Comparative Analysis of Five Moroccan Thyme Species: Insights into Chemical Composition, Antioxidant Potential, Anti-Enzymatic Properties, and Insecticidal Effects
Abstract
:1. Introduction
2. Results
2.1. Yield and Analysis of Essential Oils
2.2. Antioxidant Properties
2.3. Aphicidal Effect of EOs
2.4. Enzyme Inhibitory Activities
3. Discussion
4. Materials and Methods
4.1. Plant Material and Essential Oil Isolation
4.2. Plant Mineral Analysis
4.3. GC Analysis
4.4. GC-MS Analysis
4.5. Insect Rearing
4.6. Antioxidant Activities
4.6.1. DPPH Assay
4.6.2. Reducing Power Determination (FRAP)
4.6.3. β-Carotene Bleaching Test
4.7. Aphicidal Activity of EOs
4.8. Enzyme Inhibitory Properties
4.8.1. AChE Inhibition
4.8.2. Tyrosinase Inhibition
4.8.3. α-Glucosidase Inhibition
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassan, A.; Mouhamed, O.; Abdelaziz, M.; Lhou, M. Impact of Climate Change on the Insect and Mite Pests of Moroccan Citrus. In Climate Change and the Economic Importance and Damages of Insects; Karmaoui, A., Ed.; IGI Global: New York, NY, USA, 2023; pp. 48–72. [Google Scholar] [CrossRef]
- Li, X.; He, T.; Wang, X.; Shen, M.; Yan, X.; Fan, S.; Wang, L.; Wang, X.; Xu, X.; Sui, H.; et al. Traditional uses, chemical constituents and biological activities of plants from the genus Thymus. Chem. Biodivers. 2019, 16, e1900254. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Setzer, W.N. Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for coronaviruses: Future perspectives. Plants 2020, 9, 800. [Google Scholar] [CrossRef]
- Messaoudi, M.; Rebiai, A.; Sawicka, B.; Atanassova, M.; Ouakouak, H.; Larkem, I.; Egbuna, C.; Awuchi, C.G.; Boubekeur, S.; Ferhat, M.A.; et al. Effect of extraction methods on polyphenols, flavonoids, mineral elements, and biological activities of essential oil and extracts of Mentha pulegium L. Molecules 2021, 27, 11. [Google Scholar] [CrossRef]
- Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed Pharmacol. 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Yang, F.; Dong, X.; Yin, X.; Wang, W.; You, L.; Ni, J. Radix Bupleuri: A Review of Traditional Uses, Botany, Phytochemistry, Pharmacology, and Toxicology. BioMed Res. Int. 2017, 2017, 7597596. [Google Scholar] [CrossRef] [PubMed]
- Stahl-Biskup, E.; Sáez, F. Thyme: The Genus Thymus; Taylor and Francis: London, UK, 2002. [Google Scholar]
- Benabid, A. Flore et Ecosystème du Maroc; Ibis Press: Paris, France, 2000; pp. 130–221. [Google Scholar]
- Kmail, A. Mitigating digestive disorders: Action mechanisms of Mediterranean herbal active compounds. Open Life Sci. 2024, 19, 20220857. [Google Scholar] [CrossRef]
- Khouya, T.; Ramchoun, M.; Hmidani, A.; Amrani, S.; Harnafi, H.; Benlyas, M.; Filali Zegzouti, Y.; Alem, C. Anti-inflammatory, anticoagulant and antioxidant effects of aqueous extracts from Moroccan thyme varieties. Asian Pac. J. Trop. Biomed. 2015, 5, 636–644. [Google Scholar] [CrossRef]
- El Yaagoubi, M.; Mechqoq, H.; El Hamdaoui, A.; Mukku, V.J.; El Mousadik, A.; Msanda, F.; El Aouad, N. A review on Moroccan Thymus species: Traditional uses, essential oils chemical composition and biological effects. J. Ethnopharmacol. 2021, 278, 114205. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G. A review on applications and uses of Thymus in the food industry. Plants 2020, 9, 961. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Maksimović, M. Chemical composition and bioactivity of essential oil from Thymus species in Balkan Peninsula. Phytochem. Rev. 2015, 14, 335–352. [Google Scholar] [CrossRef]
- Kant, R.; Kumar, A. Review on essential oil extraction from aromatic and medicinal plants: Techniques, performance and economic analysis. Sustain. Chem. Pharm. 2022, 30, 100829. [Google Scholar] [CrossRef]
- Ouknin, M.; Alahyane, H.; Aboussaid, H.; Oufdou, K.; Messoussi, S.E.; Costa, J.; Majidi, L. Acaricidal properties of essential oils from Moroccan thyme against oriental red mite, Eutetranychus Orientalis (Klein) (Acari: Tetranychidae). J. Essent. Oil Bear. Plants 2021, 24, 329–341. [Google Scholar] [CrossRef]
- Ouknin, M.; Alahyane, H.; Costa, J.; Majidi, L. Chemical composition, antioxidant and anti-enzymatic activities, and in vitro insecticidal potential of Origanum compactum (Benth.) essential oils. Plants 2024, 13, 2424. [Google Scholar] [CrossRef] [PubMed]
- Ben Elhadj Ali, I.; Yangui, I.; Raadani, A.; Guetat, A.; Hmissi, S.; Flihi, J.; Boussaid, M.; Messaoud, C. Thymus algeriensis Boiss. et Reut., a north African endemic plant species: Genetic diversity and population structure as assessed by molecular markers, a pioneer step for conservation implications. Mol. Biol. Rep. 2024, 51, 534. [Google Scholar] [CrossRef] [PubMed]
- Morshedloo, M.R.; Salami, S.A.; Nazeri, V.; Maggi, F.; Craker, L. Essential oil profile of oregano (Origanum vulgare L.) populations grown under similar soil and climate conditions. Ind. Crops Prod. 2018, 119, 183–190. [Google Scholar] [CrossRef]
- Beicu, R.; Alexa, E.; Obiștioiu, D.; Cocan, I.; Imbrea, F.; Pop, G.; Circioban, D.; Moisa, C.; Lupitu, A.; Copolovici, L.; et al. Antimicrobial potential and phytochemical profile of wild and cultivated populations of Thyme (Thymus sp.) growing in Western Romania. Plants 2021, 10, 1833. [Google Scholar] [CrossRef] [PubMed]
- Aabouch, F.; Satrani, B.; Ameggouz, M.; Ettaleb, I.; Assouguem, A.; Kara, M.; Ullah, R.; Bari, A.; Kaur, S.; Ghanmi, M.; et al. Wild Thymus zygis L. ssp. gracilis and Eucalyptus camaldulensis Dehnh.: Chemical composition, antioxidant and antibacterial activities of essential oils. Open Chem. 2024, 22, 20240050. [Google Scholar] [CrossRef]
- Rota, M.C.; Herrera, A.; Martínez, R.M.; Sotomayor, J.A.; Jordán, M.J. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Bounatirou, S.; Smiti, S.; Miguel, M.G.; Faleiro, M.L.; Rejeb, M.N.; Neffati, M.; Costa, M.M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Chemical composition, antioxidant, and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chem. 2007, 105, 146–155. [Google Scholar] [CrossRef]
- Jaafari, A.; Mouse, H.A.; Rakib, E.M.; M’barek, L.A.; Tilaoui, M.; Benbakhta, C.; Boulli, A.; Abbad, A.; Zyad, A. Chemical composition and antitumor activity of different wild varieties of Moroccan thyme. Rev. Bras. Farmacogn. 2007, 17, 477–491. [Google Scholar] [CrossRef]
- Ceylan, R.; Zengin, G.; Uysal, S.; Ilhan, V.; Aktumsek, A.; Kandemir, A.; Anwar, F. GC-MS analysis and in vitro antioxidant and enzyme inhibitory activities of essential oil from aerial parts of endemic Thymus spathulifolius Hausskn. et Velen. J. Enzym. Inhib. Med. Chem. 2016, 31, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Güven, L.; Behbudbayli, U.; Ertürk, A.; Hancı, H.; Yılmaz, B.; Kaya, Y.; Gülçin, İ. Determination of antioxidant, antimicrobial, anticholinesterase, antityrosinase, antidiabetic and antiglaucoma activities of essential oils from three different Thymus species and their chemical characterization by GC-MS analysis. J. Essent. Oil Bear. Plants 2023, 26, 1424–1446. [Google Scholar] [CrossRef]
- Silva, A.M.; Martins-Gomes, C.; Souto, E.B.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M. Thymus zygis subsp. zygis an endemic portuguese plant: Phytochemical profiling, antioxidant, anti-proliferative and anti-inflammatory activities. Antioxidants 2020, 9, 482. [Google Scholar] [CrossRef]
- Radi, F.Z.; Bencheikh, N.; Bouhrim, M.; Noman, O.M.; Mothana, R.A.; Ibrahim, M.N.; Bnouham, M.; Zair, T. Phytochemical analysis, antioxidant, antimicrobial and antihyperglycemic activities and adverse effect assessment of Thymus zygis L. and Thymus willdenowii Bois. J. Biol. Regul. Homeost. Agents 2023, 37, 6113–6130. [Google Scholar] [CrossRef]
- Karamanoli, K.; Ainalidou, A.; Bouzoukla, F.; Vokou, D. Decomposition profiles of leaf essential oils in the soil environment. Ind. Crops Prod. 2018, 124, 397–401. [Google Scholar] [CrossRef]
- Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem. 2009, 17, 4022–4034. [Google Scholar] [CrossRef]
- Ghalbane, I.; Alahyane, H.; Aboussaid, H.; Chouikh, N.E.; Costa, J.; Romane, A.; El Messoussi, S. Chemical composition and insecticidal properties of Moroccan Lavandula dentata and Lavandula stoechas essential oils against Mediterranean fruit fly, Ceratitis Capitata Neotrop. Entomol. 2022, 51, 628–636. [Google Scholar] [CrossRef]
- Khaled, W.; Fekih, B.I.; Chaieb, I.; Souissi, R.; Harbaoui, I.; Boukhris-Bouhachem, S. Insecticidal activity assessment of Thymus capitatus essential oils in combination with natural abrasives against Myzus persicae. Tunis. J. Plant Prot. 2017, 12, 49–59. [Google Scholar]
- Modarres Najafabadi, S.S.; Bagheri, A.; Seyahooei, M.A.; Zamani, H.; Goodarzi, A. Effects of thyme and rosemary essential oils on population growth parameters of Macrosiphum rosae (Hemiptera: Aphididae) on cut flower rose. J. Crop Prot. 2018, 7, 51–63. [Google Scholar]
- Oulebsir-Mohandkaci, H.; Kaki, S.A.; Doumandji-Mitiche, B. Essential oils of two Algerian aromatic plants Thymus vulgaris and Eucalyptus globulus as bio-insecticides against aphid Myzus persicae (Homoptera: Aphididae). Wulf J. 2015, 22, 185–197. [Google Scholar]
- Ikbal, C.; Pavela, R. Essential oils as active ingredients of botanical insecticides against aphids. J. Pest Sci. 2019, 92, 971–986. [Google Scholar] [CrossRef]
- Saïfi, R.; Saïfi, H.; Akca, İ.; Benabadelkader, M.; Askın, A.K.; Belghoul, M. Insecticidal and repellent effects of Mentha longifolia L. essential oil against Aphis craccivora Koch (Hemiptera: Aphididae). Chem. Biol. Technol. Agric. 2023, 10, 18. [Google Scholar] [CrossRef]
- Fakchich, J.; Elachouri, M. An overview on ethnobotanico-pharmacological studies carried out in Morocco, from 1991 to 2015: Systematic review (part 1). J. Ethnopharmacol. 2021, 267, 113200. [Google Scholar] [CrossRef]
- Macrae, R.; Robinson, R.K.; Sadler, M.J. Encyclopaedia of Food Science, Food Technology and Nutrition; Academic Press: London, UK, 1993; p. 5365. [Google Scholar]
- El Ansari, Z.N.; Boussaoudi, I.; Benkaddour, R.; Hamdoun, O.; Lemrini, M.; Martin, P.; Badoc, A.; Lamarti, A. Conservation of Thymus pallidus Cosson ex Batt. by shoot tip and axillary bud in vitro culture. J. Plant Biotechnol. 2020, 47, 53–65. [Google Scholar] [CrossRef]
- Sanchez-Castillo, C.P.; Dewey, P.J.; Aguirre, A.; Lara, J.J.; Vaca, R.; de la Barra, P.L.; Ortiz, M.; Escamilla, I.; James, W.P.T. The mineral content of Mexican fruits and vegetables. J. Food Compos. Anal. 1998, 11, 340–356. [Google Scholar] [CrossRef]
- Hammoudi Halat, D.; Krayem, M.; Khaled, S.; Younes, S. A focused insight into thyme: Biological, chemical, and therapeutic properties of an indigenous Mediterranean herb. Nutrients 2022, 14, 2104. [Google Scholar] [CrossRef] [PubMed]
- Elbouny, H.; Ouahzizi, I.; Bakali, A.H.; Sellam, K.; Alem, C. A review on Moroccan thyme species: Ethnopharmacological, phytochemical, and biological aspects. Egypt. Pharm. J. 2022, 21, 401–410. [Google Scholar] [CrossRef]
- Joulain, D.; König, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons; EB-Verlag: Hamburg, Germany, 1998. [Google Scholar]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Custódio, L.; Silvestre, L.; Rocha, M.I.; Rodrigues, M.J.; Vizetto-Duarte, C.; Pereira, H.; Barreira, L.; Varela, J. Methanol extracts from Cystoseira tamariscifolia and Cystoseira nodicaulis are able to inhibit cholinesterases and protect a human dopaminergic cell line from hydrogen peroxide-induced cytotoxicity. Pharm. Biol. 2016, 54, 1687–1696. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Quality Control Methods for Medicinal Plant Materials; WHO: Geneva, Switzerland, 1998. [Google Scholar]
- Ouknin, M.; Romane, A.; Arjouni, M.Y.; Majidi, L. Mineral composition, multivariate analysis of some oligo-elements and heavy metals in some species of genus Thymus. J. Mater. Environ. Sci. 2018, 9, 980–985. [Google Scholar]
- Wang, J.; Liu, Z.; Dou, J.; Lv, J.; Jin, N.; Jin, L.; Li, Z.; Zhang, B.; Tang, Z.; Yu, J. A comparative study on the nutrients, mineral elements, and antioxidant compounds in different types of cruciferous vegetables. Agronomy 2022, 12, 3121. [Google Scholar] [CrossRef]
- Radi, F.Z.; Bouhrim, M.; Mechchate, H.; Al-zahrani, M.; Qurtam, A.A.; Abdulmalik Aleissa, M.; Drioiche, A.; Handaq, N.; Zair, T. Phytochemical analysis, antimicrobial and antioxidant properties of Thymus zygis L. and Thymus willdenowii Boiss. essential oils. Plants 2021, 11, 15. [Google Scholar] [CrossRef]
- El Idrissi, M.; Idrissi, E.L. Caractérisation chimique de certaines espèces de thym Marocain du Moyen Atlas (Région de Khenifra). Sci. Lib. 2014, 6, 140906. [Google Scholar]
- Benabderrahmane, A.; Atmani, M.; Boutagayout, A.; Rhioui, W.; Belmalha, S. Phytochemical investigation of Thymus zygis L. and Salvia officinalis L. collected from Fez-Meknes Region, Morocco. Egypt. J. Bot. 2023, 63, 581–593. [Google Scholar] [CrossRef]
- Jamali, C.A.; Kasrati, A.; Bekkouche, K.; Hassani, L.; Wohlmuth, H.; Leach, D.; Abbad, A. Phenological changes to the chemical composition and biological activity of the essential oil from Moroccan endemic thyme (Thymus maroccanus Ball). Ind. Crops Prod. 2013, 49, 366–372. [Google Scholar] [CrossRef]
- El-Bakkal, S.E.; Zeroual, S.; Elouazkiti, M.; Mansori, M.; Bouamama, H.; Zehhar, N.; El-Kaoua, M. Comparison of yield chemical composition and biological activities of essential oils obtained from Thymus pallidus and Thymus satureioides Coss. grown in wild and cultivated conditions in Morocco. J. Essent. Oil Bear. Plants 2020, 23, 1–14. [Google Scholar] [CrossRef]
- Tagnaout, I.; Zerkani, H.; Hadi, N.; El Moumen, B.; El Makhoukhi, F.; Bouhrim, M.; Al-Salahi, R.; Nasr, F.A.; Mechchate, H.; Zair, T. Chemical composition, antioxidant and antibacterial activities of Thymus broussonetii Boiss and Thymus capitatus (L.) Hoffmann and Link essential oils. Plants 2022, 11, 954. [Google Scholar] [CrossRef]
- Zeghib, A.; Calliste, C.A.; Simon, A.; Charfeddine, R.; Aouni, M.; Duroux, J.L.; Kabouche, A.; Kabouche, Z. Chemical composition and biological potential of Thymus willdenowii Boiss. & Reut. essential oil. Nat. Prod. Res. 2021, 35, 845–848. [Google Scholar] [CrossRef]
- Tsiftsoglou, O.S.; Stagiopoulou, R.; Krigas, N.; Lazari, D. Exploring the ecological preferences and essential oil variability in wild-growing populations of the endangered local Greek endemic Thymus holosericeus (Lamiaceae). Plants 2023, 12, 348. [Google Scholar] [CrossRef] [PubMed]
- El Bouzidi, L.; Jamali, C.A.; Bekkouche, K.; Hassani, L.; Wohlmuth, H.; Leach, D.; Abbad, A. Chemical composition, antioxidant and antimicrobial activities of essential oils obtained from wild Moroccan Thymus species. Ind. Crops Prod. 2013, 43, 450–456. [Google Scholar] [CrossRef]
- Sbayou, H.; Boumaza, A.; Hilali, A.; Amghar, S. Chemical composition and antibacterial and antioxidant activities of Thymus satureioides Coss. essential oil. Int. J. Pharm. Pharm. Sci. 2016, 8, 179. [Google Scholar] [CrossRef]
- Amiri, H. Essential oils composition and antioxidant properties of three Thymus species. Evid. Based Complement. Altern. Med. 2012, 2012, 728065. [Google Scholar] [CrossRef] [PubMed]
- Youdim, K.A.; Deans, S.G.; Finlayson, H.J. The antioxidant properties of thyme (Thymus zygis L.) essential oil: An inhibitor of lipid peroxidation and a free radical scavenger. J. Essent. Oil Res. 2002, 14, 210–215. [Google Scholar] [CrossRef]
- Gavaric, N.; Mozina, S.S.; Kladar, N.; Bozin, B. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. J. Essent. Oil Bear. Plants 2015, 18, 1013–1021. [Google Scholar] [CrossRef]
- Dandlen, S.A.; Lima, A.S.; Mendes, M.D.; Miguel, M.G.; Faleiro, M.L.; Sousa, M.J.; Pedro, L.G.; Barroso, J.G.; Figueiredo, A.C. Antioxidant activity of six Portuguese thyme species essential oils. Flavour Fragr. J. 2010, 25, 150–155. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.D.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef] [PubMed]
- Escobar, A.; Perez, M.; Romanelli, G.; Blustein, G. Thymol bioactivity: A review focusing on practical applications. Arab. J. Chem. 2020, 13, 9243–9269. [Google Scholar] [CrossRef]
- Zhu, J.; Lai, Y.; Wu, Y.; Wang, J.; Wei, J.; Xu, H. Insecticidal activity of essential oils and their synergistic effect on improving the efficacy of β-cypermethrin against Blattella germanica. J. Agric. Food Chem. 2024, 72, 10295–10303. [Google Scholar] [CrossRef] [PubMed]
- Alahyane, H.; Ouknin, M.; Aboussaid, H.; El Messoussi, S.; Costa, J.; Majidi, L. Biological activities of essential oils from Moroccan plants against the honey bee ectoparasitic mite, Varroa destructor. Int. J. Acarol. 2022, 48, 50–56. [Google Scholar] [CrossRef]
- Benchouikh, A.; Allam, T.; Kribii, A.; Ounine, K. The study of the insecticidal effect of Nigella sativa essential oil against Tuta absoluta larvae. Int. J. Sci. Technol. Res. 2015, 4, 88–90. [Google Scholar]
- Yakhlef, G.; Hambaba, L.; Pinto, D.C.G.A.; Silva, A.M.S. Chemical composition and insecticidal, repellent and antifungal activities of essential oil of Mentha rotundifolia (L.) from Algeria. Ind. Crops Prod. 2020, 158, 112988. [Google Scholar] [CrossRef]
- Isman, M.B.; Miresmailli, S.; Machial, C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011, 10, 197–204. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Palma, E.; Marrelli, M.; Conforti, F.; Musolino, V.; Carresi, C.; Lupia, C.; Ceniti, C.; Tilocca, B.; et al. Essential oils for a sustainable control of honeybee varroosis. Vet. Sci. 2023, 10, 308. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, W.; Jian, R.; Ren, X.; Chen, X.; Hong, W.D.; Wu, M.; Cai, J.; Lao, C.; Xu, X.; et al. Larvicidal, acetylcholinesterase inhibitory activities of four essential oils and their constituents against Aedes albopictus, and nanoemulsion preparation. J. Pest Sci. 2023, 96, 961–971. [Google Scholar] [CrossRef]
- Tomova, B.S.; Waterhouse, J.S.; Doberski, J. The effect of fractionated tagetes oil volatiles on aphid reproduction. Entomol. Exp. Appl. 2005, 115, 153–159. [Google Scholar] [CrossRef]
- Petrakis, E.A.; Kimbaris, A.C.; Perdikis, D.C.; Lykouressis, D.P.; Tarantilis, P.A.; Polissiou, M.G. Responses of Myzus persicae (Sulzer) to three Lamiaceae essential oils obtained by microwave-assisted and conventional hydrodistillation. Ind. Crops Prod. 2014, 62, 272–279. [Google Scholar] [CrossRef]
- Sayed, S.; Soliman, M.M.; Al-Otaibi, S.; Hassan, M.M.; Elarrnaouty, S.-A.; Abozeid, S.M.; El-Shehawi, A.M. Toxicity, deterrent and repellent activities of four essential oils on Aphis punicae (Hemiptera: Aphididae). Plants 2022, 11, 463. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, D.M.; Petrakis, E.A.; Arvaniti, K.A.; Kimbaris, A.C.; Polissiou, M.G.; Perdikis, D.C. Comparative bioactivity of essential oils from two Mentha pulegium (Lamiaceae) chemotypes against Aphis gossypii, Aphis spiraecola, Tetranychus urticae and the generalist predator Nesidiocoris tenuis. Phytoparasitica 2019, 47, 683–692. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Setzer, W.N. Evaluation of the toxicity of Satureja intermedia C. A. Mey essential oil to storage and greenhouse insect pests and a predator ladybird. Foods 2020, 9, 712. [Google Scholar] [CrossRef]
- Askin, H.; Yildiz, M.; Ayar, A. Effects of thymol and carvacrol on acetylcholinesterase from Drosophila melanogaster. Acta Phys. Pol. A 2017, 132, 720–722. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Miguel, M.G. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules 2011, 16, 7672–7690. [Google Scholar] [CrossRef] [PubMed]
- Park, C.G.; Jang, M.; Yoon, K.A.; Kim, J. Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Ind. Crops Prod. 2016, 89, 507–513. [Google Scholar] [CrossRef]
- Cutillas, A.B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Thymus mastichina L. essential oils from Murcia (Spain): Composition and antioxidant, antienzymatic and antimicrobial bioactivities. PLoS ONE 2018, 13, e0190790. [Google Scholar] [CrossRef]
- Kim, M.; Sowndhararajan, K.; Kim, S. The chemical composition and biological activities of essential oil from Korean native thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.). Molecules 2022, 27, 4251. [Google Scholar] [CrossRef]
- Di Martile, M.; Garzoli, S.; Ragno, R.; Del Bufalo, D. Essential oils and their main chemical components: The past 20 years of preclinical studies in melanoma. Cancers 2020, 12, 2650. [Google Scholar] [CrossRef] [PubMed]
- Maddheshiya, S.; Ahmad, A.; Ahmad, W.; Zakir, F.; Aggarwal, G. Essential oils for the treatment of skin anomalies: Scope and potential. S. Afr. J. Bot. 2022, 151, 187–197. [Google Scholar] [CrossRef]
- Benkhedir, A.; Boussekine, S.; Saker, H.; Gasmi, S.; Benali, Y. Beneficial effects of Rosmarinus officinalis and Thymus numidicus on key enzymes of carbohydrate metabolism in alloxan-induced diabetic rats. J. Microbiol. Biotechnol. Food Sci. 2023, 12, e9507. [Google Scholar] [CrossRef]
- Azhar, J.; John, P.; Bhatti, A. Thymus serpyllum exhibits anti-diabetic potential in streptozotocin-induced diabetes mellitus type 2 mice: A combined biochemical and in vivo study. Nutrients 2022, 14, 3561. [Google Scholar] [CrossRef]
- Fennane, M.; Ibn Tattou, M.; Mathez, J. Practical flora of Morocco: Manual of determination of vascular plants. In Pteridophyta, Gymnospermae, Angiospermae (Lauraceae-Neuradaceae); Travaux Institut Scientifique: Rabat, Morocco, 1999; Volume 1. [Google Scholar]
- European Pharmacopoeia, 3rd ed.Council of Europe: Strasbourg, France, 1997; pp. 121–122.
- Van den Dool, H.; Kratz, P. A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Alahyane, H.; Ouknin, M.; Alahyane, A.; Aboussaid, H.; Oufdou, K.; El Messoussi, S.; Mounir, A.; Majidi, L. Aphicidal activities of Moroccan Bacillus thuringiensis strains against cotton aphid (Aphis gossypii). Biointerface Res. Appl. Chem 2021, 12, 3348–3356. [Google Scholar] [CrossRef]
- Ouknin, M.; Romane, A.; Costa, J.; Majidi, L. Comparative study of the chemical profiling, antioxidant and antimicrobial activities of essential oils of different parts of Thymus willdenowii Boiss & Reut. Nat. Prod. Res. 2019, 33, 2398–2401. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Masuda, T.; Yamashita, D.; Takeda, Y.; Yonemori, S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci. Biotechnol. Biochem. 2005, 69, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.I.; Apostolidis, E.; Shetty, K. In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresour. Technol. 2008, 99, 2981–2988. [Google Scholar] [CrossRef] [PubMed]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, UK, 1971; p. 333. [Google Scholar]
T. willdenowii Boiss | T. zygis. subsp. gracilis | T. broussonetii subsp. broussonetii | T. maroccanus | T. satureioides | |
---|---|---|---|---|---|
Al | 3.4 ± 0.8 ab | 1.8 ± 0.1 a | 5.4 ± 1.3 b | 3.8 ± 0.5 ab | 4.4 ± 0.9 b |
B | 0.3 ± 0.1 ab | 0.2 ± 0.1 a | 0.3 ± 0.1 bc | 0.2 ± 0.1 ab | 0.4 ± 0.1 c |
Ba | 0.2 ± 0.1 ab | 0.4 ± 0.1 c | 0.1 ± 0.1 a | 0.3 ± 0.1 b | 0.2 ± 0.1 ab |
Ca | 712.2 ± 16.0 d | 480.3 ± 10.0 ab | 518.2 ± 12.5 bc | 450.6 ± 21.0 ab | 534.0 ± 19.0 c |
Cr | 0.7 ± 0.1 c | 0.1 ± 0.1 a | 0.5 ± 0.1 bc | 1.6 ± 0.1 d | 0.4 ± 0.1 b |
Fe | 9.1 ± 4.4 ab | 1.9 ± 0.1 a | 15.2 ± 3.0 b | 3.3 ± 0.9 a | 14.0 ± 7.0 b |
K | 420.7 ± 14.0 c | 403.5 ± 14.0 c | 255.5 ± 12.0 a | 340.7 ± 16.0 b | 360.4 ± 14.0 b |
Mg | 150.7 ± 7.5 c | 123.1 ± 7.8 b | 100.4 ± 4.8 a | 111.6 ± 7.5 ab | 97.3 ± 5.7 a |
Mn | 0.4 ± 0.1 ab | 0.3 ± 0.1 a | 0.8 ± 0.1 b | 0.4 ± 0.1 a | 0.9 ± 0.2 b |
Na | 2.1 ± 0.1 a | 2.9 ± 0.6 ab | 3.1 ± 0.4 ab | 4.2 ± 1.1 bc | 4.7 ± 0.5 c |
P | 30.3 ± 3.0 cd | 11.9 ± 0.5 a | 24.9 ± 1.5 bc | 19.2 ± 2.5 ab | 38.0 ± 5.2 d |
Si | 3.9 ± 0.2 d | 2.3 ± 0.1 b | 1.2 ± 0.1 a | 2.8 ± 0.1 c | 4.5 ± 0.1 e |
Sn | 0.1 ± 0.1 a | 0.1 ± 0.1 a | 0.1 ± 0.1 a | 0.1 ± 0.1 a | 0.1 ± 0.1 a |
Zn | 0.5 ± 0.1 a | 0.4 ± 0.1 a | 1.1 ± 0.1 a | 3.8 ± 0.9 b | 0.7 ± 0.1 a |
N a | Components | b RI j | c RI a | d RI p | T1 e | T2 e | T3 e | T4 e | T5 e |
---|---|---|---|---|---|---|---|---|---|
1 | Tricyclene | 925 | 921 | 1016 | – | – | – | – | 0.3 |
2 | α-Thujene | 932 | 923 | 1026 | 0.6 | 0.2 | 1.1 | – | 0.1 |
3 | α-Pinene | 936 | 931 | 1026 | 0.8 | 1.2 | 9.1 | 8.6 | 6.8 |
4 | Camphene | 950 | 944 | 1072 | 1.0 | 1.6 | 7.2 | 0.3 | 12.5 |
5 | Oct-1-en-3-ol | 963 | 961 | 1448 | 0.3 | 0.4 | – | 0.8 | – |
6 | Octan-3-one | 964 | 966 | 1254 | 0.1 | 0.1 | 0.2 | 0.1 | – |
7 | β-Pinene | 978 | 971 | 1114 | 0.2 | 0.2 | 1.5 | 0.1 | 1.5 |
8 | Myrcene | 987 | 981 | 1163 | 1.6 | 1.2 | 2.4 | 0.1 | 1.5 |
9 | α-Phellandrene | 1002 | 1001 | 1168 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
10 | α-Terpinene | 1013 | 1011 | 1184 | 1.9 | 1.2 | 1.0 | 0.2 | 1.2 |
11 | p-Cymene | 1015 | 1013 | 1275 | 13.2 | 23.0 | 16.9 | 18.8 | 10.4 |
12 | Limonene | 1025 | 1020 | 1204 | 0.5 | 0.6 | 1.4 | 2.0 | 1.0 |
13 | 1,8 Cineole | 1024 | 1020 | 1210 | – | – | – | – | 0.3 |
14 | β-Phellandrene | 1023 | 1020 | 1216 | 0.2 | 0.2 | 0.4 | 0.3 | – |
15 | γ-Terpinene | 1051 | 1049 | 1245 | 15.9 | 8.9 | 5.4 | 0.1 | 5.1 |
16 | trans-Sabinene hydrate | 1053 | 1055 | 1462 | 0.5 | 0.1 | 0.3 | 0.1 | – |
17 | Nonen-3-ol | 1058 | 1065 | 1522 | – | 0.1 | – | – | – |
18 | cis-Linalool oxide THF | 1072 | 1074 | 1441 | 0.1 | 0.2 | 0.1 | 0.1 | – |
19 | Terpinolene | 1082 | 1082 | 1286 | 0.1 | 0.2 | 0.2 | – | 0.3 |
20 | Linalool | 1086 | 1086 | 1547 | 3.4 | 3.7 | 0.9 | 1.0 | 2.3 |
21 | Camphor | 1123 | 1121 | 1506 | – | – | 0.3 | 0.5 | 0.3 |
22 | Borneol | 1150 | 1152 | 1700 | 3.2 | 4.8 | 16.8 | 0.5 | 19.4 |
23 | Terpinen-4-ol | 1164 | 1164 | 1600 | 0.6 | 0.9 | 0.3 | 0.6 | – |
24 | α-Terpineol | 1176 | 1174 | 1694 | 0.1 | 0.2 | 0.4 | 3.5 | 3.5 |
25 | Carvacrol methylether | 1226 | 1225 | 1603 | 0.1 | 0.1 | – | – | 1.2 |
26 | Thymol | 1267 | 1278 | 2180 | 48.3 | 41.5 | 17.4 | 38.1 | 13.8 |
27 | Carvacrol | 1278 | 1284 | 2207 | 3.2 | 3.2 | 3.4 | 12.9 | 0.3 |
28 | β-Bourbonene | 1292 | 1385 | 1519 | – | – | – | – | 0.2 |
29 | α-Humulene | 1312 | 1452 | 1666 | – | – | – | – | 0.3 |
30 | γ-Muurolene | 1325 | 1472 | 1687 | – | – | – | – | 0.2 |
31 | trans-Caryophyllene | 1421 | 1416 | 1600 | 1.9 | 2.1 | 0.4 | 0.3 | 6.1 |
32 | Aromadendrene | 1443 | 1440 | 1609 | – | – | 1.0 | 0.9 | – |
33 | Ledene | 1491 | 1494 | 1700 | – | – | 4.0 | 0.7 | – |
34 | γ-Cadinene | 1507 | 1508 | 1754 | 0.1 | 0.1 | 0.1 | 0.1 | 0.4 |
35 | Calamenene | 1517 | 1511 | 1830 | 0.1 | 0.1 | 0.1 | 0.2 | – |
36 | δ-Cadinene | 1520 | 1517 | 1754 | 0.1 | 0.1 | 0.2 | 0.1 | 0.5 |
37 | Spathulenol | 1572 | 1565 | 2120 | 0.1 | 0.2 | 0.6 | 1.2 | – |
38 | Caryophyllene oxide | 1578 | 1570 | 1980 | 0.4 | 1.1 | 0.2 | 0.5 | 0.5 |
Oxygenated monoterpenes | 58.9 | 55.3 | 40.1 | 58.2 | 44.2 | ||||
Hydrocarbon monoterpenes | 37.0 | 38.8 | 46.6 | 30.7 | 41.5 | ||||
Oxygenated sesquiterpenes | 0.7 | 1.1 | 4.3 | 1.7 | 0.5 | ||||
Hydrocarbon sesquiterpenes | 2.2 | 2.4 | 2.5 | 2.3 | 8.1 | ||||
Total identified (%) | 98.8 | 97.6 | 93.5 | 92.9 | 95.3 |
Plants Code | DPPH (IC50 µg/mL) | FRAP (IC50 µg/mL) | β-Carotene (IC50 µg/mL) |
---|---|---|---|
T1 | 51.3 ± 0.5 a | 34.6 ± 0.6 b | 32.7 ± 1.2 a |
T2 | 70.6 ± 1.1 b | 47.4 ± 0.3 c | 52.0 ± 1.0 b |
T3 | 92.1 ± 1.1 c | 72.1 ± 0.8 d | 71.4 ± 1.3 c |
T4 | 114.8 ± 1.3 d | 114.3 ± 1.0 e | 127.5 ± 1.1 f |
T5 | 146.7 ± 0.7 e | 145.4 ± 1.9 f | 98.4 ± 0.6 e |
Gallic acid | 47.7 ± 0.5 a | 16.3 ± 0.9 a | 72.2 ± 0.8 c |
BHT | 169.0 ± 0.8 f | 36.9 ± 0.4 b | 92.6 ± 1.3 d |
Essential Oils | LC50 (Confidence Interval Limits) | Intercept ± SE | Slope ± SE | χ2 | p |
---|---|---|---|---|---|
T. willdenowii Boiss. | 6.2 (5.1–7.5) | 3.6 ± 0.4 | 1.8 ± 0.1 | 3.0 | 0.9 |
T. zygi subsp. gracilis | 7.1 (5.4–9.2) | 3.5 ± 0.6 | 1.8 ± 0.1 | 3.7 | 0.8 |
T. broussonnetii subsp. broussonnetii | 10.9 (8.4–14.1) | 3.1 ± 0.5 | 1.9 ± 0.1 | 10.3 | 0.7 |
T. maroccanus | 7.2 (5.7–9.1) | 3.2 ± 0.4 | 2.1 ± 0.1 | 0.4 | 1.0 |
T. satureioides | 15.9 (12.9–19.7) | 3.0 ± 0.4 | 1.6 ± 0.1 | 5.6 | 0.9 |
Plants Code | Essential Oil Doses (mg/mL) | AChE (%) | Tyrosinase (%) | α-Glucosidase (%) |
---|---|---|---|---|
T1 | 0.25 | 50.2 ± 0.6 c | 47.8 ± 0.3 b | 50.5 ± 0.4 b |
0.5 | 62.3 ± 0.6 e | 62.2 ± 0.4 e | 62.4 ± 1.0 d | |
0.75 | 80.3 ± 0.9 kl | 75.5 ± 0.7 h | 72.6 ± 0.7 f | |
1 | 96.4 ± 0.5 o | 89.6 ± 0.6 j | 89.5 ± 0.3 k | |
Positive control | 74.7 ± 0.9 gh | 87.6 ± 0.3 ij | 89.9 ± 0.1 k | |
T2 | 0.25 | 46.7 ± 0.5 b | 47.1 ± 0.4 b | 44.8 ± 0.6 a |
0.5 | 63.8 ± 0.2 e | 58.3 ± 0.4 d | 56.9 ± 0.3 c | |
0.75 | 78.5 ± 0.7 ijk | 70.5 ± 0.5 g | 67.8 ± 0.3 e | |
1 | 90.6 ± 0.4 n | 86.9 ± 0.3 ij | 86.4 ± 0.4 ij | |
Positive control | 75.7 ± 0.4 gh | 86.2 ± 0.4 i | 88.1 ± 0.5 jk | |
T3 | 0.25 | 55.7 ± 0.6 d | 43.7 ± 0.9 a | 45.3 ± 1.1 a |
0.5 | 73.2 ± 0.7 g | 53.1 ± 0.4 c | 57.8 ± 0.2 c | |
0.75 | 85.3 ± 0.5 m | 66.5 ± 0.4 f | 66.7 ± 0.2 e | |
1 | 90.5 ± 0.4 n | 77.5 ± 1.5 h | 79.4 ± 0.3 g | |
Positive control | 76.1 ± 0.5 ghi | 85.7 ± 0.4 i | 87.3 ± 0.3 jk | |
T4 | 0.25 | 47.5 ± 0.5 bc | 53.5 ± 0.4 c | 51.3 ± 0.5 b |
0.5 | 55.2 ± 0.5 d | 66.6 ± 0.5 f | 61.4 ± 0.4 d | |
0.75 | 67.6 ± 0.4 f | 76.3 ± 0.8 h | 71.4 ± 0.6 f | |
1 | 83.1 ± 0.4 lm | 85.2 ± 0.2 i | 82.0 ± 0.3 gh | |
Positive control | 78.9 ± 0.2 jk | 84.6 ± 0.3 i | 88.1 ± 0.3 jk | |
T5 | 0.25 | 43.3 ± 0.4 a | 53.5 ± 0.5 c | 51.3 ± 0.3 b |
0.5 | 53.4 ± 0.5 d | 66.5 ± 0.7 f | 61.7 ± 0.3 d | |
0.75 | 67.9 ± 0.4 f | 75.6 ± 0.6 h | 72.3 ± 0.9 f | |
1 | 83.4 ± 0.4 m | 86.4 ± 0.5 i | 84.1 ± 0.1 hi | |
Positive control | 77.6 ± 0.3 hij | 85.6 ± 0.4 i | 87.3 ± 0.3 jk |
Species Code | Species | Harvesting Site | Collection Time | GPS Coordinates | Voucher Specimen | Altitude (m) | Oil Yield (% (w/w)) |
---|---|---|---|---|---|---|---|
T1 | T. willdenowii Boiss. | Lahri (Khenifra) | Jun 2021 | 32°52′07.5″ N 5°38′10.6″ W | ER-21-55 | 830 | 3.7 ± 0.1 |
T2 | T. zygis subsp. gracilis | Ait Ishak (Khenifra) | Jun 2021 | 32°45′50.4″ N 5°43′59.6″ W | ER-21-60 | 1223 | 2.1 ± 0.1 |
T3 | T. broussonnetii subsp. Broussonnetii | Ounagha (Essaouira) | July 2021 | 31°31′43.7″ N 9°31′26.3″ W | ER-21-57 | 275 | 1.4 ± 0.1 |
T4 | T. maroccanus | Ait Ourir (Marrakech) | July 2021 | 31°33′57.4″ N 7°37′32.7″ W | ER-21-59 | 730 | 1.8 ± 0.1 |
T5 | T. satureioides | Ijoukak (Marrakech) | Jun 2021 | 30°59′51.6″ N 8°09′16.2″ W | ER-21-62 | 2422 | 1.6 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouknin, M.; Alahyane, H.; Ait Aabd, N.; Elgadi, S.; Lghazi, Y.; Majidi, L. Comparative Analysis of Five Moroccan Thyme Species: Insights into Chemical Composition, Antioxidant Potential, Anti-Enzymatic Properties, and Insecticidal Effects. Plants 2025, 14, 116. https://doi.org/10.3390/plants14010116
Ouknin M, Alahyane H, Ait Aabd N, Elgadi S, Lghazi Y, Majidi L. Comparative Analysis of Five Moroccan Thyme Species: Insights into Chemical Composition, Antioxidant Potential, Anti-Enzymatic Properties, and Insecticidal Effects. Plants. 2025; 14(1):116. https://doi.org/10.3390/plants14010116
Chicago/Turabian StyleOuknin, Mohamed, Hassan Alahyane, Naima Ait Aabd, Sara Elgadi, Youssef Lghazi, and Lhou Majidi. 2025. "Comparative Analysis of Five Moroccan Thyme Species: Insights into Chemical Composition, Antioxidant Potential, Anti-Enzymatic Properties, and Insecticidal Effects" Plants 14, no. 1: 116. https://doi.org/10.3390/plants14010116
APA StyleOuknin, M., Alahyane, H., Ait Aabd, N., Elgadi, S., Lghazi, Y., & Majidi, L. (2025). Comparative Analysis of Five Moroccan Thyme Species: Insights into Chemical Composition, Antioxidant Potential, Anti-Enzymatic Properties, and Insecticidal Effects. Plants, 14(1), 116. https://doi.org/10.3390/plants14010116