Integrated Biochar–Compost Amendment for Zea mays L. Phytoremediation in Soils Contaminated with Mining Tailings of Quiulacocha, Peru
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mine Tailing Physicochemical Characterization
2.2. Biochar and Compost Characterization
2.3. BCF and TF Results
2.4. Effect of Study Parameters
2.5. Factor Model Analysis
3. Materials and Methods
3.1. Mine Tailing Sampling and Physicochemical Characterization
3.2. Biochar and Compost Production
3.3. Biochar and Compost Physicochemical Characterization
3.4. Operation of the Phytoremediation System
3.5. Experimental Design
3.6. Bioconcentration and Translocation Factors
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, Y.; Zang, Y.; Yang, H.; Zhang, X.; Shi, J.; Zhang, J.; Liu, B. Biochar enhanced phytostabilization of heavy metal contaminated mine tailings: A review. Front. Environ. Sci. 2022, 10, 1044921. [Google Scholar] [CrossRef]
- Ai, Y.; Wang, Y.; Song, L.; Hong, W.; Zhang, Z.; Li, X.; Zhou, S.; Zhou, J. Effects of biochar on the physiology and heavy metal enrichment of Vetiveria zizanioides in contaminated soil in mining areas. J. Hazard. Mater. 2023, 448, 130965. [Google Scholar] [CrossRef] [PubMed]
- Vasuki, Y.; Yu, L.; Holden, E.J.; Kovesi, P.; Wedge, D.; Grigg, A.H. The spatial-temporal patterns of land cover changes due to mining activities in the Darling Range, Western Australia: A Visual Analytics Approach. Ore. Geol. Rev. 2019, 108, 23–32. [Google Scholar] [CrossRef]
- Gasco, G.; Alvarez, M.L.; Paz-Ferreiro, J.; Mendez, A. Combining phytoextraction by Brassica napus and biochar amendment for the remediation of a mining soil in Riotinto (Spain). Chemosphere 2019, 231, 562–570. [Google Scholar] [CrossRef]
- Ngole-Jeme, V.M.; Fantke, P. Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PloS ONE 2017, 12, e0172517. [Google Scholar] [CrossRef]
- Fernández-Macías, J.C.; González-Mille, D.J.; García-Arreola, M.E.; Cruz-Santiago, O.; Rivero-Pérez, N.E.; Pérez-Vázquez, F.; Ilizaliturri-Hernández, C.A. Integrated probabilistic risk assessment in sites contaminated with arsenic and lead by long-term mining liabilities in San Luis Potosi, Mexico. Ecotoxicol. Environ. Saf. 2020, 197, 110568. [Google Scholar] [CrossRef]
- Ramírez, M.G.V.; Barrantes, J.A.G.; Thomas, E.; Miranda, L.A.G.; Pillaca, M.; Peramas, L.D.T.; Tapia, L.R.B. Heavy metals in alluvial gold mine spoils in the peruvian amazon. Catena 2020, 189, 104454. [Google Scholar] [CrossRef]
- Ramírez, M.G.V.; Ruiz, C.M.V.; Gomringer, R.C.; Pillaca, M.; Thomas, E.; Stewart, P.M.; Miranda, L.A.G.; Dañobeytia, F.R.; Barrantes, J.A.G.; Gushiken, M.C. Mercury in soils impacted by alluvial gold mining in the Peruvian Amazon. J. Environ. Manag. 2021, 288, 112364. [Google Scholar] [CrossRef]
- Salgado-Almeida, B.; Falquez-Torres, D.A.; Romero-Crespo, P.L.; Valverde-Armas, P.E.; Guzmán-Martínez, F.; Jiménez-Oyola, S. Risk assessment of mining environmental liabilities for their categorization and prioritization in gold-mining areas of Ecuador. Sustainability 2022, 14, 6089. [Google Scholar] [CrossRef]
- Cruzado-Tafur, E.; Torró, L.; Bierla, K.; Szpunar, J.; Tauler, E. Heavy metal contents in soils and native flora inventory at mining environmental liabilities in the Peruvian Andes. J. South Am. Earth Sci. 2021, 106, 103107. [Google Scholar] [CrossRef]
- Rodríguez-Zapata, M.A.; Ruiz-Agudelo, C.A. Environmental liabilities in Colombia: A critical review of current status and challenges for a megadiverse country. Environ. Chall. 2021, 5, 100377. [Google Scholar] [CrossRef]
- Lam, E.J.; Cánovas, M.; Gálvez, M.E.; Montofré, Í.L.; Keith, B.F.; Faz, Á. Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. J. Geochem. Explor. 2017, 182, 210–217. [Google Scholar] [CrossRef]
- Maboeta, M.S.; Oladipo, O.G.; Botha, S.M. Ecotoxicity of mine tailings: Unrehabilitated versus rehabilitated. Bull Environ. Contam. Toxicol. 2018, 100, 702–707. [Google Scholar] [CrossRef]
- Rosas-Ramírez, M.; Tovar-Sánchez, E.; Rodríguez-Solís, A.; Flores-Trujillo, K.; Castrejón-Godínez, M.L.; Mussali-Galante, P. Assisted phytoremediation between biochar and Crotalaria pumila to phytostabilize heavy metals in mine tailings. Plants 2024, 13, 2516. [Google Scholar] [CrossRef]
- Chen, H.; Tang, L.; Wang, Z.; Su, M.; Tian, D.; Zhang, L.; Li, Z. Evaluating the protection of bacteria from extreme Cd (II) stress by P-enriched biochar. Environ. Pollut. 2020, 263, 114483. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1353–1376. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Soil reclamation of abandoned mine land by revegetation: A review. Int. J. Soil Sediment Water 2010, 3, 13. [Google Scholar]
- Clemente, R.; Walker, D.J.; Pardo, T.; Martínez-Fernández, D.; Bernal, M.P. The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions. J. Hazard. Mater. 2012, 223, 63–71. [Google Scholar] [CrossRef]
- Guo, L.; Liu, J.; Chen, Y.; Zhang, X. Remediation of high concentration chromium contaminated soil by Enhanced Electrodynamic Method. Earth Sci. Res. J. 2021, 25, 247–253. [Google Scholar] [CrossRef]
- Huang, M.; Zhu, Y.; Li, Z.; Huang, B.; Luo, N.; Liu, C.; Zeng, G. Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: Mechanisms, efficacy, problems, and strategies. Water Air Soil Pollut. 2016, 227, 359. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A.; Ćwieląg-Piasecka, I. Effect of biochar application on heavy metal mobility in soils impacted by copper smelting processes. Pol. J. Environ. Stud. 2020, 29, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Sheng, H.; Gu, C.; Marc, R.G.; Wang, Y.; Bian, Y.; Jiang, X.; Wang, F. Biochar combined with compost to reduce the mobility, bioavailability and plant uptake of 2, 2′, 4, 4′-tetrabrominated diphenyl ether in soil. J. Hazard. Mater. 2019, 374, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Huang, X.; Li, M.; Lu, Z.; Ling, X. Advances in Soil Amendments for Remediation of Heavy Metal-Contaminated Soils: Mechanisms, Impact, and Future Prospects. Toxics 2024, 12, 872. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, T.L.; Sikirica, N.; Mondini, C.; López, G.; Kuikman, P.J.; Holden, N.M. Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon. J. Environ. Manag. 2018, 218, 465–476. [Google Scholar] [CrossRef]
- Jindo, K.; Suto, K.; Matsumoto, K.; García, C.; Sonoki, T.; Sanchez-Monedero, M.A. Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresour. Technol. 2012, 110, 396–404. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Fan, X.; Wei, Y.; Song, D.; Zhou, T.; Li, R.; Su, X.; Zhang, T.; Cheng, S.; Xiao, R. Biochar enhanced co-composting for peat-free seedling substrate: A win-win solution for sustainable development of modern vegetable industry. Process Saf. Environ. Prot. 2025, 194, 1504–1514. [Google Scholar] [CrossRef]
- Shi, G.; Li, H.; Fu, Q.; Li, T.; Hou, R.; Chen, Q.; Xue, P. Effects of biochar and compost on the abundant and rare microbial communities assembly and multifunctionality in pesticide-contaminated soil under freeze-thaw cycles. Environ. Pollut. 2024, 362, 125003. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, M.; Zhang, H.; Yuan, L.; Lv, P.; Wang, L.; Zhang, J. Changes in Cd forms and Cd resistance genes in municipal sludge during coupled earthworm and biochar composting. Ecotoxicol. Environ. Saf. 2024, 286, 117179. [Google Scholar] [CrossRef]
- Etim, E.E. Phytoremediation and its mechanisms: A review. Int. J. Env. Bioenergy 2012, 2, 120–136. [Google Scholar]
- Robinson, B.H.; Anderson, C.W.N.; Dickinson, N.M. Phytoextraction: Where’s the action? J. Geochem. Explor. 2015, 151, 34–40. [Google Scholar] [CrossRef]
- Alkorta, I.; Becerril, J.M.; Garbisu, C. Phytostabilization of metal contaminated soils. Rev. Environ. Health 2010, 25, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Alsafran, M.; Saleem, M.H.; Rizwan, M.; Al Jabri, H.; Usman, K.; Fahad, S. An overview of heavy metals toxicity in plants, tolerance mechanism, and alleviation through lysine-chelation with micro-nutrients—A novel approach. Plant Growth Regul. 2023, 100, 337–354. [Google Scholar] [CrossRef]
- Falcon Estrella, J.V. Fitoextracción De Metales Pesados En Suelo Contaminado Con Zea mays L. En La Estación Experimental El Mantaro-Junín En El Año 2016. 2017. Available online: https://repositorio.uncp.edu.pe/handle/20.500.12894/4611 (accessed on 10 February 2025).
- Adejumo, A.L.; Azeez, L.; Kolawole, T.O.; Aremu, H.K.; Adedotun, I.S.; Oladeji, R.D.; Adeleke, A.E.; Abdullah, M. Silver nanoparticles strengthen Zea mays against toxic metal-related phytotoxicity via enhanced metal phytostabilization and improved antioxidant responses. Int. J. Phytoremediation 2023, 25, 1676–1686. [Google Scholar] [CrossRef]
- Atta, M.I.; Zehra, S.S.; Ali, H.; Ali, B.; Abbas, S.N.; Aimen, S.; Sarwar, S.; Ahmad, I.; Hussain, M.; Al-Ashkar, I. Assessing the effect of heavy metals on maize (Zea mays L.) growth and soil characteristics: Plants-implications for phytoremediation. PeerJ 2023, 11, e16067. [Google Scholar] [CrossRef]
- Ahmad, M.; Usman, A.R.A.; Al-Faraj, A.S.; Ahmad, M.; Sallam, A.; Al-Wabel, M.I. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere 2018, 194, 327–339. [Google Scholar] [CrossRef]
- Rosas-Castor, J.M.; Guzmán-Mar, J.L.; Hernández-Ramírez, A.; Garza-González, M.T.; Hinojosa-Reyes, L.J.S. Arsenic accumulation in maize crop (Zea mays): A review. Sci. Total Environ. 2014, 488, 176–187. [Google Scholar] [CrossRef]
- Campos, H.; Caligari, P.D.S. Genetic Improvement of Tropical Crops; Springer: Berlin/Heidelberg, Germany, 2017; Volume 661. [Google Scholar]
- Aladesanmi, O.T.; Oroboade, J.G.; Osisiogu, C.P.; Osewole, A.O. Bioaccumulation factor of selected heavy metals in Zea mays. J. Heal Pollut. 2019, 9, 191207. [Google Scholar] [CrossRef]
- Pandey, J.; Sarkar, S.; Pandey, V.C. Compost-assisted phytoremediation. In Assisted Phytoremediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 243–264. [Google Scholar]
- Virú-Vásquez, P.; Pardavé, R.H.; Coral, M.F.C.; Bravo-Toledo, L.; Curaqueo, G. Biochar and Compost in the Soil: A Bibliometric Analysis of Scientific Research. Environ. Res. Eng. Manag. 2022, 78, 73–95. [Google Scholar] [CrossRef]
- Novak, J.M.; Ippolito, J.A.; Watts, D.W.; Sigua, G.C.; Ducey, T.F.; Johnson, M.G. Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability. Biochar 2019, 1, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Sigua, G.C.; Novak, J.M.; Watts, D.W.; Ippolito, J.A.; Ducey, T.F.; Johnson, M.G.; Spokas, K.A. Phytostabilization of Zn and Cd in mine soil using corn in combination with biochars and manure-based compost. Environments 2019, 6, 69. [Google Scholar] [CrossRef]
- Alidou-Arzika, I.; Lebrun, M.; Miard, F.; Nandillon, R.; Bayçu, G.; Bourgerie, S.; Morabito, D. Assessment of compost and three biochars associated with Ailanthus altissima (Miller) Swingle for lead and arsenic stabilization in a post-mining Technosol. Pedosphere 2021, 31, 944–953. [Google Scholar] [CrossRef]
- Máthé-Gáspár, G.; Anton, A. Phytoremediation study: Factors influencing heavy metal uptake of plants. Acta Biol. Szeged. 2005, 49, 69–70. [Google Scholar]
- Korentajer, L. A Review of the Agricultural Use of Sewage Sludge: Benefits and Potential Hazards. 1991. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19911961563 (accessed on 23 April 2025).
- Alaboudi, K.A.; Ahmed, B.; Brodie, G. Effect of biochar on Pb, Cd and Cr availability and maize growth in artificial contaminated soil. Ann. Agric. Sci. 2019, 64, 95–102. [Google Scholar] [CrossRef]
- Irfan, M.; Mudassir, M.; Khan, M.J.; Dawar, K.M.; Muhammad, D.; Mian, I.A.; Ali, W.; Fahad, S.; Saud, S.; Hayat, Z. Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost. Sci. Rep. 2021, 11, 18416. [Google Scholar] [CrossRef]
- Rashid, M.S.; Liu, G.; Yousaf, B.; Song, Y.; Ahmed, R.; Rehman, A.; Arif, M.; Irshad, S.; Cheema, A.I. Efficacy of rice husk biochar and compost amendments on the translocation, bioavailability, and heavy metals speciation in contaminated soil: Role of free radical production in maize (Zea mays L.). J. Clean Prod. 2022, 330, 129805. [Google Scholar] [CrossRef]
- Kaur, H.; Katyal, P.; Chandel, S.; Singh, D.; Kumar, P.; Choudhary, M. Microbes mediated alleviation of chromium (Cr VI) stress for improved phytoextraction in fodder maize (Zea mays L.) cultivar. Heliyon 2024, 10, e40361. [Google Scholar] [CrossRef]
- Bashir, M.A.; Naveed, M.; Ashraf, S.; Mustafa, A.; Ali, Q.; Rafique, M.; Alamri, S.; Siddiqui, M.H. Performance of Zea mays L. cultivars in tannery polluted soils: Management of chromium phytotoxicity through the application of biochar and compost. Physiol. Plant 2021, 173, 129–147. [Google Scholar] [CrossRef]
- Sun, C.; Wang, D.; Shen, X.; Li, C.; Liu, J.; Lan, T.; Wang, W.; Xie, H.; Zhang, Y. Effects of biochar, compost and straw input on root exudation of maize (Zea mays L.): From function to morphology. Agric. Ecosyst. Environ. 2020, 297, 106952. [Google Scholar] [CrossRef]
- Ch’ng, H.Y.; Ahmed, O.H.; Majid, N.M.A. Biochar and compost influence the phosphorus availability, nutrients uptake, and growth of maize (Zea mays L.) in tropical acid soil. Pak. J. Agric. Sci. 2014, 51, 797–806. [Google Scholar]
- Rehman, M.Z.; Rizwan, M.; Ali, S.; Fatima, N.; Yousaf, B.; Naeem, A.; Sabir, M.; Ahmad, H.R.; Ok, Y.S. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicol. Environ. Saf. 2016, 133, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R.; Glick, B.R. Phytoremediation. In Beneficial Plant-Bacterial Interactions; Springer: Berlin/Heidelberg, Germany, 2020; pp. 319–359. [Google Scholar]
- Astete, J.; Cáceres, W.; Gastañaga Mdel, C.; Lucero, M.; Sabastizagal, I.; Oblitas, T.; Pari, J.; Rodríguez, F. Intoxicación por plomo y otros problemas de salud en niños de poblaciones aledañas a relaves mineros. Rev. Peru. Med. Exp. Salud. Publica 2009, 26, 15–19. [Google Scholar]
- Barreto-Pio, C.; Bravo-Toledo, L.; Virú-Vásquez, P.; Borda-Contreras, A.; Zarate-Sarapura, E.; Pilco, A. Optimization Applying Response Surface Methodology in the Co-treatment of Urban and Acid Wastewater from the Quiulacocha Lagoon, Pasco (Peru). Environ. Res. Eng. Manag. 2023, 79, 90–109. [Google Scholar] [CrossRef]
- Baylón Coritoma, M.; Roa Castro, K.; Libio Sánchez, T.; Tapia Ugaz, L.; Jara Pena, E.; Macedo Prada, D.; Salvatierra Sevillano, A.; Dextre Rubina, A. Evaluación de la diversidad de algas fitoplanctónicas como indicadores de la calidad del agua en lagunas altoandinas del departamento de Pasco (Perú). Ecol. Apl. 2018, 17, 119–132. [Google Scholar] [CrossRef]
- INDECI. Reporte De Peligro Inminente N° 115–14/5/2021/COEN–INDECI/23:00 Horas (Reporte N° 5) Por Desembalse De La Relavera Quiulacocha En El Distrito De Simón Bolívar-Pasco-Indeci Tarea De Todos 2021. 2023. Available online: https://portal.indeci.gob.pe/emergencias/reporte-de-peligro-inminente-n-055-25-2-2021-coen-indeci-1450-horas-reporte-n-1-por-desembalse-de-la-relavera-quiulacocha-en-el-distrito-de-simon-bolivar-pasco/ (accessed on 10 February 2025).
- INDECI Reporte Complementario No 2130–28/2/2023/COEN–INDECI/16:30 Horas (Reporte N° 2) Lluvias Intensas En El Distrito De Paucartambo-Pasco-INDECI Tarea De Todos 2023. 2023. Available online: https://www.desdeadentro.pe/2022/03/lluvias-y-granizadas-extreman-ponen-en-riesgo-de-colapso-a-relavera-quiulacocha-en-pasco/ (accessed on 10 February 2025).
- Dold, B.; Wade, C.; Fontboté, L. Water management for acid mine drainage control at the polymetallic Zn-Pb-(Ag-Bi-Cu) deposit Cerro de Pasco, Peru. J. Geochem. Explor. 2009, 100, 133–141. [Google Scholar] [CrossRef]
- Urbano Paccho, G.G. Remoción De Manganeso Por Procesos De Ozonización En Drenajes Ácidos De Mina De La Relavera Quiulacocha, Cerro de Pasco, 2022. 2023. Available online: https://hdl.handle.net/20.500.13084/8394 (accessed on 10 February 2025).
- Sarathchandra, S.S.; Rengel, Z.; Solaiman, Z.M. A review on remediation of Iron ore mine tailings via organic amendments coupled with phytoremediation. Plants 2023, 12, 1871. [Google Scholar] [CrossRef]
- Romero, F.M.; Armienta, M.A.; Gutiérrez, M.E.; Villasenor, G. Geological and climatic factors determining hazard and environmental impact of mine tailings. Rev. Int. Contam. Ambient. 2008, 24, 43–54. [Google Scholar]
- Fashola, M.O.; Ngole-Jeme, V.M.; Babalola, O.O. Physicochemical properties, heavy metals, and metal-tolerant bacteria profiles of abandoned gold mine tailings in Krugersdorp, South Africa. Can. J. Soil Sci. 2020, 100, 217–233. [Google Scholar] [CrossRef]
- Palacios-Hugo, R.; Calle-Maravi, J.; Césare-Coral, M.F.; Iparraguirre, J.; Virú-Vásquez, P. Physicochemical Characterization and Stability of Biochar Obtained from 5 Species of Forest Biomass in Peru. Environ. Res. Eng. Manag. 2023, 79, 33–51. [Google Scholar] [CrossRef]
- Nkoh, J.N.; Ajibade, F.O.; Atakpa, E.O.; Abdulaha-Al Baquy, M.; Mia, S.; Odii, E.C.; Xu, R. Reduction of heavy metal uptake from polluted soils and associated health risks through biochar amendment: A critical synthesis. J. Hazard. Mater. Adv. 2022, 6, 100086. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, J.Y.; Cho, T.S.; Choi, J.W. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour. Technol. 2012, 118, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Roshan, A.; Ghosh, D.; Maiti, S.K. How temperature affects biochar properties for application in coal mine spoils? A meta-analysis. Carbon Res. 2023, 2, 3. [Google Scholar] [CrossRef]
- Cooper, J.; Greenberg, I.; Ludwig, B.; Hippich, L.; Fischer, D.; Glaser, B.; Kaiser, M. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agric. Ecosyst. Environ. 2020, 295, 106882. [Google Scholar] [CrossRef]
- Rehrah, D.; Reddy, M.R.; Novak, J.M.; Bansode, R.R.; Schimmel, K.A.; Yu, J.; Watts, D.W.; Ahmedna, M. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J. Anal. Appl. Pyrolysis. 2014, 108, 301–309. [Google Scholar] [CrossRef]
- Jia, H.; Chu, D.; You, X.; Li, Y.; Huang, C.; Zhang, J.; Zeng, X.; Yao, H.; Zhou, Z. Biochar improved the composting quality of seaweeds and cow manure mixture and altered the microbial community. Front. Microbiol. 2022, 13, 1064252. [Google Scholar] [CrossRef]
- Becker, S.J.; Ebrahimzadeh, A.; Plaza Herrada, B.M.; Lao, M.T. Characterization of compost based on crop residues: Changes in some chemical and physical properties of the soil after applying the compost as organic amendment. Commun. Soil Sci. Plant Anal. 2010, 41, 696–708. [Google Scholar] [CrossRef]
- IBI. Standardized product definition and product testing guidelines for biochar that is used in soil. Int. Biochar. Initiat. 2015, 23. Available online: https://biochar-international.org/wp-content/uploads/2020/06/IBI_Biochar_Standards_V2.1_Final2.pdf (accessed on 23 April 2025).
- EBC. European Biochar Certificate (EBC)—Guidelines Version 6.1. 2015 [Cited 15 March 2022]. Available online: https://www.researchgate.net/publication/278727508_European_Biochar_Certificate_EBC_-_guidelines_version_61?channel=doi&linkId=5584728c08ae71f6ba8c4cdf&showFulltext=true (accessed on 10 February 2025).
- Meyer, S.; Genesio, L.; Vogel, I.; Schmidt, H.P.; Soja, G.; Someus, E.; Shackley, S.; Verheijen, F.; Glaser, B. Biochar Standardization and Legislation Harmonization. J. Environ. Eng. Landsc. Manag. 2015, 25, 175–191. [Google Scholar] [CrossRef]
- Cho, W.M.; Ravindran, B.; Kim, J.K.; Jeong, K.H.; Lee, D.J.; Choi, D.Y. Nutrient status and phytotoxicity analysis of goat manure discharged from farms in South Korea. Environ. Technol. 2017, 38, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Younis, U.; Rahi, A.A.; Danish, S.; Ali, M.A.; Ahmed, N.; Datta, R.; Fahad, S.; Holatko, J.; Hammerschmiedt, T.; Brtnicky, M.; et al. Fourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil. PloS ONE 2021, 16, e0253390. [Google Scholar] [CrossRef] [PubMed]
- Selvarajoo, A.; Wong, Y.L.; Khoo, K.S.; Chen, W.H.; Show, P.L. Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Chemosphere 2022, 294, 133671. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.S.; Liew, R.K.; Lim, X.Y.; Ani, F.N.; Jusoh, A. Fruit waste as feedstock for recovery by pyrolysis technique. Int. Biodeterior. Biodegrad. 2016, 113, 325–333. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, B.; Liu, H.; Zhao, Y.; Li, L. Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environ. Technol. Innov. 2022, 26, 102288. [Google Scholar] [CrossRef]
- Cuixia, Y.; Yingming, X.; Lin, W.; Xuefeng, L.; Yuebing, S.; Hongtao, J. Effect of different pyrolysis temperatures on physico-chemical characteristics and lead (ii) removal of biochar derived from chicken manure. RSC Adv. 2020, 10, 3667–3674. [Google Scholar] [CrossRef]
- MINAN. Glosario De Términos Sitios Contaminados. Minist del Ambient. 2016; 17. Available online: https://www.gob.pe/institucion/minam/informes-publicaciones/2650-glosario-de-terminos-sitios-contaminados (accessed on 23 April 2025).
- CEPA. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2007. [Google Scholar]
- Directive, C. 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. Off J. Eur. Commun. 1986, 29, L358. [Google Scholar]
- Munive, R.; Loli, O.; Azabache, A.; Gamarra, G. Phytoremediation with corn (Zea mays L.) and Stevia compost on soils degraded by contamination with heavy metals. Sci. Agropecu. 2018, 9, 551–560. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.; Wu, G.; Shen, H.; Fu, G.; Wang, Y. Combined effects of biochar and chicken manure on maize (Zea mays L.) growth, lead uptake and soil enzyme activities under lead stress. PeerJ 2021, 9, e11754. [Google Scholar] [CrossRef]
- Navas-Cárdenas, C.; Caetano, M.; Endara, D.; Jiménez, R.; Lozada, A.B.; Manangón, L.E.; Navarrete, A.; Reinoso, C.; Sommer-Márquez, A.E.; Villasana, Y. The Role of Oxygenated Functional Groups on Cadmium Removal using Pyrochar and Hydrochar Derived from Guadua angustifolia Residues. Water 2023, 15, 525. [Google Scholar] [CrossRef]
- Alam, M.Z.; Hoque, M.A.; Ahammed, G.J.; Carpenter-Boggs, L. Effects of arbuscular mycorrhizal fungi, biochar, selenium, silica gel, and sulfur on arsenic uptake and biomass growth in Pisum sativum L. Emerg. Contam. 2020, 6, 312–322. [Google Scholar] [CrossRef]
- Liao, W.; Zhang, X.; Ke, S.; Shao, J.; Yang, H.; Zhang, S.; Chen, H. Effect of different biomass species and pyrolysis temperatures on heavy metal adsorption, stability and economy of biochar. Ind. Crops Prod. 2022, 186, 115238. [Google Scholar] [CrossRef]
- Dissanayaka Mudiyanselage, T. Effects of Biochar on Heavy Metal Bioavailability and Microbial Properties in Contaminated Soils. Ph.D. Thesis, La Trobe University, Sydney, Australia, 2021. [Google Scholar]
- Wu, Z.; Firmin, K.A.; Cheng, M.; Wu, H.; Si, Y. Biochar enhanced Cd and Pb immobilization by sulfate-reducing bacterium isolated from acid mine drainage environment. J. Clean Prod. 2022, 366, 132823. Available online: https://www.sciencedirect.com/science/article/pii/S0959652622024180 (accessed on 10 February 2025). [CrossRef]
- Zhao, Z.; Jiang, G.; Mao, R. Effects of particle sizes of rock phosphate on immobilizing heavy metals in lead zinc mine soils. J. Soil Sci. Plant Nutr. 2014, 14, 258–266. [Google Scholar] [CrossRef]
- Ren, J.; Huang, H.; Zhang, Z.; Xu, X.; Zhao, L.; Qiu, H.; Cao, X. Enhanced microbial reduction of Cr (VI) in soil with biochar acting as an electron shuttle: Crucial role of redox-active moieties. Chemosphere 2023, 328, 138601. [Google Scholar] [CrossRef]
- MINAM. Guia para el Muestreo de Suelos. 2014. Available online: https://www.gob.pe/institucion/minam/informes-publicaciones/2702-guia-para-muestreo-de-suelos (accessed on 23 April 2025).
- Sarker, S.K.; Bruckard, W.; Haque, N.; Roychand, R.; Bhuiyan, M.; Pramanik, B.K. Characterization of a carbonatite-derived mining tailing for the assessment of rare earth potential. Process Saf. Environ. Prot. 2023, 173, 154–162. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, R.; Zhao, B.; Fan, G.; Li, H.; Xu, X.; Zhang, M. Preparation of porous biochars by the co-pyrolysis of municipal sewage sludge and hazelnut shells and the mechanism of the nano-zinc oxide composite and Cu (II) adsorption kinetics. Sustainability 2020, 12, 8668. [Google Scholar] [CrossRef]
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Hofmeister, A.M.; Keppel, E.; Speck, A.K. Absorption and reflection infrared spectra of MgO and other diatomic compounds. Mon. Not. R Astron. Soc. 2003, 345, 16–38. [Google Scholar] [CrossRef]
- Jiménez, E.I.; García, V.P. Relationships between organic carbon and total organic matter in municipal solid wastes and city refuse composts. Bioresour. Technol. 1992, 41, 265–272. [Google Scholar] [CrossRef]
- LECO Corporation. Carbon, Hydrogen, and Nitrogen in Coal 2013. 2013 [Cited 8 November 2022]. Available online: https://knowledge.leco.com/results/application-note-carbon-hydrogen-nitrogen-in-coke-using-chn828-629/viewdocument/1910 (accessed on 10 February 2025).
- Santos, R.V.; Mendes, M.A.A.; Alexandre, C.; Carrott, M.R.; Rodrigues, A.; Ferreira, A.F. Assessment of biomass and biochar of maritime pine as a porous medium for water retention in soils. Energies 2022, 15, 5882. [Google Scholar] [CrossRef]
- Hamoda, M.F.; Qdais, H.A.A.; Newham, J. Evaluation of municipal solid waste composting kinetics. Resour. Conserv. Recycl. 1998, 23, 209–223. [Google Scholar] [CrossRef]
- Cao, T.; Meng, J.; Liang, H.; Yang, X.; Chen, W. Can biochar provide ammonium and nitrate to poor soils?: Soil column incubation. J. Soil Sci. Plant Nutr. 2017, 17, 253–265. [Google Scholar] [CrossRef]
- Jara-Peña, E.; Gómez, J.; Montoya, H.; Chanco, M.; Mariano, M.; Cano, N. Capacidad fitorremediadora de cinco especies altoandinas de suelos contaminados con metales pesados. Rev. Peru. Biol. 2014, 21, 145–154. [Google Scholar] [CrossRef]
- Barandiarán Gamarra, M.Á. Manual Técnico Del Cultivo De Maíz Amarillo Duro. 2020. Available online: https://repositorio.inia.gob.pe/items/dae3e96f-ae5e-4857-868e-00fb6b308684 (accessed on 10 February 2025).
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef]
- Chandra, R.; Yadav, S.; Yadav, S. Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry. Ecol. Eng. 2017, 98, 134–145. [Google Scholar] [CrossRef]
- Gupta, A.K.; Sinha, S. Decontamination and/or revegetation of fly ash dykes through naturally growing plants. J. Hazard. Mater. 2008, 153, 1078–1087. [Google Scholar] [CrossRef]
Heavy Metals in Mining Tailings | ||||||
---|---|---|---|---|---|---|
As (mg/kg) | Cd (mg/kg) | Cr (mg/kg) | Cu (mg/kg) | Ni (mg/kg) | Pb (mg/kg) | Zn (mg/kg) |
1015.33 ± 5.03 | 17 ± 1.00 | 40.67 ± 0.58 | 288.30 ± 1.57 | 9.60 ± 0.53 | 3983.67 ± 29.50 | 9091.00 ± 79.96 |
Physicochemical Characteristics of Mining Tailings | ||||||
pH | EC | CaCO3 (%) | OM (%) | P (ppm) | K (ppm) | C.E.C. (meq/100 g) |
5.63 ± 0.02 | 7.14 ± 0.02 | 0.35 ± 0.01 | 3.02 ± 0.01 | 0.82 ± 0.03 | 96 ± 1.00 | 4.33 ± 0.02 |
Parameter | PB300 | PB500 | Compost |
---|---|---|---|
C (%) | 72.27 ± 1.00 | 80.870 ± 1.589 | 20.92 ±1.12 |
H (%) | 4.22 ± 0.07 | 3.357 ± 0.124 | - |
O (%) | 24.22 ± 1.00 | 17.887 ± 1.169 | - |
N (%) | 0.460 ± 0.03 | 0.603 ± 0.025 | 1.79 ± 0.10 |
S (%) | 0.017 ± 0.003 | 0.042 ± 0.006 | - |
E.C. (uS/cm) | 169.433 ± 5.164 | 255.60 ± 10.923 | 11.29 ± 1.35 |
TOM (%) | 54.597 ± 1.511 | 39.940 ± 2.359 | 35.02 ± 0.97 |
pH | 7.133 ± 0.071 | 7.933 ± 0.012 | 8.53 ± 0.25 |
CaO (%) | 0.147 ± 0.006 | 0.132 ±0.007 | 3.60 ± 0.49 |
MgO (%) | 0.052 ± 0.011 | 0.136 ± 0.038 | 0.64 ± 0.06 |
H/C | 0.058 | 0.041 | - |
O/C | 0.33 | 0.22 | - |
NO3 | - | - | 13.55 ± 1.18 |
NH4 | - | - | 1.35 ± 0.07 |
Heavy Metal | Biochar | Compost | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
IBI | EBC | G | AU | PBC300 | PBC500 | Korea | EU | USA | Compost | |
As (mg/kg) | ≤100 | <13 | ≤40 | ≤40 | 13.46 ± 0.772 | 24.453 ± 0.086 | 45 | 25 | 41 | 14.34 ± 0.48 |
Cd (mg/kg) | ≤39 | <1.5 | ≤1.5 | ≤3 | <0.0001 ± 0.00 | <0.0001 ± 0.00 | 5 | 0.7–10 | 39 | 2.23 ± 0.26 |
Cr (mg/kg) | ≤1200 | <90 | / | / | <0.0003 ± 0.00 | <0.0003 ± 0.00 | 200 | 70–200 | 1200 | 0.00021 ± 0.00 |
Cu (mg/kg) | ≤6000 | <100 | / | / | 0.0002 ± 0.00 | 0.8733 ± 0.086 | 360 | 70–600 | 1500 | 54.94 ± 2.32 |
Pb (mg/kg) | 300 | <150 | ≤150 | ≤100 | 0.0020 ± 0.001 | 0.0020 ± 0.000 | 130 | 70–1000 | 300 | 28.44 ± 2.31 |
Ni (mg/kg) | ≤420 | <50 | ≤80 | ≤100 | <0.0003 ± 0.00 | <0.0003 ± 0.00 | 45 | 20–200 | 420 | 0.00026 ± 0.00 |
Zn (mg/kg) | ≤7400 | <400 | / | / | 0.0001 ± 0.00 | 23.30 ± 3.176 | 900 | 210–4000 | 2800 | 173.63 ± 3.46 |
Run | B: Pyrolysis Temperature °C | A: Doses Mining Tailing % (w/w) | FBC-As | FT-As | FBC-Cd | FT-Cd | FBC-Pb | FT-Pb | FBC-Cr | FT-Cr | FBC-Ni | FT-Ni | FBC-Cu | FT-Cu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 500 | 30 | 0.012 | 0.023 | 0.018 | 0.182 | 0.015 | 0.011 | 0.101 | 0.208 | 0.043 | 0.217 | 0.035 | 0.111 |
2 | 500 | 60 | 0.059 | 0.004 | 0.068 | 0.043 | 0.037 | 0.006 | 0.100 | 0.222 | 0.070 | 0.147 | 0.122 | 0.018 |
3 | 300 | 60 | 0.015 | 0.011 | 0.019 | 0.229 | 0.022 | 0.011 | 0.109 | 0.260 | 0.074 | 0.171 | 0.066 | 0.079 |
4 | 300 | 30 | 0.039 | 0.022 | 0.013 | 0.308 | 0.005 | 0.040 | 0.066 | 0.313 | 0.047 | 0.250 | 0.014 | 0.290 |
5 | 300 | 60 | 0.015 | 0.010 | 0.024 | 0.154 | 0.029 | 0.010 | 0.090 | 0.239 | 0.072 | 0.167 | 0.066 | 0.067 |
6 | 500 | 30 | 0.008 | 0.037 | 0.018 | 0.316 | 0.011 | 0.029 | 0.087 | 0.225 | 0.048 | 0.316 | 0.053 | 0.067 |
7 | 500 | 30 | 0.010 | 0.028 | 0.030 | 0.190 | 0.012 | 0.017 | 0.077 | 0.314 | 0.048 | 0.300 | 0.055 | 0.198 |
8 | 300 | 30 | 0.023 | 0.017 | 0.015 | 0.364 | 0.004 | 0.039 | 0.113 | 0.240 | 0.071 | 0.267 | 0.019 | 0.224 |
9 | 300 | 60 | 0.018 | 0.012 | 0.024 | 0.212 | 0.020 | 0.013 | 0.058 | 0.385 | 0.038 | 0.294 | 0.053 | 0.125 |
10 | 300 | 30 | 0.023 | 0.015 | 0.013 | 0.308 | 0.004 | 0.034 | 0.097 | 0.488 | 0.071 | 0.400 | 0.019 | 0.394 |
11 | 500 | 60 | 0.045 | 0.004 | 0.077 | 0.030 | 0.064 | 0.006 | 0.135 | 0.318 | 0.112 | 0.164 | 0.124 | 0.017 |
12 | 500 | 60 | 0.049 | 0.004 | 0.084 | 0.035 | 0.064 | 0.003 | 0.119 | 0.400 | 0.099 | 0.200 | 0.141 | 0.024 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
BFC-As = 0.026 + 0.007 × A + 0.004 × B +0.014 × AB | |||||
Model | 0.003 | 3 | 0.001 | 27.74 | 0.0001 |
A-Mine Tailings Dosage | 0.0006 | 1 | 0.0006 | 16.83 | 0.0034 |
B-Pyrolysis Temperature | 0.0002 | 1 | 0.0002 | 5.57 | 0.046 |
AB | 0.0022 | 1 | 0.0022 | 60.8 | <0.0001 |
Pure Error | 0.0003 | 8 | 0 | ||
Cor Total | 0.0033 | 11 | |||
BFC-Cd = 0.034 + 0.0159 × A + 0.0157 × B + 0.012 × AB | |||||
Model | 0.0075 | 3 | 0.0025 | 82.12 | <0.0001 |
A-Mine Tailings Dosage | 0.003 | 1 | 0.003 | 98.59 | <0.0001 |
B-Pyrolysis Temperature | 0.003 | 1 | 0.003 | 96.69 | <0.0001 |
AB | 0.0016 | 1 | 0.0016 | 51.09 | <0.0001 |
Pure Error | 0.0002 | 8 | 0 | ||
Cor Total | 0.0078 | 11 | |||
BFC-Pb = 0.024 + 0.015 × A + 0.009 × B + 0.006 × AB | |||||
Model | 0.0044 | 3 | 0.0015 | 21.99 | 0.0003 |
A-Mine Tailings Dosage | 0.0028 | 1 | 0.0028 | 41.94 | 0.0002 |
B-Pyrolysis Temperature | 0.0012 | 1 | 0.0012 | 17.94 | 0.0029 |
AB | 0.0004 | 1 | 0.0004 | 6.1 | 0.0387 |
Pure Error | 0.0005 | 8 | 0.0001 | ||
Cor Total | 0.0049 | 11 | |||
BFC-Cr = 0.096 + 0.006 × A + 0.008 × B + 0.009 × AB | |||||
Model | 0.002 | 3 | 0.0007 | 1.56 | 0.2741 |
A-Mine Tailings Dosage | 0.0004 | 1 | 0.0004 | 0.9484 | 0.3586 |
B-Pyrolysis Temperature | 0.0006 | 1 | 0.0006 | 1.44 | 0.2647 |
AB | 0.001 | 1 | 0.001 | 2.28 | 0.1695 |
Pure Error | 0.0034 | 8 | 0.0004 | ||
Cor Total | 0.0054 | 11 | |||
BFC-Ni = 0.066 + 0.0116 × A + 0.004 × B + 0.012 × AB | |||||
Model | 0.0036 | 3 | 0.0012 | 4.41 | 0.0415 |
A-Mine Tailings Dosage | 0.0016 | 1 | 0.0016 | 5.83 | 0.0422 |
B-Pyrolysis Temperature | 0.0002 | 1 | 0.0002 | 0.7126 | 0.4231 |
AB | 0.0018 | 1 | 0.0018 | 6.68 | 0.0323 |
Pure Error | 0.0022 | 8 | 0.0003 | ||
Cor Total | 0.0057 | 11 | |||
BFC-Cu = 0.064 + 0.031 × A + 0.024 × B + 0.009 × AB | |||||
Model | 0.0201 | 3 | 0.0067 | 91.1 | <0.0001 |
A-Mine Tailings Dosage | 0.0119 | 1 | 0.0119 | 161.47 | <0.0001 |
B-Pyrolysis Temperature | 0.0072 | 1 | 0.0072 | 97.52 | <0.0001 |
AB | 0.0011 | 1 | 0.0011 | 14.32 | 0.0054 |
Pure Error | 0.0006 | 8 | 0.0001 | ||
Cor Total | 0.0207 | 11 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
TF-As = 0.015 + −0.008 × A + 0.001 × B + −0.005 × AB | |||||
Model | 0.0011 | 3 | 0.0004 | 22.36 | 0.0003 |
A-Mine Tailings Dosage | 0.0008 | 1 | 0.0008 | 49.75 | 0.0001 |
B-Pyrolysis Temperature | 0 | 1 | 0 | 0.8755 | 0.3768 |
AB | 0.0003 | 1 | 0.0003 | 16.45 | 0.0037 |
Pure Error | 0.0001 | 8 | 0 | ||
Cor Total | 0.0012 | 11 | |||
TF-Cd = 0.197 + −0.080 × A + −0.06 × B + −0.016 × AB | |||||
Model | 0.131 | 3 | 0.0437 | 21.18 | 0.0004 |
A-Mine Tailings Dosage | 0.0775 | 1 | 0.0775 | 37.58 | 0.0003 |
B-Pyrolysis Temperature | 0.0503 | 1 | 0.0503 | 24.42 | 0.0011 |
AB | 0.0032 | 1 | 0.0032 | 1.54 | 0.2493 |
Pure Error | 0.0165 | 8 | 0.0021 | ||
Cor Total | 0.1475 | 11 | |||
TF-Pb = 0.018 + −0.010 × A + −0.006 × B + 0.0035 × AB | |||||
Model | 0.0018 | 3 | 0.0006 | 24.35 | 0.0002 |
A-Mine Tailings Dosage | 0.0012 | 1 | 0.0012 | 49.53 | 0.0001 |
B-Pyrolysis Temperature | 0.0005 | 1 | 0.0005 | 18.86 | 0.0025 |
AB | 0.0001 | 1 | 0.0001 | 4.67 | 0.0627 |
Pure Error | 0.0002 | 8 | 0 | ||
Cor Total | 0.002 | 11 | |||
TF-Cr = 0.300 + 0.003 × A + −0.019 × B + 0.029 × AB | |||||
Model | 0.0151 | 3 | 0.005 | 0.5957 | 0.6353 |
A-Mine Tailings Dosage | 0.0001 | 1 | 0.0001 | 0.0131 | 0.9116 |
B-Pyrolysis Temperature | 0.0047 | 1 | 0.0047 | 0.5574 | 0.4767 |
AB | 0.0102 | 1 | 0.0102 | 1.22 | 0.3021 |
Pure Error | 0.0674 | 8 | 0.0084 | ||
Cor Total | 0.0825 | 11 | |||
TF-Ni = 0.241 + −0.050 × A + −0.017 × B + −0.003 × AB | |||||
Model | 0.0343 | 3 | 0.0114 | 2.95 | 0.0984 |
A-Mine Tailings Dosage | 0.0307 | 1 | 0.0307 | 7.91 | 0.0227 |
B-Pyrolysis Temperature | 0.0035 | 1 | 0.0035 | 0.901 | 0.3703 |
AB | 0.0001 | 1 | 0.0001 | 0.0306 | 0.8655 |
Pure Error | 0.031 | 8 | 0.0039 | ||
Cor Total | 0.0653 | 11 | |||
TF-Cu = 0.135 + −0.079 × A + −0.062 × B + 0.027 × AB | |||||
Model | 0.1306 | 3 | 0.0435 | 13.72 | 0.0016 |
A-Mine Tailings Dosage | 0.076 | 1 | 0.076 | 23.94 | 0.0012 |
B-Pyrolysis Temperature | 0.0461 | 1 | 0.0461 | 14.53 | 0.0052 |
AB | 0.0085 | 1 | 0.0085 | 2.68 | 0.1405 |
Pure Error | 0.0254 | 8 | 0.0032 | ||
Cor Total | 0.156 | 11 |
Model Indicators | BFC-As | TF-As | BFC-Cd | TF-Cd | BFC-Pb | TF-Pb | BFC-Cr | TF-Cr | BFC-Ni | TF-Ni | BFC-Cu | TF-Cu |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.91 | 0.89 | 0.97 | 0.89 | 0.89 | 0.90 | 0.37 | 0.18 | 0.62 | 0.53 | 0.97 | 0.84 |
Adjusted R2 | 0.88 | 0.85 | 0.96 | 0.85 | 0.85 | 0.86 | 0.13 | −0.12 | 0.48 | 0.35 | 0.96 | 0.78 |
Predicted R2 | 0.80 | 0.76 | 0.93 | 0.75 | 0.76 | 0.78 | −0.42 | −0.84 | 0.15 | −0.07 | 0.94 | 0.63 |
Adeq Precision | 11.90 | 11.11 | 19.76 | 11.07 | 10.71 | 11.38 | 2.71 | 1.85 | 5.00 | 3.76 | 22.58 | 8.70 |
Std. Dev. | 0.01 | 0.00 | 0.01 | 0.05 | 0.01 | 0.00 | 0.02 | 0.09 | 0.02 | 0.06 | 0.01 | 0.06 |
Mean | 0.03 | 0.02 | 0.03 | 0.20 | 0.02 | 0.02 | 0.10 | 0.30 | 0.07 | 0.24 | 0.06 | 0.13 |
C.V.% | 22.87 | 25.77 | 16.46 | 22.99 | 34.25 | 27.25 | 21.59 | 30.49 | 24.86 | 25.82 | 13.43 | 41.86 |
Biochar | Compost | Mining Tailing (% w/w) | Component | Codification |
---|---|---|---|---|
PBC300 | YES | 30% | Soil + Zea mays L. | PBC300CP30 |
PBC300 | YES | 60% | Soil + Zea mays L. | PBC300CP60 |
PBC500 | YES | 30% | Soil + Zea mays L. | PBC500CP30 |
PBC500 | YES | 60% | Soil + Zea mays L. | PBC500CP60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Virú-Vasquez, P.; Pilco-Nuñez, A.; Tineo-Cordova, F.; Madueño-Sulca, C.T.; Quispe-Ojeda, T.C.; Arroyo-Paz, A.; Alvarez-Arteaga, R.; Velasquez-Zuñiga, Y.; Oscanoa-Gamarra, L.L.; Saldivar-Villarroel, J.; et al. Integrated Biochar–Compost Amendment for Zea mays L. Phytoremediation in Soils Contaminated with Mining Tailings of Quiulacocha, Peru. Plants 2025, 14, 1448. https://doi.org/10.3390/plants14101448
Virú-Vasquez P, Pilco-Nuñez A, Tineo-Cordova F, Madueño-Sulca CT, Quispe-Ojeda TC, Arroyo-Paz A, Alvarez-Arteaga R, Velasquez-Zuñiga Y, Oscanoa-Gamarra LL, Saldivar-Villarroel J, et al. Integrated Biochar–Compost Amendment for Zea mays L. Phytoremediation in Soils Contaminated with Mining Tailings of Quiulacocha, Peru. Plants. 2025; 14(10):1448. https://doi.org/10.3390/plants14101448
Chicago/Turabian StyleVirú-Vasquez, Paul, Alex Pilco-Nuñez, Freddy Tineo-Cordova, César Toribio Madueño-Sulca, Teodosio Celso Quispe-Ojeda, Antonio Arroyo-Paz, Ruby Alvarez-Arteaga, Yessenia Velasquez-Zuñiga, Luis Lizardo Oscanoa-Gamarra, Juan Saldivar-Villarroel, and et al. 2025. "Integrated Biochar–Compost Amendment for Zea mays L. Phytoremediation in Soils Contaminated with Mining Tailings of Quiulacocha, Peru" Plants 14, no. 10: 1448. https://doi.org/10.3390/plants14101448
APA StyleVirú-Vasquez, P., Pilco-Nuñez, A., Tineo-Cordova, F., Madueño-Sulca, C. T., Quispe-Ojeda, T. C., Arroyo-Paz, A., Alvarez-Arteaga, R., Velasquez-Zuñiga, Y., Oscanoa-Gamarra, L. L., Saldivar-Villarroel, J., Césare-Coral, M. F., & Nuñez-Bustamante, E. (2025). Integrated Biochar–Compost Amendment for Zea mays L. Phytoremediation in Soils Contaminated with Mining Tailings of Quiulacocha, Peru. Plants, 14(10), 1448. https://doi.org/10.3390/plants14101448