Genetic Diversity, Chemical Constituents, and Bioactivities of Maerua siamensis from Thailand
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phylogenetic Placement
2.2. Population Genetic Structure
2.3. Phytochemical Analyses
2.4. Structure Elucidation of the Novel Compounds 5 and 8
2.5. Bioactivities
2.5.1. Antioxidative Assay
2.5.2. Insect Feeding Assay Against S. littoralis
2.5.3. Nematocidal Assay
3. Materials and Methods
3.1. Study Site and Sampling
3.2. Phylogenetic and Genetic Diversity Analysis
3.2.1. DNA Extraction, Amplification, and Sequencing
3.2.2. Phylogenetic Analyses and Test of Population Genetic Structures
3.3. Phytochemical Approach
3.3.1. Chromatographic Procedures
3.3.2. Plant Material for Phytochemical Investigations
3.3.3. Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS)
3.3.4. Antioxidative Assay
3.3.5. Insect Feeding Assay
3.3.6. Nematocidal Assay
3.3.7. HPLC Screening, Extraction, and Isolation
3.3.8. Chromatographic Separation of the Ethyl Acetate Phase
3.3.9. Chromatographic Separation of the Water Phase
3.4. Spectroscopic Data of the Novel Compounds
3.4.1. Maeruamide (5)
3.4.2. Maeruaoside (8)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abreu, J.A.; Martins, E.S.; Catarino, L. New Species of Maerua (Capparaceae) from Angola. Blumea 2014, 59, 19–25. [Google Scholar] [CrossRef]
- Srisanga, P.; Muangsan, N.; Choopan, T.; Thangthong, J.; Pratcharoenwanich, R.; Watthana, S. Maerua koratensis (Capparaceae), a New Species from Thailand. Phytotaxa 2021, 498, 213–219. [Google Scholar] [CrossRef]
- Akuodor, G.; Ibrahim, J.; Akpan, J.L.; Okorie, A.; Ezeokpo, B. Phytochemical and Anti-Diarrhoeal Properties of Methanolic Leaf Extract of Maerua crassifolia Forssk. Eur. J. Med. Plants 2014, 4, 1223–1231. [Google Scholar] [CrossRef]
- Stevenson, P.C.; Green, P.W.C.; Farrell, I.W.; Brankin, A.; Mvumi, B.M.; Belmain, S.R. Novel Agmatine Derivatives in Maerua edulis with Bioactivity Against Callosobruchus maculatus, a Cosmopolitan Storage Insect Pest. Front. Plant. Sci. 2018, 9, 1506. [Google Scholar] [CrossRef] [PubMed]
- Malami, I.; Hassan, S.W.; Alhassan, A.M.; Shinkafi, T.S.; Umar, A.T.; Shehu, S. Report: Anxiolytic, Sedative and Toxicological Effect of Hydromethanolic Stem Bark Extract of Maerua angolensis DC. in Wister Rats. Pak. J. Pharm. Sci. 2014, 27, 1363–1370. [Google Scholar] [PubMed]
- Gebrelibanos Hiben, M.; Haan, L.; Spenkelink, B.; Wesseling, S.; Louisse, J.; Vervoort, J.; Rietjens, I. Effects of Maerua subcordata (Gilg) DeWolf on Electrophile-Responsive Element (EpRE)-Mediated Gene Expression in Vitro. PLoS ONE 2019, 14, 4. [Google Scholar] [CrossRef] [PubMed]
- Ibraheim, Z.Z. A New Ionol Glucoside from Maerua crassifolia Forssk Grown in Egypt. Bull. Pharm. Sci. Assiut Univ. 1995, 18, 27–31. [Google Scholar] [CrossRef]
- Nukulkit, S.; Jantimaporn, A.; Poldorn, P.; Khongkow, M.; Rungrotmongkol, T.; Chang, H.S.; Suttisri, R.; Chansriniyom, C. Eight Indole Alkaloids from the Roots of Maerua siamensis and Their Nitric Oxide Inhibitory Effects. Molecules 2022, 27, 7558. [Google Scholar] [CrossRef] [PubMed]
- Nobsathian, S.; Bullangpoti, V.; Kumrungsee, N.; Wongsa, N.; Ruttanakum, D. Larvicidal Effect of Compounds Isolated from Maerua siamensis (Capparidaceae) against Aedes aegypti (Diptera: Culicidae) Larvae. Chem. Biol. Technol. Agric. 2018, 5, 8. [Google Scholar] [CrossRef]
- Mithen, R.; Bennett, R.; Marquez, J. Glucosinolate Biochemical Diversity and Innovation in the Brassicales. Phytochemistry 2010, 71, 17–18. [Google Scholar] [CrossRef] [PubMed]
- Chayamarit, K. Capparaceae Capparaceae. In Flora of Thailand; Smitinand, T., Larsen, K., Eds.; The Forest Herbarium: Bankok, Thailand, 1991; Volume 5, pp. 241–271. [Google Scholar]
- Chuakul, W.; Saralamp, P. Medicinal Plants Used in Phu Khieo Wildlife Sanctuary Area, Chaiyaphum Province (Thailand). Acta Phytotaxon. Geobot. 2000, 51, 67–98. [Google Scholar]
- Chadchen, N. Phytochemical Study of Maerua siamensis Roots. Master’s Thesis, Chulalongkorn University, Bangkok, Thailand, 2010. [Google Scholar]
- Chaiyong, S.; Pongamornkul, W.; Panyadee, P.; Inta, A. Uncovering the Ethnobotanical Importance of Community Forests in Chai Nat Province, Central Thailand. Biodiversitas J. Biol. Divers. 2023, 24, 2052–2063. [Google Scholar] [CrossRef]
- Phosri, R. Chemistry and Biological Activity Studies of Maerua siamensis. Master’s Thesis, Burapha University, Chonburi, Thailand, 2017. [Google Scholar]
- Lascoux, M.; Pyhäjärvi, T.; Källman, T.; Savolainen, O. Past Demography in Forest Trees: What Can We Learn from Nuclear DNA Sequences That We Do Not Already Know? Plant Ecol. Divers. 2008, 1, 209–215. [Google Scholar] [CrossRef]
- Bachman, S.P.; Brown, M.J.M.; Leão, T.C.C.; Nic Lughadha, E.; Walker, B.E. Extinction Risk Predictions for the World’s Flowering Plants to Support Their Conservation. New Phytol. 2024, 242, 797–808. [Google Scholar] [CrossRef]
- Wilhelm Sulpiz, K. Forest Flora of British Burma; Office of the Superintendent of Government Printing: Calcutta, India, 1877; Volume 2. [Google Scholar]
- Zhang, X.-J.; Liu, X.-F.; Liu, D.-T.; Cao, Y.-R.; Li, Z.-H.; Ma, Y.-P.; Ma, H. Genetic Diversity and Structure of Rhododendron meddianum, a Plant Species with Extremely Small Populations. Plant Divers. 2021, 43, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Larsson, H.; Källman, T.; Gyllenstrand, N.; Lascoux, M. Distribution of Long-Range Linkage Disequilibrium and Tajima’s D Values in Scandinavian Populations of Norway Spruce (Picea abies). G3 Genes Genomes Genet. 2013, 3, 795–806. [Google Scholar] [CrossRef] [PubMed]
- McLean, W.F.H.; Blunden, G.; Jewers, K. Quaternary Ammonium Compounds in the Capparaceae. Biochem. Syst. Ecol. 1996, 24, 427–434. [Google Scholar] [CrossRef]
- Pousset, J.-L.; Poisson, J. Vomifoliol: Alcool terpenique isole des feuilles du Rauwolfia vomitoria Afz. Tetrahedron Lett. 1969, 10, 1173–1174. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Pinto, M.M. Carotenoid Breakdown Products the—Norisoprenoids—In Wine Aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef]
- Salem, M.M.; Hussein, S.R.; El-Sharawy, R.; Ragab, E.A.; Dawood, K.M.; El Negoumy, S.I.M. Phytochemical investigation of Boscia angustifolia A. Rich. (Capparaceae). Biochem. Syst. Ecol. 2016, 65, 202–204. [Google Scholar] [CrossRef]
- Jung, H.W.; Tschaplinski, T.J.; Wang, L.; Glazebrook, J.; Greenberg, J.T. Priming in Systemic Plant Immunity. Science 2009, 324, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Bhatt, V.; Kumar, N. Chapter 9—Amides From Plants: Structures and Biological Importance. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; Volume 56, pp. 287–333. [Google Scholar]
- DellaGreca, M.; Previtera, L.; Purcaro, R.; Zarrelli, A. Cinnamic acid amides and lignanamides from Aptenia cordifolia. Tetrahedron 2006, 62, 2877–2882. [Google Scholar] [CrossRef]
- Agerbirk, N.; Vos, M.; Kim, J.H.; Jander, G. Indole Glucosinolate Breakdown and Its Biological Effects. Phytochem. Rev. 2009, 8, 101–120. [Google Scholar] [CrossRef]
- Hall, J.C.; Sytsma, K.J.; Iltis, H.H. Phylogeny of Capparaceae and Brassicaceae Based on Chloroplast Sequence Data. Am. J. Bot 2002, 89, 1826–1842. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, S.F.; Berhow, M.A. Glucosinolate Hydrolysis Products from Various Plant Sources: pH Effects, Isolation, and Purification. Ind. Crops Prod. 2005, 21, 193–202. [Google Scholar] [CrossRef]
- Chun, S.C.; Paramasivan, M.; Chandrasekaran, M. Proline Accumulation Influenced by Osmotic Stress in Arbuscular Mycorrhizal Symbiotic Plants. Front. Microbiol. 2018, 9, 2525. [Google Scholar] [CrossRef] [PubMed]
- Shaikhaldein, H.O.; Al-Qurainy, F.; Nadeem, M.; Khan, S.; Tarroum, M.; Salih, A.M.; Alansi, S.; Al-Hashimi, A.; Alfagham, A.; Alkahtani, J. Assessment of the Impacts of Green Synthesized Silver Nanoparticles on Maerua oblongifolia Shoots under In Vitro Salt Stress. Materials 2022, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Yonbawi, A.R.; Abdallah, H.M.; Alkhilaiwi, F.A.; Koshak, A.E.; Heard, C.M. Anti-Proliferative, Cytotoxic and Antioxidant Properties of the Methanolic Extracts of Five Saudi Arabian Flora with Folkloric Medicinal Use: Aizoon canariense, Citrullus colocynthis, Maerua crassifolia, Rhazya stricta and Tribulus macropterus. Plants 2021, 10, 2073. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef]
- Williams, R.J.; Spencer, J.P.E.; Rice-Evans, C. Flavonoids: Antioxidants or Signalling Molecules? Free Radic. Biol. Med. 2004, 36, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Maporn, P. Reproductive Biology of the Genus Maerua Forssk. in Thailand. Master’s Thesis, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 2021. [Google Scholar]
- Stamatakis, A. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Paradis, E.; Claude, J.; Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R Language. Bioinformatics 2004, 20, 289–290. [Google Scholar] [CrossRef] [PubMed]
- Paradis, E. Pegas: An R Package for Population Genetics with an Integrated-Modular Approach. Bioinformatics 2010, 26, 419–420. [Google Scholar] [CrossRef] [PubMed]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R Package for Genetic Analysis of Populations with Clonal, Partially Clonal, and/or Sexual Reproduction. PeerJ 2014, 2, 281. [Google Scholar] [CrossRef] [PubMed]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019.
- Frichot, E.; Mathieu, F.; Trouillon, T.; Bouchard, G.; François, O. Fast and Efficient Estimation of Individual Ancestry Coefficients. Genetics 2014, 196, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Frichot, E.; François, O. LEA: An R Package for Landscape and Ecological Association Studies. Methods Ecol. Evol. 2015, 6, 925–929. [Google Scholar] [CrossRef]
- Sudžuković, N.; Schinnerl, J.; Brecker, L. Phytochemical Meanings of Tetrahydro-β-Carboline Moiety in Strictosidine Derivatives. Bioorg. Med. Chem. 2016, 24, 588–595. [Google Scholar] [CrossRef]
- Kornpointner, C.; Berger, A.; Fischer, I.M.; Popl, L.; Groher, C.; Valant-Vetschera, K.; Brecker, L.; Schinnerl, J. Revisiting Costa Rican Carapichea affinis (Rubiaceae: Palicoureeae): A Source of Bioactive Dopamine-Iridoid Alkaloids. Phytochem. Lett. 2018, 26, 164–169. [Google Scholar] [CrossRef]
- Berger, A.; Kostyan, M.K.; Klose, S.I.; Gastegger, M.; Lorbeer, E.; Brecker, L.; Schinnerl, J. Loganin and Secologanin Derived Tryptamine–Iridoid Alkaloids from Palicourea crocea and Palicourea padifolia (Rubiaceae). Phytochemistry 2015, 116, 162–169. [Google Scholar] [CrossRef] [PubMed]
Population | N | Shannon | Hexp | π | Tajima’s D | p-Value |
---|---|---|---|---|---|---|
Nakhon Ratchasima (NR) * | 4 | 0 | 0 | 0 | N/A | N/A |
Kanchanaburi (KA) | 34 | 3.037 | 0.175 | 0.003 | −2.210 | 0.027 |
Phetchaburi (PB) | 11 | 1.421 | 0.056 | 0.005 | −0.912 | 0.362 |
Bangkok (BKK) * | 3 | 1.099 | 0.111 | 0.004 | N/A | N/A |
Total | 52 | 2.951 | 0.138 | 0.002 | −2.294 | 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongthet, N.; Bacher, M.; Krenn, M.; Jai-aree, A.; Rosenau, T.; Tiwutanon, P.; Anantaprayoon, N.; Vajrodaya, S.; Brecker, L.; Schinnerl, J.; et al. Genetic Diversity, Chemical Constituents, and Bioactivities of Maerua siamensis from Thailand. Plants 2024, 13, 3359. https://doi.org/10.3390/plants13233359
Wongthet N, Bacher M, Krenn M, Jai-aree A, Rosenau T, Tiwutanon P, Anantaprayoon N, Vajrodaya S, Brecker L, Schinnerl J, et al. Genetic Diversity, Chemical Constituents, and Bioactivities of Maerua siamensis from Thailand. Plants. 2024; 13(23):3359. https://doi.org/10.3390/plants13233359
Chicago/Turabian StyleWongthet, Natthawadi, Markus Bacher, Mara Krenn, Apichart Jai-aree, Thomas Rosenau, Patsakorn Tiwutanon, Nopparat Anantaprayoon, Srunya Vajrodaya, Lothar Brecker, Johann Schinnerl, and et al. 2024. "Genetic Diversity, Chemical Constituents, and Bioactivities of Maerua siamensis from Thailand" Plants 13, no. 23: 3359. https://doi.org/10.3390/plants13233359
APA StyleWongthet, N., Bacher, M., Krenn, M., Jai-aree, A., Rosenau, T., Tiwutanon, P., Anantaprayoon, N., Vajrodaya, S., Brecker, L., Schinnerl, J., & Kraichak, E. (2024). Genetic Diversity, Chemical Constituents, and Bioactivities of Maerua siamensis from Thailand. Plants, 13(23), 3359. https://doi.org/10.3390/plants13233359