, J. Pedigree analysis of the Spanish grapevine cultivar ‘Hebén’. Vitis 2015, 54, 81–86. [Google Scholar]
- Zinelabidine, L.H.; Haddioui, A.; Rodríguez, V.; Cabello, F.; Eiras-Dias, J.E.; Martínez-Zapater, J.M.; Ibáñez, J. Identification by SNP analysis of a major role for Cayetana Blanca in the genetic network of Iberian Peninsula grapevine cultivars. Am. J. Enol. Vitic. 2012, 63, 121–126. [Google Scholar] [CrossRef]
- Milla Tapia, A.; Cabezas, J.A.; Cabello, F.; Lacombe, T.; Martínez-Zapater, J.M.; Hinrichsen, P.; Cervera, M.T. Determining the Spain Origin of Representative Ancient American Grapevine Cultivars. Am. J. Enol. Vitic. 2007, 58, 242–251. [Google Scholar] [CrossRef]
- Stummer, A. Zur urgeschichte der rebe und des weinbaues. Mitteilungen Anthropol. Ges. Wien 1911, 61, 283–296. [Google Scholar]
- Mangafa, M.; Kotsakis, K. A New Method for the identification of wild and cultivated charred grape seeds. J. Archaeol. Sci. 1996, 23, 409–418. [Google Scholar] [CrossRef]
- Obón, C.; Rivera-Obón, D.J.; Valera, J.; Matilla, G.; Alcaraz, F.; Maghradze, D.; Kikvadze, M.; Ocete, C.-A.; Ocete, R.; Nebish, A.; et al. Is there a domestication syndrome in Vitis (Vitaceae) seed morphology? Genet. Resour. Crop Evol. 2024, 72, 1541–1565. [Google Scholar] [CrossRef]
- Hajnalová, M.; Látková, M.; Kajanová, M.; Eliáš, P.; Ďurišová, Ľ. Wild or cultivated? a study of Vitis sylvestris in natura in Slovakia and implications for archaeology and archaeobotany (morphometric approach). Veget. Hist. Archaeobot. 2023, 32, 321–337. [Google Scholar] [CrossRef]
- Martín-Gómez, J.J.; Rodríguez-Lorenzo, J.L.; Gutiérrez del Pozo, D.; Cabello Sáez de Santamaría, F.; Muñoz-Organero, G.; Tocino, Á.; Cervantes, E. Seed morphological analysis in species of Vitis and Relatives. Horticulturae 2024, 10, 285. [Google Scholar] [CrossRef]
- Martín-Gómez, J.J.; Rodríguez-Lorenzo, J.L.; Tocino, Á.; Janoušek, B.; Juan, A.; Cervantes, E. The Outline of Seed Silhouettes: A morphological approach to Silene (Caryophyllaceae). Plants 2022, 11, 3383. [Google Scholar] [CrossRef]
- Cervantes, E.; Martín-Gómez, J.J.; Espinosa-Roldán, F.E.; Muñoz-Organero, G.; Tocino, Á.; Cabello-Sáenz de Santamaría, F. Seed morphology in Key Spanish grapevine cultivars. Agronomy 2021, 11, 734. [Google Scholar] [CrossRef]
- McLellan, T.; Endler, J.A. The relative success of some methods for measuring and describing the shape of complex objects. Syst. Biol. 1998, 47, 264–281. [Google Scholar] [CrossRef]
- Kuhl, F.P.; Giardina, C.R. Elliptic Fourier features of a closed contour. Comput. Graph. Image Process. 1982, 18, 236–258. [Google Scholar] [CrossRef]
- Terral, J.F.; Tabard, E.; Bouby, L.; Ivorra, S.; Pastor, T.; Figueiral, I.; Picq, S.; Chevance, J.-B.; Jung, C.; Fabre, L.; et al. Evolution and history of grapevine (Vitis vinifera) under domestication: New morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann. Bot. 2010, 105, 443–455. [Google Scholar] [CrossRef]
- Ucchesu, M.; Martinetto, E.; Sarigu, M.; Orrù, M.; Bornancin, M.; Bacchetta, G. Morphological characterization of fossil Vitis L. Seeds from the Gelasian of Italy by seed image analysis. Plants 2024, 13, 1417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bonhomme, V.; Picq, S.; Gaucherel, C.; Claude, J. Momocs: Outline Analysis Using R. J. Stat. Softw. 2014, 56, 1–24. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.1.2; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org (accessed on 20 November 2024).
- Muñoz-Organero, G.; Espinosa, F.E.; Cabello, F.; Zamorano, J.P.; Urbanos, M.A.; Puertas, B.; Lara, M.; Domingo, C.; Puig-Pujol, A.; Valdés, M.E.; et al. Phenological Study of 53 Spanish Minority Grape Varieties to Search for Adaptation of Vitiviniculture to Climate Change Conditions. Horticulturae 2022, 8, 984. [Google Scholar] [CrossRef]
- Badouin, H.; Velt, A.; Gindraud, F.; Flutre, T.; Dumas, V.; Vautrin, S.; Marande, W.; Corbi, J.; Sallet, E.; Ganofsky, J.; et al. The wild grape genome sequence provides insights into the transition from dioecy to hermaphroditism during grape domestication. Genome. Biol. 2020, 21, 223. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, Y.; Liu, W.; Shi, X.; Huang, S.; Cao, S.; Long, Q.; Wang, X.; Liu, Z.; Xu, X.; et al. Impacts of reproductive systems on grapevine genome and breeding. Nat. Commun. 2025, 16, 2031. [Google Scholar] [CrossRef]
- Cervantes, E.; Martín-Gómez, J.J.; Rodríguez-Lorenzo, J.L.; del Pozo, D.G.; Cabello Sáenz de Santamaría, F.; Muñoz-Organero, G.; Tocino, Á. Seed morphology in Vitis cultivars related to Hebén. Agriengineering 2025, 7, 62. [Google Scholar] [CrossRef]
- Espinosa-Roldán, F.E.; Rodríguez-Lorenzo, J.L.; Martín-Gómez, J.J.; Tocino, Á.; Ruiz Martínez, V.; Remón Elola, A.; Cabello Sáenz de Santamaría, F.; Martínez de Toda, F.; Cervantes, E.; Muñoz-Organero, G. Morphometric Analysis of Grape Seeds: Looking for the Origin of Spanish Cultivars. Seeds 2024, 3, 286–310. [Google Scholar] [CrossRef]
- Apomixis Database. Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium). University of Goettingen. Available online: https://uni-goettingen.de/en/433689.html (accessed on 1 January 2020).
- Laucou, V.; Launay, A.; Bacilieri, R.; Lacombe, T.; Adam-Blondon, A.F.; Berard, A.; Chauveau, A.; de Andrés, M.T.; Hausmann, L.; Ibáñez, J.; et al. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS ONE 2018, 13, e0192540. [Google Scholar] [CrossRef]
- Cunha, J.; Zinelabidine, L.H.; Teixeira-Santos, M.; Brazão, J.; Fevereiro, P.; Martínez-Zapater, J.M.; Ibáñez, J.; Eiras-Dias, J.E. Grapevine Cultivar ’Alfrocheiro’ or ’Bruñal’ Plays a Primary Role in the Relationship Among Iberian Grapevines. Vitis 2015, 54, 59–65. [Google Scholar] [CrossRef]
- Dong, Y.; Duan, S.; Xia, Q.; Liang, Z.; Dong, X.; Margaryan, K.; Musayev, M.; Goryslavets, S.; Zdunić, G.; Bert, P.-F.; et al. Dual domestications and origin of traits in grapevine evolution. Science 2023, 379, 892–901. [Google Scholar] [CrossRef]
- Tello, J.; Ibáñez, J. Review: Status and prospects of association mapping in grapevine. Plant Sci. 2023, 327, 111539. [Google Scholar] [CrossRef]
- Ferreira, T.; Rasband, W. ImageJ User Guide-Ij1.46r. 2012. 186p. Available online: https://imagej.net/ (accessed on 12 June 2024).
- Cox, E.P. A method of assigning numerical and percentage values to the degree of roundness of sand grains. J. Paleontol. 1927, 1, 179–183. [Google Scholar]
- Riley, N.A. Projection sphericity. J. Sediment. Res. 1941, 11, 94–97. [Google Scholar]
- Schwartz, H. Two-dimensional feature-shape indexes. Mikroskopie 1980, 37, 64–67. [Google Scholar]
- Cervantes, E.; Tocino, A. Geometric analysis of Arabidopsis root apex reveals a new aspect of the ethylene signal transduction pathway in development. J. Plant Physiol. 2005, 162, 1038–1045. [Google Scholar] [CrossRef]
Model | Hebén | Listán Prieto | Merseguera | Verdejo de Salamanca |
---|---|---|---|---|
Average contour (image program) | 92.6 a (1.8) | 92.0 a (2.2) | 91.7 a (1.6) | 92.0 a (0.8) |
Average contour (Fourier) | 93.2 a (1.8) | 91.9 a (2.0) | 92.4 a (1.2) | 92.3 a (0.8) |
Groups | N | J-I Hebén | J-I Chenin | AR | S |
---|---|---|---|---|---|
95.1 a (0.9) | 93.8 a (1.4) | 1.6 a (3.0) | 970 a (0.7) | ||
Group 2 (model Hebén) | 60 | 93.7 b (0.9) | 95.2 b (0.8) | 1.7 b (2.6) | 963 b (0.9) |
Group 3 (model Chenín) | 44 | 95.1 a (0.9) | 93.8 a (1.4) | 1.6 a (3.0) | 970 a (0.7) |
Morphotype | N | AR | S | Max | Min | Mean | Ratio |
---|---|---|---|---|---|---|---|
Hebén | 6 | 1.7 a (3.3) | 975 a (0.3) | 0.40 a (9.5) | −0.56 a (14.6) | 0.08 a (19.6) | 5.20 a (26.2) |
Chenin | 6 | 1.7 a (7.9) | 956 b (0.5) | 0.49 b (12.8) | −0.81 b (11.1) | 0.07 a (17.9) | 7.21 b (22.4) |
N | Cultivar | Reference | N | Cultivar | Reference |
---|---|---|---|---|---|
1 | Airén | [30,40,41] | 137 | Montonera | [37,41] |
2 | Alarije | [30,40,41] | 138 | Montúa | [40,41] |
3 | Albana | [37,41] | 139 | Montúa 2024 | [40] |
4 | Albarín blanco | [41] | 140 | Moraté | [37,41] |
5 | Albariño | [41] | 141 | Moravia Agria | [41] |
6 | Albillo de Granada | [41] | 142 | Moravia dulce | [41] |
7 | Albillo del Pozo | [37,41] | 143 | Morenillo | [41] |
8 | Albillo Mayor | [41] | 144 | Morisca | [41] |
9 | Albillo Real | [30,41] | 145 | Moristel | [41] |
10 | Alcañón | [41] | 146 | Moscatel de Alejandría | [30,40] |
11 | Aledo | [41] | 147 | Moscatel de Angués | [40] |
12 | Aledo Real | [41] | 148 | Moscatel de Angués 2024 | [40] |
13 | Alphonse Lavalleé | U | 149 | Moscatel de Grano Menudo | [30,37,41] |
14 | Arcos | [37,41] | 150 | Moscatel de Hamburgo | |
15 | Áurea | [37,41] | 151 | Moscatel Rosa | [41] |
16 | Azargón | [41] | 152 | Negra Rayada | [41] |
17 | Bastardo Blanco | [37,41] | 153 | Negreda | [37,40,41] |
18 | Bastardo Negro | [41] | 154 | Negreda 2024 | [40] |
19 | Batista | [41] | 155 | Ohanes | [41] |
20 | Beba | [30,37,40,41] | 156 | Ondarrabi Beltza | [37,41] |
21 | Benedicto | [37,41] | 157 | Ondarrabi Zuri | [41] |
22 | Benedicto falso | [41] | 158 | Palomino Fino | [30,41] |
23 | Bermejuela | [41] | 159 | Palote | [41] |
24 | Blanquiliña | [41] | 160 | Pampolat de Sagunto | [41] |
25 | Bobal | [30,41] | 161 | Pardillo | [41] |
26 | Borba (Riesling Itálico) | U | 162 | Parduca | [41] |
27 | Brancellao | [41] | 163 | Parellada | [41] |
28 | Bruñal | [30,41] | 164 | Parraleta | [41] |
29 | Cabernet Franc | [41] | 165 | Pedro Ximénez | [30,40] |
30 | Cabernet Sauvignon | [41] | 166 | Pedro Ximénez 2024 | [40] |
31 | Cadrete | [41] | 167 | Pedrol | [41] |
32 | Cagarrizo | [41] | 168 | Perruno | [41] |
33 | Caíño Blanco | [41] | 169 | Picapoll Blanco | [41] |
34 | Caíño Longo | [41] | 170 | Picapoll Tinto | [41] |
35 | Caiño Tinto | [30,41] | 171 | Pinot Noir | [41] |
36 | Callet | [41] | 172 | Pintada | [41] |
37 | Cañaroyo | [41] | 173 | Planta Fina | [40,41] |
38 | Cardinal | [41] | 174 | Planta Fina 2024 | [40] |
39 | Cariñena Blanca | [41] | 175 | Planta Mula | [37,41] |
40 | Cariñena Roja | [41] | 176 | Planta Nova | [37,41] |
41 | Carrasquín | [41] | 177 | Prieto Picudo | [30,41] |
42 | Castañal | [41] | 178 | Puerto Alto | [41] |
43 | Castellana Blanca | [30,41] | 179 | Quiebratinajas Rosa | U |
44 | Casteloa | U | 180 | Quigat | [40,41] |
45 | Cayetana Blanca | [30,40,41] | 181 | Quigat 2024 | [40] |
46 | Cayetana Blanca 2024 | [40] | 182 | Ragol | [41] |
47 | Cenicienta | U | 183 | Ratiño | [41] |
48 | Chardonnay | [41] | 184 | Rayada Melonera | [37,41] |
49 | Chasselas Blanc | [41] | 185 | Red Globe | U |
50 | Chenin | U | 186 | Regina de Vignetti | U |
51 | Ciruela roja | U | 187 | Riesling | [41] |
52 | Coloraillo | U | 188 | Rocía | [41] |
53 | Corazón de Cabrito | [40] | 189 | Rojal tinta | [41] |
54 | Corchera | [37,41] | 190 | Rosetti | [41] |
55 | Crepa | [41] | 191 | Rubeliza | [41] |
56 | Cuatendrá | [41] | 192 | Rufete | [41] |
57 | De Cuerno | [30,41] | 193 | Rufete Serrano | [37,41] |
58 | Derechero | [41] | 194 | Sabaté | [41] |
59 | Diega | [37,41] | 195 | Sabro | [40,41] |
60 | Dominga | [30,41] | 196 | Sabro 2024 | [40] |
61 | Don Mariano | U | 197 | Salvador | [41] |
62 | Doña Blanca | [30,41] | 198 | Sanguina | [37,41] |
63 | Doradilla | [41] | 199 | Sauvignon Blanc | [41] |
64 | Espadeiro | [41] | 200 | Semillon | U |
65 | Esperó de Gall | [41] | 201 | Señá | [40,41] |
66 | Estaladiña | [37,41] | 202 | Señá 2024 | [40] |
67 | Excursach | [41] | 203 | Souson | [41] |
68 | Fernâo Pires | [41] | 204 | Sumoll | [40,41] |
69 | Ferral | [40,41] | 205 | Sumoll 2024 | [40] |
70 | Ferrón | [41] | 206 | Sylvestris BA2.3 | [41] |
71 | Fogoneu | [41] | 207 | Sylvestris CA13.3 | [41] |
72 | Folle Blanche | [41] | 208 | Sylvestris CA13.4 | [30,41] |
73 | Forastera | [41] | 209 | Sylvestris CA13.6 | [30,41] |
74 | Forcallat Tinta | [40,41] | 210 | Sylvestris CA2.9 | [41] |
75 | Gabriela | [41] | 211 | Sylvestris CA2.9b | [41] |
76 | Garnacha Blanca | [41] | 212 | Sylvestris CC1.5 | [41] |
77 | Garnacha Peluda | [41] | 213 | Sylvestris CO4.7 | [41] |
78 | Garnacha Roja | [41] | 214 | Sylvestris FR1.1 | [41] |
79 | Garnacha Tinta | [30,41] | 215 | Sylvestris FR1.4 | [41] |
80 | Garnacha Tintorera (Alicante Bouschet) | U | 216 | Sylvestris H6.1 | [41] |
81 | Garrido Fino | [41] | 217 | Sylvestris H6.5 | [41] |
82 | Garrido Macho | [41] | 218 | Sylvestris J1.4 | [41] |
83 | Gewürztraminer | [30,41] | 219 | Sylvestris J2.4 | [41] |
84 | Giro Negro | [37,41] | 220 | Sylvestris NA2.4b | [41] |
85 | Godello | [41] | 221 | Sylvestris NA3.2b | [41] |
86 | Gonfaus | [37,41] | 222 | Sylvestris S3.5b | [41] |
87 | Gorgollasa | [37,41] | 223 | Sylvestris SE2.1 | [30,41] |
88 | Graciano | [30,41] | 224 | Sylvestris SE2.4 | [41] |
89 | Gran Noir | [41] | 225 | Sylvestris SE2.6 | [41] |
90 | Granadera | [41] | 226 | Sylvestris SE2.7 | [41] |
91 | Gualarido | [41] | 227 | Syrah | [41] |
92 | Hebén | [30,40,41] | 228 | Tarragoní | [40] |
93 | Heben 2024 | [40,41] | 229 | Tarragoní 2024 | [40] |
94 | Imperial | [30,41] | 230 | Tempranillo | [30,40] |
95 | Italia (Moscatel Romano) | [41] | 231 | Terriza | [37,41] |
96 | Jaén rosado | [41] | 232 | Teta de Vaca | [30,41] |
97 | Jaén tinto | [41] | 233 | Tinto Bastardo | [41] |
98 | Jaén tinto 2024 | [41] | 234 | Tinto de la Pampana Blanca | [41] |
99 | Jarrosuelto | [37,41] | 235 | Tinto de Navalcarnero | [41] |
100 | Jerónimo | [40,41] | 236 | Tinto Fragoso | [37,41] |
101 | Juan García | [30,41] | 237 | Tinto Jeromo | [37,41] |
102 | Juan García 2024 | [40] | 238 | Tinto Velasco | [41] |
103 | Lado | [41] | 239 | Torralba | [40,41] |
104 | Legiruela | [41] | 240 | Torrontés | [41] |
105 | Listán del Condado | [41] | 241 | Tortosí | [41] |
106 | Listán Negro | [41] | 242 | Tortozón | [30,41] |
107 | Listán Prieto | [30,40,41] | 243 | Tortozona Tinta | [30,40,41] |
108 | Listán Prieto 2024 | [40] | 244 | Tortozona Tinta 2024 | [40] |
109 | Loureira | [41] | 245 | Treixadura | [41] |
110 | Lucomol | [41] | 246 | Trepat | [40,41] |
111 | Macabeo | [30,41] | 247 | Trepat 2024 | [40] |
112 | Malbec | [41] | 248 | Trincadeira das Pratas- Allarén | [41] |
113 | Malvar | [40,41] | 249 | Trobat | [41] |
114 | Malvasía Aromática | [30,41] | 250 | Verdejo | [30,41] |
115 | Malvasía Volcánica | U | 251 | Verdejo de Salamanca | [40,41] |
116 | Mandón | [40] | 252 | Verdejo de Salamanca 2024 | [40] |
117 | Mandregue | [37,41] | 253 | Verdil (Merseguera) | [41] |
118 | Mansés de Capdell | [41] | 254 | Vidadillo | [41] |
119 | Mansés de Tibbus | [41] | 255 | Vijariego Blanco | [41] |
120 | Manto negro | [41] | 256 | Viognier | [41] |
121 | Mantúo de pilas | [41] | 257 | Vitis amurensis | [28] |
122 | Marfal | [41] | 258 | Vitis berlandieri | [28] |
123 | Marfileña | [41] | 259 | Vitis californica | [28] |
124 | Maturana Blanca | [41] | 260 | Vitis candicans | [28] |
125 | Mazuela | [30,41] | 261 | Vitis doaniana | [28] |
126 | Mencía | [41] | 262 | Vitis labrusca | [28] |
127 | Merenzao | [41] | 263 | Vitis riparia | [28] |
128 | Merlot | [41] | 264 | Vitis rupestris | [28] |
129 | Merseguera 2020 | [40] | 265 | Viura | [40,41] |
130 | Merseguera 2024 | [40] | 266 | Viura 2024 | [40] |
131 | Miguel de Arco | [40] | 267 | Xarello | [40,41] |
132 | Miguel de Arco 2024 | [40] | 268 | Xarello 2024 | [40] |
133 | Mollar Cano | [30,40] | 269 | Xarello Rosado | [41] |
134 | Mollar Cano 2024 | [40] | 270 | Zalema | [30,41] |
135 | Monastrell | [30,41] | 271 | Zurieles | [41] |
136 | Mondragón | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Gómez, J.J.; Rodríguez-Lorenzo, J.L.; Espinosa-Roldán, F.E.; de Santamaría, F.C.S.; Muñoz-Organero, G.; Tocino, Á.; Cervantes, E. Seed Morphometry Reveals Two Major Groups in Spanish Grapevine Cultivars. Plants 2025, 14, 1522. https://doi.org/10.3390/plants14101522
Martín-Gómez JJ, Rodríguez-Lorenzo JL, Espinosa-Roldán FE, de Santamaría FCS, Muñoz-Organero G, Tocino Á, Cervantes E. Seed Morphometry Reveals Two Major Groups in Spanish Grapevine Cultivars. Plants. 2025; 14(10):1522. https://doi.org/10.3390/plants14101522
Chicago/Turabian StyleMartín-Gómez, José Javier, José Luis Rodríguez-Lorenzo, Francisco Emanuel Espinosa-Roldán, Félix Cabello Sáenz de Santamaría, Gregorio Muñoz-Organero, Ángel Tocino, and Emilio Cervantes. 2025. "Seed Morphometry Reveals Two Major Groups in Spanish Grapevine Cultivars" Plants 14, no. 10: 1522. https://doi.org/10.3390/plants14101522
APA StyleMartín-Gómez, J. J., Rodríguez-Lorenzo, J. L., Espinosa-Roldán, F. E., de Santamaría, F. C. S., Muñoz-Organero, G., Tocino, Á., & Cervantes, E. (2025). Seed Morphometry Reveals Two Major Groups in Spanish Grapevine Cultivars. Plants, 14(10), 1522. https://doi.org/10.3390/plants14101522