Ecophysiological and Molecular Analysis of Contrasting Genotypes for Leaf Senescence in Sunflower (Helianthus annuus L.) Under Differential Doses of N in Soil
Abstract
:1. Introduction
2. Results
2.1. Environmental Conditions and Phenology
2.2. Net Photosynthesis and Stomatal Conductance
2.3. Green Leaf Area and Intercepted Radiation
2.4. Yield and Biomass
2.5. Molecular Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material and Experimental Conditions
4.2. Measurements
4.2.1. Phenology
4.2.2. Climate Conditions
4.2.3. Radiation Interception
4.2.4. Green Leaf Area (GLA)
4.2.5. Dry Weight, Yield and Its Components
4.2.6. Leaf Physiological Measurements
4.2.7. Quantitative RT-PCR Analysis
4.3. Data Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haj Sghaier, A.; Khaeim, H.; Tarnawa, Á.; Kovács, G.P.; Gyuricza, C.; Kende, Z. Germination and Seedling Development Responses of Sunflower (Helianthus annuus L.) Seeds to Temperature and Different Levels of Water Availability. Agriculture 2023, 13, 608. [Google Scholar] [CrossRef]
- Adeleke, B.S.; Babalola, O.O. Oilseed Crop Sunflower (Helianthus annuus) as a Source of Food: Nutritional and Health Benefits. Food Sci. Nutr. 2020, 8, 4666–4684. [Google Scholar] [CrossRef]
- Ijaz, M.; Ansari, M.-R.; Alafari, H.A.; Iqbal, M.; Alshaya, D.S.; Fiaz, S.; Ahmad, H.M.; Zubair, M.; Ramzani, P.M.A.; Iqbal, J.; et al. Citric acid assisted phytoextraction of nickle from soil helps to tolerate oxidative stress and expression profile of NRAMP genes in sunflower at different growth stages. Front. Plant Sci. 2022, 13, 1072671. [Google Scholar] [CrossRef]
- Ahmad, H.; Habib, S.; Shafqat, W.; Qamar, R.; Saeed, S.; Khaliq, A.; Rauf, S. Evaluation of Genetic Diversity in Maintainer and Restorer Inbreds of Helianthus annus L. using Multivariate Techniques. Pak. J. Agric. Res. 2021, 34, 431. [Google Scholar] [CrossRef]
- Luoni, S.A.B.; Ricci, R.; Corzo, M.A.; Hoxha, G.; Melgani, F.; Fernandez, P. Sunpheno: A Deep Neural Network for Phenological Classification of Sunflower Images. Plants 2024, 13, 1998. [Google Scholar] [CrossRef]
- Noodén, L.D.; Guiamét, J.J.; John, I. Senescence mechanisms. Physiol. Plant. 1997, 101, 746–753. [Google Scholar] [CrossRef]
- Nehe, A.S.; Misra, S.; Murchie, E.H.; Chinnathambi, K.; Singh Tyagi, B.; Foulkes, M.J. Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and protein concentration in Indian wheat cultivars. Field Crop. Res. 2020, 251, 107778. [Google Scholar] [CrossRef]
- Ostrowska-Mazurek, A.; Kasprzak, P.; Kubala, S.; Zaborowska, M.; Sobieszczuk-Nowicka, E. Epigenetic Landmarks of Leaf Senescence and Crop Improvement. Int. J. Mol. Sci. 2020, 21, 5125. [Google Scholar] [CrossRef] [PubMed]
- Moschen, S.; Marino, J.; Nicosia, S.; Higgins, J.; Alseekh, S.; Astigueta, F.; Bengoa Luoni, S.; Rivarola, M.; Fernie, A.R.; Blanchet, N.; et al. Exploring gene networks in two sunflower lines with contrasting leaf senescence phenotype using a system biology approach. BMC Plant Biol. 2019, 19, 446. [Google Scholar] [CrossRef]
- Coêlho, E.D.S.; Souza, A.R.E.D.; Lins, H.A.; Santos, M.G.D.; Freitas Souza, M.D.; Tartaglia, F.D.L.; de Oliveira, A.K.S.; Lopes, W.D.A.R.; Silveira, L.M.; Mendonça, V.; et al. Efficiency of Nitrogen Use in Sunflower. Plants 2022, 11, 2390. [Google Scholar] [CrossRef] [PubMed]
- Bono, A.; Montoya, J.; Babinec, F. Fertilizacion en Girasol Resultados Obtenidos en tres años de Estudio. 1999. Available online: https://blogtextilesyoleaginosasfagroucv.wordpress.com/wp-content/uploads/2015/10/6-fertilizacion-fertilizacion-en-girasol.pdf (accessed on 15 March 2024).
- Melgar, R.; Diaz Zorita, M. La Fertilizacion de Cultivos y Pasturas. 1997. Available online: https://agris.fao.org/search/en/providers/122604/records/64775d03a3fd11e4303b31fb (accessed on 15 March 2024).
- Sosa, L.J.; Echeverria, H.E.; Dosia, G.A.A.; Aguirrezabal, L.A.N. Nitrogen nutrition of sunflower cultivated in Balcare (Buenos Aires, Argentina). Cienc. Del Suelo 1999, 17, 20–26. [Google Scholar]
- Whitcomb, S.J.; Heyneke, E.; Aarabi, F.; Watanabe, M.; Hoefgen, R. Mineral Nutrient Depletion Affects Plant Development and Crop Yield. In Nutrient Use Efficiency in Plants: Concepts and Approaches; Hawkesford, M.J., Kopriva, S., De Kok, L.J., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 205–228. [Google Scholar] [CrossRef]
- Dosio, G.A.; Rey, H.; Lecoeur, J.; Izquierdo, N.G.; Aguirrezabal, L.A.; Tardieu, F.; Turc, O. A whole-plant analysis of the dynamics of expansion of individual leaves of two sunflower hybrids. J. Exp. Bot. 2003, 54, 2541–2552. [Google Scholar] [CrossRef]
- De la Vega, A.J.; Cantore, M.A.; Sposaro, M.M.; Trápani, N.; López Pereira, M.; Hall, A.J. Canopy stay-green and yield in non-stressed sunflower. Field Crops Res. 2011, 121, 175–185. [Google Scholar] [CrossRef]
- Agüera, E.; Cabello, P.; de la Mata, L.; Molina, E.; de la Haba, P. Metabolic regulation of leaf senescence in sunflower (Helianthus annuus L.) plants. In Senescence; InTech Open Access Publisher: London, UK, 2012. [Google Scholar]
- Buchanan-Wollaston, V.; Earl, S.; Harrison, E.; Mathas, E.; Navabpour, S.; Page, T.; Pink, D. The molecular analysis of leaf senescence--a genomics approach. Plant Biotechnol. J. 2003, 1, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Pageau, K.; Reisdorf-Cren, M.; Morot-Gaudry, J.-F.; Masclaux-Daubresse, C. The two senescence-related markers, GS1 (cytosolic glutamine synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species in Nicoti. J. Exp. Bot. 2006, 57, 547–557. [Google Scholar] [CrossRef]
- Heyneke, E.; Watanabe, M.; Erban, A.; Duan, G.; Buchner, P.; Walther, D.; Kopka, J.; Hawkesford, M.J.; Hoefgen, R. Characterization of the Wheat Leaf Metabolome during Grain Filling and under Varied N-Supply. Front. Plant Sci. 2017, 8, 2048. [Google Scholar] [CrossRef]
- Ort, D.R.; Merchant, S.S.; Alric, J.; Barkan, A.; Blankenship, R.E.; Bock, R.; Croce, R.; Hanson, M.R.; Hibberd, J.M.; Long, S.P.; et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl. Acad. Sci. USA 2015, 112, 8529–8536. [Google Scholar] [CrossRef] [PubMed]
- Burgess, A.J.; Wang, P. Not all Calvin’s are equal: Differential control of the Calvin cycle in C3 versus C4 plants. Plant Physiol. 2022, 191, 817. [Google Scholar] [CrossRef] [PubMed]
- Schneiter, A.A.; Miller, J.F. Description of sunflower growth stages. Crop Sci. 1981, 21, 901–903. [Google Scholar] [CrossRef]
- Moschen, S. Identificación y Caracterización Funcional de Genes Candidatos Asociados a la Senescencia Foliar en Girasol Basado en Perfiles Transcripcionales y Metabólicos. Ph.D. Thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Autónoma de Buenos Aires, Argentina, 2014; p. 183. [Google Scholar]
- Bengoa Luoni, S. Análisis, Identificación y Validación de Factores de Transcripción Asociados a Senescencia Foliar Temprana en Girasol (Helianthus annuus L.); Universidad Nacional de San Martin: San Martin, Argentina, 2014. [Google Scholar]
- Lim, P.O.; Kim, H.J.; Nam, H.G. Leaf Senescence. Annu. Rev. Plant Biol. 2007, 58, 115–136. [Google Scholar] [CrossRef]
- López Gialdi, A.I.; Moschen, S.; Villán, C.S.; López Fernández, M.P.; Maldonado, S.; Paniego, N.; Heinz, R.A.; Fernandez, P. Identification and characterization of contrasting sunflower genotypes to early leaf senescence process combining molecular and physiological studies (Helianthus annuus L.). Plant Sci. 2016, 250, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, P.L.; Culetic, A.; Boschian, L.; Krupinska, K. Plant senescence and crop productivity. Plant Mol. Biol. 2013, 82, 603–622. [Google Scholar] [CrossRef] [PubMed]
- Connor, D.J.; Palta, J.A.; Jones, T.R. Response of sunflower to strategies of irrigation. III. Crop photosynthesis and transpiration. Field Crops Res. 1985, 12, 281–283. [Google Scholar] [CrossRef]
- McCullough, D.E.; Aguilera, A.; Tollenaar, M. N uptake, N partitioning, and photosynthetic N-use efficiency of an old and a new maize hybrid. Can. J. Plant Sci. 1994, 74, 479–484. [Google Scholar] [CrossRef]
- Connor, D.J.; Hall, A.J.; Sadras, V.O. Effect of Nitrogen Content on the Photosynthetic Characteristics of Sunflower Leaves. Funct. Plant Biol. 1993, 20, 251–263. [Google Scholar] [CrossRef]
- Broadley, M.R.; Escobar-Gutiérrez, A.J.; Burns, A.; Burns, I.G. What are the effects of nitrogen deficiency on growth components of lettuce? New Phytol. 2000, 147, 519–526. [Google Scholar] [CrossRef]
- Shangguan, Z.; Shao, M.; Dyckmans, J. Effects of Nitrogen Nutrition and Water Deficit on Net Photosynthetic Rate and Chlorophyll Fluorescence in Winter Wheat. J. Plant Physiol. 2000, 156, 46–51. [Google Scholar] [CrossRef]
- Ciompi, S.; Gentili, E.; Guidi, L.; Soldatini, G.F. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Sci. 1996, 118, 177–184. [Google Scholar] [CrossRef]
- Cechin, I.; de Fátima Fumis, T. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Sci. 2004, 166, 1379–1385. [Google Scholar] [CrossRef]
- Lambers, H.; Oliveira, R. Plant Physiological Ecology; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Marc, J.; Palmer, J.H. Photoperiodic sensitivity of inflorescence initiation and development in sunflower. Field Crops Res. 1981, 4, 155–164. [Google Scholar] [CrossRef]
- Moschen, S.; Di Rienzo, J.A.; Higgins, J.; Tohge, T.; Watanabe, M.; González, S.; Rivarola, M.; García-García, F.; Dopazo, J.; Hopp, H.E.; et al. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.). Plant Mol. Biol. 2017, 94, 549–564. [Google Scholar] [CrossRef] [PubMed]
- Balazadeh, S.; Riaño-Pachón, D.M.; Mueller-Roeber, B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol. 2008, 10, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Woo, H.R.; Nam, H.G. Toward Systems Understanding of Leaf Senescence: An Integrated Multi-Omics Perspective on Leaf Senescence Research. Mol. Plant 2016, 9, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Bengoa Luoni, S. Genome-wide and comparative phylogenetic analysis of senescence-associated NAC transcription factors in sunflower (Helianthus annuus). BMC Genom. 2021, 22, 893. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Baek, K.; Park, C.-M. Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Rep. 2009, 28, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Trupkin, S.A.; Astigueta, F.H.; Baigorria, A.H.; García, M.N.; Delfosse, V.C.; González, S.A.; Pérez de la Torre, M.C.; Moschen, S.; Lía, V.V.; Fernández, P.; et al. Identification and expression analysis of NAC transcription factors potentially involved in leaf and petal senescence in Petunia hybrida. Plant Sci. 2019, 287, 110195. [Google Scholar] [CrossRef]
- Wu, A.; Allu, A.D.; Garapati, P.; Siddiqui, H.; Dortay, H.; Zanor, M.-I.; Asensi-Fabado, M.A.; Munné-Bosch, S.; Antonio, C.; Tohge, T.; et al. JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 2012, 24, 482–506. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, M.W.; Gregersen, P.L. Members of the Barley NAC Transcription Factor Gene Family Show Differential Co-Regulation with Senescence-Associated Genes During Senescence of Flag Leaves. J. Exp. Bot. 2014, 65, 4009–4022. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Blanchet, R.; Williams, J.R.; Texier, V.; Jones, K.; Cabelguenne, M. Sunflower simulation using the EPIC and ALMANAC models. Field Crops Res. 1992, 30, 403–423. [Google Scholar] [CrossRef]
- Monteith, J.L. Radiation and Crops. Exp. Agric. 1965, 1, 241–251. [Google Scholar] [CrossRef]
- Szeicz, G. Solar Radiation for Plant Growth. J. Appl. Ecol. 1974, 11, 617–636. [Google Scholar] [CrossRef]
- Girasol. Aspectos Fisiológicos que Determinan el Rendimiento. Available online: https://www.criba.edu.ar/morfologiavegetal/producfiles/papers/librogirs.pdf (accessed on 24 October 2024).
- Ruijter, J.M.; Ramakers, C.; Hoogaars, W.M.; Karlen, Y.; Bakker, O.; van den Hoff, M.J.; Moorman, A.F. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 2009, 37, e45. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M. InfoStat. 2017. Available online: http://www.infostat.com.ar (accessed on 15 March 2024).
Phenological Stages | Nitrogen | Genotypes | Flower Head (g pl−1) | Leaves (g pl−1) | Stem (g pl−1) | Total Aerial Biomass (g pl−1) |
---|---|---|---|---|---|---|
R5.5 stage | N0 | B481-6 | 95.7 a | 134.0 a | 256.3 a | 486.0 a |
R453 | 171.3 a | 158.6 a | 376.5 a | 706.4 a | ||
N1 | B481-6 | 162.0 a | 204.0 a | 437.3 a | 803.3 a | |
R453 | 143.4 a | 169.9 a | 275.7 a | 710.3 a | ||
G | ns | ns | ns | ns | ||
N | ns | ns | ns | ns | ||
GxN | * | ns | ns | ns | ||
R8 stage | N0 | B481-6 | 334.3 a | 140.1 b | 299.1 a | 773.5 a |
R453 | 406.9 a | 133.6 b | 296.9 a | 837.4 a | ||
N1 | B481-6 | 439.7 a | 181.4 a | 313.7 a | 934.8 a | |
R453 | 496.1 a | 123.4 b | 305.3 a | 924.7 a | ||
G | ns | ** | ns | ns | ||
N | ns | ns | ns | ns | ||
GxN | ns | * | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becheran, D.E.; Corzo, M.A.; Ploschuk, E.L.; Nicosia, S.; Moschen, S.; Bengoa Luoni, S.; Di Rienzo, J.; Heinz, N.; Álvarez, D.; Fernandez, P. Ecophysiological and Molecular Analysis of Contrasting Genotypes for Leaf Senescence in Sunflower (Helianthus annuus L.) Under Differential Doses of N in Soil. Plants 2024, 13, 3540. https://doi.org/10.3390/plants13243540
Becheran DE, Corzo MA, Ploschuk EL, Nicosia S, Moschen S, Bengoa Luoni S, Di Rienzo J, Heinz N, Álvarez D, Fernandez P. Ecophysiological and Molecular Analysis of Contrasting Genotypes for Leaf Senescence in Sunflower (Helianthus annuus L.) Under Differential Doses of N in Soil. Plants. 2024; 13(24):3540. https://doi.org/10.3390/plants13243540
Chicago/Turabian StyleBecheran, Daniela E., Melanie A. Corzo, Edmundo L. Ploschuk, Salvador Nicosia, Sebastian Moschen, Sofia Bengoa Luoni, Julio Di Rienzo, Nicolas Heinz, Daniel Álvarez, and Paula Fernandez. 2024. "Ecophysiological and Molecular Analysis of Contrasting Genotypes for Leaf Senescence in Sunflower (Helianthus annuus L.) Under Differential Doses of N in Soil" Plants 13, no. 24: 3540. https://doi.org/10.3390/plants13243540
APA StyleBecheran, D. E., Corzo, M. A., Ploschuk, E. L., Nicosia, S., Moschen, S., Bengoa Luoni, S., Di Rienzo, J., Heinz, N., Álvarez, D., & Fernandez, P. (2024). Ecophysiological and Molecular Analysis of Contrasting Genotypes for Leaf Senescence in Sunflower (Helianthus annuus L.) Under Differential Doses of N in Soil. Plants, 13(24), 3540. https://doi.org/10.3390/plants13243540