Chromosome Doubling Enhances Biomass and Carotenoid Content in Lycium chinense
Abstract
:1. Introduction
2. Results
2.1. Shoot Regeneration from Leaf Explants
2.2. Effect of Experimental Factors on the Survival Rate of Explants and the Efficiency of Polyploid Induction
2.3. Tetraploid Plants Identification
2.4. Stomatal and Chloroplast Characteristics Observation
2.5. Comparative Analysis of Growth Traits
2.6. Determination and Analysis of Photosynthetic Pigments in Leaves
2.7. Analysis of the Anatomical Structure of the Leaf
2.8. Comparative Analysis of Nutrient Content in Leaves
2.9. Analysis of Carotenoid Composition and Content in Leaves
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Adventitious Shoot Regeneration from Leaf Explants
4.3. Colchicine Treatment for Inducing Polyploidy and Plant Recovery
4.4. Flow Cytometry Analysis of Plant Ploidy
4.5. Chromosome Counting
4.6. Stomatal Characteristics Analysis and Chloroplast Count
4.7. Characterization of Diploid and Tetraploid Growth Traits in L. chinense
4.8. Determination of Photosynthetic Pigments
4.9. Anatomical Determination of Leaves
4.10. Detection of Nutrient Content in Leaves
4.11. Determination of Carotenoid Composition
4.12. Sample Quality Control Analysis
4.13. Data and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yeh, Y.; Hahm, T.; Sabliov, C.M.; Lo, Y.M. Effects of Chinese wolfberry (Lycium chinense P. Mill.) leaf hydrolysates on the growth of Pediococcus acidilactici. Bioresour. Technol. 2008, 99, 1383–1393. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, Y.; Jang, R.G. Pharmacological action and processing status of Lycium barbarum L. Technol. Food Ind. 2018, 39, 330–334. [Google Scholar]
- Xiao, X.; Ren, W.; Zhang, N.; Bing, T.; Liu, X.J.; Zhao, Z.W.; Shangguan, D.H. Comparative study of the chemical constituents and bioactivities of the extracts from fruits, leaves and root barks of Lycium barbarum. Molecules 2019, 24, 1585. [Google Scholar] [CrossRef]
- Vidović, B.B.; Milinčić, D.D.; Marčetić, M.D.; Djuriš, J.D.; Ilić, T.D.; Kostić, A.Ž.; Pešić, M.B. Health benefits and applications of goji berries in functional food products development: A review. Antioxidants 2022, 11, 248. [Google Scholar] [CrossRef]
- Karakas, F.P. Efficient plant regeneration and callus induction from nodal and hypocotyl explants of goji berry (Lycium barbarum L.) and comparison of phenolic profiles in calli formed under different combinations of plant growth regulators. Plant Physiol. Bioch. 2020, 146, 384–391. [Google Scholar] [CrossRef]
- Zhang, H.F.; Yang, X.H. Bioactive substances in Lycium leaves and their application in food industry. Sci. Technol. Food Ind. 2010, 31, 369–373. [Google Scholar]
- Lei, Z.L.; Chen, X.Q.; Cao, F.L.; Guo, Q.R.; Wang, J.H. Phytochemicals and bioactivities of Goji (Lycium barbarum L. and Lycium chinense Mill.) leaves and their potential applications in the food industry: A review. Int. J. Food Sci. Technol. 2022, 57, 1451–1461. [Google Scholar] [CrossRef]
- Liu, H.H.; Fan, Y.L.; Wang, W.H.; Liu, N.; Zhang, H.; Zhu, Z.Y.; Liu, A.J. Polysaccharides from Lycium barbarum leaves: Isolation, characterization and splenocyte proliferation activity. Int. J. Biol. Macromol. 2012, 51, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Mocan, A.; Vlase, L.; Vodnar, D.; Bischin, C.; Hanganu, D.; Gheldiu, A.; Oprean, R.; Silaghi-Dumitrescu, R.; Crișan, G. Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. Leaves. Molecules 2014, 19, 10056–10073. [Google Scholar] [CrossRef] [PubMed]
- Kwok, S.S.; Bu, Y.S.; Lo, A.C.; Chan, T.C.; So, K.F.; Lai, J.S.; Shih, K.C. A systematic review of potential therapeutic use of Lycium barbarum polysaccharides in disease. Biomed Res. Int. 2019, 2019, 4615745. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jin, J.; Zhu, S.; Sun, Q.; Zhang, Y.; Xie, Z.; Ye, J.; Deng, X. Citrus β-carotene hydroxylase 2 (BCH2) participates in xanthophyll synthesis by catalyzing the hydroxylation of β-carotene and compensates for BCH1 in citrus carotenoid metabolism. Hortic. Res. 2022, 10, uhac290. [Google Scholar] [CrossRef]
- Li, T.; Liu, J.; Deng, Y.; Duan, A.; Liu, H.; Zhuang, F.; Xiong, A. Differential hydroxylation efficiency of the two non-heme carotene hydroxylases: DcBCH1, rather than DcBCH2, plays a major role in carrot taproot. Hortic. Res. 2022, 9, uhac193. [Google Scholar] [CrossRef]
- Li, L.H.; Lee, J.C.; Leung, H.H.; Lam, W.C.; Fu, Z.J.; Lo, A.C.Y. Lutein supplementation for eye diseases. Nutrients 2020, 12, 1721. [Google Scholar] [CrossRef]
- Liu, X.J.; Lin, Y.P.; Yao, K.F.; Xie, J.T.; Xiao, J.; Cao, Y. Increasing β-carotene bioavailability and bioactivity in spinach demonstrated using excipient nanoemulsions—Especially those of long-chain triglycerides. Food Chem. 2023, 404, 134194. [Google Scholar] [CrossRef]
- Wang, T.; Hou, Y.N.; Hu, H.T.; Wang, C.C.; Zhang, W.L.; Li, H.H.; Cheng, Z.X.; Yang, L. Functional validation of phytoene synthase and lycopene ε-cyclase genes for high lycopene content in autumn olive fruit (Elaeagnus umbellata). J. Agric. Food Chem. 2020, 68, 11503–11511. [Google Scholar] [CrossRef]
- Li, S.F.; Wang, A.J.; Liu, L.N.; Tian, G.R.; Wei, S.X.; Xu, F.F. Evaluation of nutritional values of shiitake mushroom (Lentinus edodes) stipes. J. Food Meas. Charact. 2018, 12, 2012–2019. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.Z.; Qiu, B.F.; Ma, Z.C.; Lu, T.; Kang, X.Y.; Yang, J. Induction and characterization of tetraploid through zygotic chromosome doubling in Eucalyptus urophylla. Front. Plant Sci. 2022, 13, 870698. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Song, L.J.; Qi, Q.; Du, K.; Han, Q.; Kang, X.Y. Study of variation in the growth, photosynthesis, and content of secondary metabolites in Eucommia triploids. Trees 2019, 33, 817–826. [Google Scholar] [CrossRef]
- Hamarashid, S.H.; Khaledian, Y.; Soleimani, F. In vitro polyploidy-mediated enhancement of secondary metabolites content in Stachys byzantina L. Genet. Resour. Crop Ev. 2021, 69, 719–728. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Dai, H.Y.; Xiao, M.; Liu, X. In vitro induction of tetraploids in Phlox subulata L. Euphytica 2008, 159, 59–65. [Google Scholar] [CrossRef]
- Talebi, S.F.; Saharkhiz, M.J.; Kermani, M.J.; Sharafi, Y.; Raouf Fard, F. Effect of different antimitotic agents on polyploid induction of anise hyssop (Agastache foeniculum L.). Caryologia 2017, 70, 184–193. [Google Scholar] [CrossRef]
- Parsons, J.L.; Martin, S.L.; James, T.; Golenia, G.; Boudko, E.A.; Hepworth, S.R. Polyploidization for the genetic improvement of Cannabis sativa. Front. Plant Sci. 2019, 10, 476. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Zhang, C.X.; Yang, W.C.; Li, X.; Hou, L.; Li, M.; Pang, X.M.; Li, Y.Y. Hybrid triploid induced by megaspore chromosome doubling in jujube (Ziziphus jujuba Mill.) ‘Maya’ and its characteristics. Forests 2021, 12, 112. [Google Scholar] [CrossRef]
- Narukulla, V.; Lahane, Y.; Fiske, K.; Pandey, S.; Ziogas, V. Induction of polyploidy in citrus rootstocks through in vitro colchicine treatment of seed-derived explants. Agronomy 2023, 13, 1442. [Google Scholar] [CrossRef]
- Notsuka, K.; Tsuru, T.; Shiraishi, M. Induced polyploid grapes via in vitro chromosome doubling. J. Jpn. Soc. Hortic. Sci. 2000, 69, 543–551. [Google Scholar] [CrossRef]
- Shi, Q.H.; Liu, P.; Liu, M.J.; Wang, J.R.; Xu, J. A novel method for rapid in vivo induction of homogeneous polyploids via calluses in a woody fruit tree (Ziziphus jujuba Mill.). Plant Cell Tissue Organ Cult. 2015, 121, 423–433. [Google Scholar] [CrossRef]
- Zeng, Q.Q.; Liu, Z.; Du, K.; Kang, X.Y. Oryzalin-induced chromosome doubling in triploid Populus and its effect on plant morphology and anatomy. Plant Cell Tissue Organ Cult. 2019, 138, 571–581. [Google Scholar] [CrossRef]
- Marangelli, F.; Pavese, V.; Vaia, G.; Lupo, M.; Bashir, M.A.; Cristofori, V.; Silvestri, C. In vitro polyploid induction of highbush blueberry through de novo shoot organogenesis. Plants 2022, 11, 2349. [Google Scholar] [CrossRef]
- Hosseinabadi, S.; Khaleghi, A.; Akramian, M.; Khadivi, A. A highly efficient plant regeneration of Begonia rex Putz. by direct organogenesis of leaf explants. J. Hortic. Sci. Biotechnol. 2022, 97, 496–502. [Google Scholar] [CrossRef]
- Li, X.Y.; Guo, Q.; Han, C.; Li, J.; Dong, L.; Cao, S.; Zhang, Z.J.; Sun, Y.H.; Wang, R.H.; Li, Y. Developing a highly efficient regeneration system for leaves of tissue-cultured tetraploid Robinia pseudoacacia L. In Vitro Cell. Dev. Biol. Plant 2022, 58, 114–121. [Google Scholar] [CrossRef]
- Ratushnyak, Y.; Rudas, V.; Piven, N. Regeneration of Lycium barbarum L. plants from leaf tissue, callus culture and callus protoplasts. Plant Cell Rep. 1990, 9, 84–87. [Google Scholar] [CrossRef]
- Hu, Z.; Guo, G.Q.; Zhao, D.L.; Li, L.H.; Zheng, G.C. Shoot regeneration from cultured leaf explants of Lycium barbarum and agrobacterium -mediated transformation 1. Russ. J. Plant Physl. 2001, 48, 453–458. [Google Scholar] [CrossRef]
- Rao, S.P.; Kang, X.Y.; Li, J.; Chen, J.H. Induction, identification and characterization of tetraploidy in Lycium ruthenicum. Breed. Sci. 2019, 69, 160–168. [Google Scholar] [CrossRef]
- Birnbaum, K.D.; Alvarado, A.S. Slicing across kingdoms: Regeneration in plants and animals. Cell 2008, 132, 697–710. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, S.; Zhang, Y.; Shi, F.; Liu, X.; Du, S.; Feng, H. Establishment of an efficient shoot regeneration system in vitro in Brassica rapa. In Vitro Cell. Dev. Biol. Plant 2021, 57, 977–986. [Google Scholar] [CrossRef]
- Song, Q.; Kong, L.; Xie, Y.; Wang, R.; Zhang, Y. Establishment of an efficient leaf regeneration system for ‘Jinyan’ kiwifruit. IOP Conf. Ser. Earth Environ. Sci. 2019, 252, 52026. [Google Scholar] [CrossRef]
- Zhang, Y.; Bozorov, T.A.; Li, D.X.; Zhou, P.; Wen, X.J.; Ding, Y.; Zhang, D.Y. An efficient in vitro regeneration system from different wild apple (Malus sieversii) explants. Plant Methods 2020, 16, 56. [Google Scholar] [CrossRef]
- Eng, W.; Ho, W. Polyploidization using colchicine in horticultural plants: A review. Sci. Hortic.-Amst. 2019, 246, 604–617. [Google Scholar] [CrossRef]
- Cui, Y.; Hou, L.; Li, X.; Huang, F.; Pang, X.; Li, Y. In vitro induction of tetraploid Ziziphus jujuba Mill. var. spinosa plants from leaf explants. Plant Cell Tissue Organ Cult. (PCTOC) 2017, 131, 175–182. [Google Scholar] [CrossRef]
- Gu, X.F.; Yang, A.F.; Meng, H.; Zhang, J.R. In vitro induction of tetraploid plants from diploid Zizyphus jujuba Mill. cv. Zhanhua. Plant Cell Rep. 2005, 24, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cheng, X.; Kong, B.; Zhou, Q.; Sang, Y.; Zhang, P. In vitro octaploid induction of Populus hopeiensis with colchicine. BMC Plant Biol. 2022, 22, 176. [Google Scholar] [CrossRef]
- Li, S.; Lin, Y.; Pei, H.; Zhang, J.; Zhang, J.; Luo, J. Variations in colchicine-induced autotetraploid plants of Lilium davidii var. unicolor. Plant Cell Tissue Organ Cult. 2020, 141, 479–488. [Google Scholar] [CrossRef]
- Ameri, A.; Davarynejad, G.; Moshtaghi, N.; Tehranifar, A. Semicompact canopy form in mixoploid plants differentiated from the endosperm of Pyrus communis cv. Natanzi: Evidence from flow cytometric analysis and anatomical and morphological traits. Ann. Appl. Biol. 2020, 177, 385–394. [Google Scholar] [CrossRef]
- Than, M.M.M.; Pal, A.; Jha, S. Chromosome number and modal karyotype in a polysomatic endangered orchid, Bulbophyllum auricomum Lindl., the Royal Flower of Myanmar. Plant Syst. Evol. 2011, 294, 167–175. [Google Scholar] [CrossRef]
- Liqin, G.; Jianguo, Z.; Xiaoxia, L.; Guodong, R. Polyploidy-related differential gene expression between diploid and synthesized allotriploid and allotetraploid hybrids of Populus. Mol. Breed. 2019, 39, 69. [Google Scholar] [CrossRef]
- Khan, M.N.; Hassan, J.; Biswas, M.S.; Khan, H.I.; Sultana, H.; Suborna, M.N.; Rajib, M.M.R.; Akter, J.; Gomasta, J.; Anik, A.A.M. Morphological and anatomical characterization of colchicine-induced polyploids in watermelon. Hortic. Environ. Biotechnol. 2023, 64, 461–474. [Google Scholar] [CrossRef]
- He, Y.H.; Sun, Y.L.; Zheng, R.R.; Ai, Y.; Cao, Z.; Bao, M.Z. Induction of tetraploid male Sterile Tagetes erecta by colchicine treatment and its application for interspecific hybridization. Hortic. Plant J. 2016, 2, 284–292. [Google Scholar] [CrossRef]
- Eng, W.H.; Ho, W.S.; Ling, K.H. In vitro induction and identification of polyploid Neolamarckia cadamba plants by colchicine treatment. PeerJ 2021, 9, e12399. [Google Scholar] [CrossRef]
- Sadat Noori, S.A.; Norouzi, M.; Karimzadeh, G.; Shirkool, K.; Niazian, M. Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tissue Organ Cult. (PCTOC) 2017, 130, 543–551. [Google Scholar] [CrossRef]
- Dai, F.W.; Wang, Z.J.; Luo, G.Q.; Tang, C.M. Phenotypic and transcriptomic analyses of autotetraploid and diploid mulberry (Morus alba L.). Int. J. Mol. Sci. 2015, 16, 22938–22956. [Google Scholar] [CrossRef] [PubMed]
- Breuer, C.; Stacey, N.J.; West, C.E.; Zhao, Y.; Chory, J.; Tsukaya, H.; Azumi, Y.; Maxwell, A.; Roberts, K.; Sugimoto-Shirasu, K. Bin4, a novel component of the plant DNA topoisomerase VI complex, is required for endoreduplication in Arabidopsis. Plant Cell 2007, 19, 3655–3668. [Google Scholar] [CrossRef]
- Dudits, D.; Török, K.; Cseri, A.; Paul, K.; Nagy, A.V.; Nagy, B.; Sass, L.; Ferenc, G.; Vankova, R.; Dobrev, P.; et al. Response of organ structure and physiology to autotetraploidization in early development of energy willow Salix viminalis. Plant Physiol. 2016, 170, 1504–1523. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fan, G.; Dong, Y.; Zhai, X.; Deng, M.; Zhao, Z.; Liu, W.; Cao, Y. Implications of polyploidy events on the phenotype, microstructure, and proteome of Paulownia australis. PLoS ONE 2017, 12, e0172633. [Google Scholar] [CrossRef]
- Wang, L.; Cao, Q.; Zhang, X.; Jia, G. Effects of polyploidization on photosynthetic characteristics in three Lilium species. Sci. Hortic.-Amst. 2021, 284, 110098. [Google Scholar] [CrossRef]
- Yao, X.C.; Meng, L.F.; Zhao, W.L.; Mao, G.L. Changes in the morphology traits, anatomical structure of the leaves and transcriptome in Lycium barbarum L. under salt stress. Front. Plant Sci. 2023, 14, 1090366. [Google Scholar] [CrossRef]
- Guerfel, M.; Baccouri, O.; Boujnah, D.; Chaïbi, W.; Zarrouk, M. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci. Hortic.-Amst. 2009, 119, 257–263. [Google Scholar] [CrossRef]
- Hias, N.; Leus, L.; Davey, M.W.; Vanderzande, S.; Van Huylenbroeck, J.; Keulemans, J. Effect of polyploidization on morphology in two apple (Malus × domestica) genotypes. Hortic. Sci. 2017, 44, 55–63. [Google Scholar] [CrossRef]
- Herawati, M.M.; Pudjihartati, E.; Kurnia, T.D.; Setiawan, A.W. The agronomic performance and artemisinin content of colchicine-induced polyploid genotypes Artemisia cina. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 959. [Google Scholar]
- Bharati, R.; Gupta, A.; Novy, P.; Severová, L.; Šrédl, K.; Žiarovská, J.; Fernández-Cusimamani, E. Synthetic polyploid induction influences morphological, physiological, and photosynthetic characteristics in Melissa officinalis L. Front. Plant Sci. 2023, 14, 1332428. [Google Scholar] [CrossRef] [PubMed]
- Mansoureh, T.; Ali, A.; Hassan, S.; Mohammad, H.M.; Maria, M.R. Induced polyploidy and broad variation in phytochemical traits and altered gene expression in Salvia multicaulis. Sci. Hortic.-Amst. 2021, 291, 110592. [Google Scholar]
- Zhang, J.; Pian, R.; Yang, E.; Zhou, W.; He, Q.; Chen, X. In vitro induction and characterisation of tetraploid drumstick tree (Moringa oleifera Lam.). Open Life Sci. 2020, 15, 840–847. [Google Scholar] [CrossRef]
- Mahanta, M.; Gantait, S.; Sarkar, S.; Sadhukhan, R.; Bhattacharyya, S. Colchicine-mediated in vitro polyploidization in gerbera hybrid. 3 Biotech 2023, 13, 74. [Google Scholar] [CrossRef]
- Tavan, M.; Sarikhani, H.; Mirjalili, M.H.; Rigano, M.M.; Azizi, A. Triterpenic and phenolic acids production changed in Salvia officinalis via in vitro and in vivo polyploidization: A consequence of altered genes expression. Phytochemistry 2021, 189, 112803. [Google Scholar] [CrossRef]
- Galbraith, D.W.; Harkins, K.R.; Maddox, J.M.; Ayres, N.M.; Sharma, D.P.; Firoozabady, E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 1983, 220, 1049–1051. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.; Nguyen, T.; Do, T.; Dinh, T.; Dang-Bao, T. Quantification of total sugars and reducing sugars of dragon fruit-derived sugar-samples by UV-Vis spectrophotometric method. IOP Conf. Ser. Earth Environ. Sci. 2021, 947, 12041. [Google Scholar] [CrossRef]
- Chen, Q.C.; Zhu, Y.; Liu, Y.F.; Liu, Y.; Dong, C.W.; Lin, Z.; Teng, J. Black tea aroma formation during the fermentation period. Food Chem. 2022, 374, 131640. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Lv, J.H.; Liu, Z.B.; Wang, J.; Yang, B.Z.; Chen, W.C.; Ou, L.J.; Dai, X.Z.; Zhang, Z.Q.; Zou, X.X. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in pepper fruit (Capsicum annuum L.). Food Chem. 2020, 306, 125629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Zhang, Y.T.; Song, S.W.; Su, W.; Hao, Y.W.; Liu, H.C. Supplementary Red light results in the earlier ripening of tomato fruit depending on ethylene production. Environ. Exp. Bot. 2020, 175, 104044. [Google Scholar] [CrossRef]
Treatment Number | 6-BA (mg L–1) | NAA (mg L–1) | Regeneration Frequency (%) | Shoots per Explant (No.) |
---|---|---|---|---|
1 | 0.5 | 0.05 | 70.6 ± 0.9 d | 2.96 ± 0.12 bcd |
2 | 0.5 | 0.1 | 76.7 ± 2.1 c | 3.21 ± 0.17 b |
3 | 0.5 | 0.5 | 51.1 ± 1.5 g | 2.01 ± 0.1 f |
4 | 1 | 0.1 | 32.8 ± 1.3 i | 1.99 ± 0.22 f |
5 | 1 | 0.2 | 39.4 ± 1.2 h | 2.15 ± 0.07 f |
6 | 1 | 1 | 13.3 ± 1 j | 1.29 ± 0.08 g |
7 | 1.5 | 0.15 | 0 ± 0 k | 0 ± 0 h |
8 | 1.5 | 0.3 | 4.4 ± 0.7 k | 1.25 ± 0.14 g |
9 | 1.5 | 1.5 | 0 ± 0 k | 0 ± 0 h |
10 | 0.2 | 0.02 | 55.6 ± 1.8 fg | 2.61 ± 0.2 de |
11 | 0.2 | 0.04 | 63.9 ± 0.9 e | 3.11 ± 0.13 bc |
12 | 0.3 | 0.03 | 86.7 ± 1.5 b | 3.92 ± 0.08 a |
13 | 0.3 | 0.06 | 100 ± 0 a | 4.26 ± 0.09 a |
14 | 0.7 | 0.07 | 58.9 ± 1.8 ef | 2.56 ± 0.12 e |
15 | 0.7 | 0.14 | 63.3 ± 1 e | 2.79 ± 0.05 cde |
Treatment Number | Preculture Duration (Days) | Colchicine Concentration (mg L–1) | Exposure Time (h) | Survival Rate (%) a | No. of Shoots Regenerate b | No. of Tetraploid c | Tetraploid Induction Rate (%) |
---|---|---|---|---|---|---|---|
1 | 10 | 40 | 24 | 96.1 ± 0.56 | 87 | 3 | 3.5 |
2 | 48 | 90.4 ± 0.98 | 65 | 3 | 4.6 | ||
3 | 50 | 24 | 91.5 ± 1.85 | 71 | 8 | 11.2 | |
4 | 48 | 73 ± 2.06 | 44 | 3 | 6.9 | ||
5 | 60 | 24 | 69.3 ± 1.61 | 21 | 1 | 4.8 | |
6 | 48 | 38.9 ± 1.7 | 7 | 0 | 0 | ||
7 | 12 | 40 | 24 | 90.4 ± 1.96 | 79 | 5 | 6.4 |
8 | 48 | 85.6 ± 1.28 | 62 | 3 | 4.9 | ||
9 | 50 | 24 | 87.8 ± 1.92 | 66 | 12 | 18.2 | |
10 | 48 | 67.4 ± 0.98 | 40 | 7 | 17.1 | ||
11 | 60 | 24 | 60.7 ± 1.85 | 18 | 2 | 11 | |
12 | 48 | 32.2 ± 2.94 | 5 | 1 | 16.7 | ||
13 | 14 | 40 | 24 | 88.5 ± 2.06 | 72 | 4 | 5.5 |
14 | 48 | 80.4 ± 1.34 | 53 | 4 | 7.5 | ||
15 | 50 | 24 | 83 ± 2.67 | 61 | 9 | 14.8 | |
16 | 48 | 63.7 ± 1.96 | 37 | 5 | 13.6 | ||
17 | 60 | 24 | 42.6 ± 3.65 | 8 | 0 | 0 | |
18 | 48 | 24.1 ± 3.29 | 3 | 0 | 0 |
Ploidy | Stomata Length (µm) | Stomata Width (µm) | Stomatal Density (N/mm2) | Chloroplasts Number (N/Stoma) |
---|---|---|---|---|
Diploids | 28.13 ± 0.58 a | 26.07 ± 0.48 a | 157.9 ± 2.70 a | 16.90 ± 0.44 a |
Tetraploids | 43.08 ± 0.67 b | 35.33 ± 0.36 b | 92.0 ± 3.26 b | 26.73 ± 0.49 b |
Characteristics | Diploid | Tetraploid | Significance |
---|---|---|---|
Leaf vein thickness (µm) | 323.63 ± 18.92 | 466.12 ± 29.43 | ** |
Upper epidermal thickness (µm) | 16.17 ± 0.65 | 20.42 ± 0.64 | **** |
Lower epidermal thickness (µm) | 9.27 ± 0.20 | 12.87 ± 0.34 | **** |
Palisade tissue thickness (µm) | 41.16 ± 0.62 | 55.80 ± 1.03 | **** |
Sponge tissue thickness (µm) | 101.69 ± 0.86 | 123.16 ± 1.89 | **** |
The ratio of palisade tissue to sponge tissue | 0.41 ± 0.01 | 0.45 ± 0.01 | *** |
Xylem cell diameter (µm) | 10.86 ± 0.43 | 15.71 ± 0.74 | **** |
Composition | CK | T1 | T10 | T39 |
---|---|---|---|---|
α-carotene | 4.68 ± 1.29 ab | 7.07 ± 0.66 a | 3.95 ± 0.03 b | 7.37 ± 0.93 a |
β-carotene | 241.16 ± 20.08 b | 292.42 ± 2.43 a | 247.87 ± 1.39 b | 306.85 ± 17.09 a |
(E/Z)-phytoene | 2.43 ± 0.51 b | 2.77 ± 0.08 ab | 3.57 ± 0.03 a | 3.44 ± 0.19 a |
antheraxanthin dipalmitate lutein myristate | 0.24 ± 0.01 b 0.10 ± 0.01 a | 0.23 ± 0.01 b 0.07 ± 0.01 ab | 0.27 ± 0.02 ab 0.06 ± 0.01 b | 0.31 ± 0.02 a 0.07 ± 0.01 ab |
lutein palmitate | 0.18 ± 0.01 a | 0.16 ± 0.01 a | 0.20 ± 0.06 a | 0.12 ± 0.00 a |
violaxanthin dibutyrate | 0.05 ± 0.00 b | 0.04 ± 0.00 b | 0.04 ± 0.00 b | 0.09 ± 0.01 a |
violaxanthin myristate | 0.25 ± 0.00 a | 0.18 ± 0.01 c | 0.09 ± 0.00 d | 0.21 ± 0.02 b |
antheraxanthin | 1.16 ± 0.08 b | 1.44 ± 0.01 b | 1.46 ± 0.02 b | 1.94 ± 0.18 a |
violaxanthin | 120.11 ± 1.95 b | 120.57 ± 0.19 b | 127.96 ± 0.29 a | 133.87 ± 3.82 a |
neoxanthin | 136.19 ± 9.09 b | 161.35 ± 0.82 a | 132.99 ± 0.89 b | 162.69 ± 10.26 a |
lutein | 1708.60 ± 135.41 a | 1910.82 ± 60.98 a | 1684.59 ± 35.04 a | 1973.82 ± 95.78 a |
β-cryptoxanthin | 2.02 ± 0.24 b | 3.69 ± 0.18 a | 2.25 ± 0.11 b | 3.51 ± 0.24 a |
8′-apo-beta-carotenal | 0.02 ± 0.00 b | 0.03 ± 0.00 a | 0.02 ± 0.00 b | 0.03 ± 0.00 a |
α-cryptoxanthin | 0.09 ± 0.01 a | 0.17 ± 0.03 a | 0.16 ± 0.00 a | 0.21 ± 0.06 a |
echinenone | 0.04 ± 0.01 c | 0.07 ± 0.00 a | 0.05 ± 0.00 bc | 0.06 ± 0.01 ab |
capsanthin | 0.07 ± 0.00 b | 0.07 ± 0.00 a | 0.07 ± 0.00 a | 0.07 ± 0.00 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Rao, S.; Wang, Y.; Qin, Y.; Qin, K.; Chen, J. Chromosome Doubling Enhances Biomass and Carotenoid Content in Lycium chinense. Plants 2024, 13, 439. https://doi.org/10.3390/plants13030439
Zhang R, Rao S, Wang Y, Qin Y, Qin K, Chen J. Chromosome Doubling Enhances Biomass and Carotenoid Content in Lycium chinense. Plants. 2024; 13(3):439. https://doi.org/10.3390/plants13030439
Chicago/Turabian StyleZhang, Runan, Shupei Rao, Yuchang Wang, Yingzhi Qin, Ken Qin, and Jinhuan Chen. 2024. "Chromosome Doubling Enhances Biomass and Carotenoid Content in Lycium chinense" Plants 13, no. 3: 439. https://doi.org/10.3390/plants13030439
APA StyleZhang, R., Rao, S., Wang, Y., Qin, Y., Qin, K., & Chen, J. (2024). Chromosome Doubling Enhances Biomass and Carotenoid Content in Lycium chinense. Plants, 13(3), 439. https://doi.org/10.3390/plants13030439