Effects of Microplastics, Fertilization and Pesticides on Alien and Native Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Species
2.2. Experimental Design
2.3. Measurement
2.4. Statistical Analyses
3. Results
3.1. Effects of Fertilizer on Alien and Native Plants
3.2. Effects of Microplastics on Alien and Native Plants
3.3. Effects of Pesticides on Alien and Native Plants
3.4. Interaction Effects of Nutrients and Microplastics on Alien and Native Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, S.; Zhao, X.; Pittelkow, C.M.; Fan, M.; Zhang, X.; Yan, X. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 2023, 615, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef] [PubMed]
- Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K.A. Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Sci. Total Environ. 2021, 795, 148625. [Google Scholar] [CrossRef]
- Yahaya, S.M.; Mahmud, A.A.; Abdullahi, M.; Haruna, A. Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: A review. Pedosphere 2023, 33, 385–406. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.; Ridoutt, B.G.; Wang, X.; Ren, P. Nitrogen and phosphorus losses and fertilization potential associated with fertilizer application to cropland in China. J. Clean Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Grovermann, C.; Praneetvatakul, S.; Heng, P.; Nguyen, T.T.L.; Buntong, B.; Le, N.T.; Pinn, T. How much is too much? Quantifying pesticide overuse in vegetable production in Southeast Asia. J. Clean Prod. 2020, 244, 118738. [Google Scholar] [CrossRef]
- Zhang, G.S.; Liu, Y.F. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci. Total Environ. 2018, 642, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Yang, G.; Dou, P.; Qian, S.; Zhao, L.; Yang, Y.; Fanin, N. Microplastics negatively affect soil fauna but stimulate microbial activity: Insights from a field-based microplastic addition experiment. Proc. R. Soc. B 2020, 287, 20201268. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Liu, L.; Li, T.; Dou, Y.; Qiao, J.; Wang, Y.; An, S.; Chang, S.X. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: A global meta-analysis. Glob. Chang. Biol. 2022, 28, 6446–6461. [Google Scholar] [CrossRef]
- Garbowski, M.; Boughton, E.; Ebeling, A.; Fay, P.; Hautier, Y.; Holz, H.; Jentsch, A.; Jurburg, S.; Ladouceur, E.; Martina, J.; et al. Nutrient enrichment alters seasonal β-diversity in global grasslands. J. Ecol. 2023, 111, 2134–2145. [Google Scholar] [CrossRef]
- Harpole, W.S.; Sullivan, L.L.; Lind, E.M.; Firn, J.; Adler, P.B.; Borer, E.T.; Chase, J.; Fay, P.A.; Hautier, Y.; Hillebrand, H.; et al. Addition of multiple limiting resources reduces grassland diversity. Nature 2016, 537, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Dise, N.B.; Mountford, J.O.; Gowing, D.J. Impact of nitrogen deposition on the species richness of grasslands. Science 2004, 303, 1876–1879. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef]
- Schmitz, J.; Hahn, M.; Brühl, C.A. Agrochemicals in field margins—An experimental field study to assess the impacts of pesticides and fertilizers on a natural plant community. Agric. Ecosyst. Environ. 2014, 193, 60–69. [Google Scholar] [CrossRef]
- van Kleunen, M.; Brumer, A.; Gutbrod, L.; Zhang, Z. A microplastic used as infill material in artificial sport turfs reduces plant growth. Plants People Planet 2020, 2, 157–166. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Zhuang, Q.L.; Yuan, H.Y.; Qi, J.Q.; Sun, Z.R.; Tao, B.X.; Zhang, B.H. Phosphorus fertiliser application mitigates the negative effects of microplastic on soil microbes and rice growth. J. Hazard. Mater. 2024, 465, 133278. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Chapter 2—Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In Agrochemicals Detection, Treatment and Remediation; Prasad, M.N.V., Ed.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 25–54. [Google Scholar]
- Isbell, F.; Tilman, D.; Reich, P.B.; Clark, A.T. Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nat. Ecol. Evol. 2019, 3, 1533–1538. [Google Scholar] [CrossRef]
- Wrzesien, M.B.; Denisow, B. The effect of agricultural landscape type on field margin flora in south eastern Poland. Acta Bot. Croat. 2016, 75, 217–225. [Google Scholar] [CrossRef]
- Jauni, M.; Hyvönen, T. Invasion level of alien plants in semi-natural agricultural habitats in boreal region. Agric. Ecosyst. Environ. 2010, 138, 109–115. [Google Scholar] [CrossRef]
- Lenda, M.; Skórka, P.; Knops, J.M.H.; Moroń, D.; Tworek, S.; Woyciechowski, M. Plant establishment and invasions: An increase in a seed disperser combined with land abandonment causes an invasion of the non-native walnut in Europe. Proc. R. Soc. B 2011, 279, 1491–1497. [Google Scholar] [CrossRef]
- Parepa, M.; Fischer, M.; Bossdorf, O. Environmental variability promotes plant invasion. Nat. Commun. 2013, 4, 160. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, D.M.; Resco, V.; Morgan, J.A.; Williams, D.G.; LeCain, D.R.; Hardy, E.M.; Pendall, E.; Bladyka, E. Invasive forb benefits from water savings by native plants and carbon fertilization under elevated CO2 and warming. New Phytol. 2013, 200, 1156–1165. [Google Scholar] [CrossRef]
- Liu, Y.; Speißer, B.; Knop, E.; van Kleunen, M. The Matthew effect: Common species become more common and rare ones become more rare in response to artificial light at night. Glob. Chang. Biol. 2022, 28, 3674–3682. [Google Scholar] [CrossRef]
- Liu, Y.; Oduor, A.M.O.; Zhang, Z.; Manea, A.; Tooth, I.M.; Leishman, M.R.; Xu, X.; van Kleunen, M. Do invasive alien plants benefit more from global environmental change than native plants? Glob. Chang. Biol. 2017, 23, 3363–3370. [Google Scholar] [CrossRef] [PubMed]
- Delavaux, C.S.; Crowther, T.W.; Zohner, C.M.; Robmann, N.M.; Lauber, T.; Van den Hoogen, J.; Kuebbing, S.; Liang, J.; De-Miguel, S.; Nabuurs, G.J.; et al. Native diversity buffers against severity of non-native tree invasions. Nature 2023, 621, 773–777. [Google Scholar] [CrossRef]
- Gioria, M.; Hulme, P.E.; Richardson, D.M.; Pyšek, P. Why are invasive plants successful? Annu. Rev. Plant Biol. 2023, 74, 635–670. [Google Scholar] [CrossRef]
- Richards, C.L.; Bossdorf, O.; Muth, N.Z.; Gurevitch, J.; Pigliucci, M. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 2006, 9, 981–993. [Google Scholar] [CrossRef]
- Hiatt, D.; Flory, S.L. Populations of a widespread invader and co-occurring native species vary in phenotypic plasticity. New Phytol. 2020, 225, 584–594. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, Y.L.; Liao, Z.Y. Effects of warming and nutrient fluctuation on invader Chromolaena odorata and natives in artificial communities. Plant Ecol. 2022, 223, 315–322. [Google Scholar] [CrossRef]
- Molina-Montenegro, M.A.; del Pozo, A.; Gianoli, E. Ecophysiological basis of the Jack-and-Master strategy: Taraxacum officinale (dandelion) as an example of a successful invader. J. Plant Ecol. 2018, 11, 147–157. [Google Scholar]
- Jing, Q.; Liu, J.; Chen, A.; Chen, C.; Liu, J. The spatial–temporal chemical footprint of pesticides in China from 1999 to 2018. Environ. Sci. Pollut. Res. 2022, 29, 75539–75549. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ma, F.; Zhang, Y.; Wang, C.; Xu, H. Spatial distribution patterns of invasive alien species in China. Glob. Ecol. Conserv. 2021, 26, e01432. [Google Scholar] [CrossRef]
- Tang, K.H.D. Microplastics in agricultural soils in China: Sources, impacts and solutions. Environ. Pollut. 2023, 322, 121235. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; EISPACK, authors; Heisterkamp, S.; Van Willigen, B.; Ranke, J.; R Core Team. nlme: Linear and nonlinear mixed effects models. R Package Version 2022, 3, 1–157. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Chen, B.M.; Su, J.Q.; Liao, H.X.; Peng, S.L. A greater foraging scale, not a higher foraging precision, may facilitate invasion by exotic plants in nutrient-heterogeneous conditions. Ann. Bot. 2018, 121, 561–569. [Google Scholar] [CrossRef]
- Yu, H.; He, Y.; Zhang, W.; Chen, L.; Zhang, J.; Zhang, X.; Dawson, W.; Ding, J. Greater chemical signaling in root exudates enhances soil mutualistic associations in invasive plants compared to natives. New Phytol. 2022, 236, 1140–1153. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.B.; Zhu, Z.H. Elevated nitrogen allows the weak invasive plant Galinsoga quadriradiata to become more vigorous with respect to inter-specific competition. Sci. Rep. 2018, 8, 3136. [Google Scholar] [CrossRef]
- Rillig, M.C.; Lehmann, A.; de Souza Machado, A.A.; Yang, G. Microplastic effects on plants. New Phytol. 2019, 223, 1066–1070. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, M.; Shahbaz, M.; Zhu, Z.; Lu, S.; Yu, Y.; Yao, H.; Chen, J.; Ge, T. Microplastics in soil can increase nutrient uptake by wheat. J. Hazard. Mater. 2022, 438, 129547. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Hou, Y.; Chen, Z.; Bu, Y.; Zhang, X.; Shen, Z.; Chen, Y. Impact of polyethylene on soil physicochemical properties and characteristics of sweet potato growth and polyethylene absorption. Chemosphere 2022, 302, 134734. [Google Scholar] [CrossRef] [PubMed]
- Vethaak, A.D.; Legler, J. Microplastics and Human Health. Science 2021, 371, 672–674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, C.; Gu, Y.; Shi, Y.; Gao, X. Microplastics in plant-soil ecosystems: A meta-analysis. Environ. Pollut. 2022, 308, 119718. [Google Scholar] [CrossRef]
- Franco, A.L.C.; Gherardi, L.A.; de Tomasel, C.M.; Andriuzzi, W.S.; Ankrom, K.E.; Bach, E.M.; Guan, P.; Sala, O.E.; Wall, D.H. Root herbivory controls the effects of water availability on the partitioning between above- and below-ground grass biomass. Funct. Ecol. 2020, 34, 2403–2410. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Thukral, A.; Bhardwaj, R. Responses of plants to pesticide toxicity: An overview. Planta Daninha 2019, 37, e019184291. [Google Scholar] [CrossRef]
- Feng, H.; Guo, J.; Peng, C.; Kneeshaw, D.; Roberge, G.; Pan, C.; Ma, X.; Zhou, D.; Wang, W. Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: A global meta-analysis. Glob. Chang. Biol. 2023, 29, 3970–3989. [Google Scholar] [CrossRef]
- Funk, J.L. Differences in plasticity between invasive and native plants from a low resource environment. J. Ecol. 2008, 96, 1162–1173. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2016, 64, 715–716. [Google Scholar] [CrossRef]
- Zhang, G.S.; Zhang, F.X.; Li, X.T. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Sci. Total Environ. 2019, 670, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mondol, M.; Angon, P.B.; Roy, A. Effects of microplastics on soil physical, chemical, and biological properties. Nat. Hazards Res. 2024. [Google Scholar] [CrossRef]
- van Kleunen, M.; Fischer, M. Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol. 2005, 166, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.; Levine, J.M.; Turcotte, M.M.; Hart, S.P. Phenotypic plasticity promotes species coexistence. Nat. Ecol. Evol. 2022, 6, 1256–1261. [Google Scholar] [CrossRef]
- Xiao, F.; Zhang, S.; Yan, Z.; Liu, Y.; Ming, Y.; Li, N.; Lai, Y.; Liu, M.; Wang, Y. Effects of Microplastics on Plant Performance of Invasive Species phytolacca americana and Its Non-Invasive Congeners. Available at SSRN 2022. 4312938. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4312938 (accessed on 10 July 2024).
df | Total Biomass | Leaf | Root | Stem | Height | SLA | RMF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | p | χ2 | p | χ2 | p | χ2 | p | χ2 | p | χ2 | p | χ2 | p | ||
Microplastic (M) | 1 | 5.813 | 0.016 | 4.497 | 0.034 | 2.233 | 0.135 | 2.695 | 0.101 | 0.039 | 0.843 | 0.281 | 0.596 | 0.084 | 0.772 |
Nutrient (N) | 1 | 2442.857 | <0.001 | 2861.558 | <0.001 | 589.002 | <0.001 | 1985.259 | <0.001 | 655.092 | <0.001 | 2.104 | 0.147 | 466.749 | <0.001 |
Pesticide (P) | 1 | 0.968 | 0.325 | 0.322 | 0.570 | 0.244 | 0.621 | 0.508 | 0.476 | 0.473 | 0.492 | 3.418 | 0.064 | 6.538 | 0.011 |
Origin (O) | 1 | 0.622 | 0.430 | 0.584 | 0.445 | 0.245 | 0.620 | 2.348 | 0.125 | 0.485 | 0.486 | 0.693 | 0.405 | 2.050 | 0.152 |
M × N | 1 | 7.103 | 0.008 | 4.844 | 0.028 | 1.868 | 0.172 | 0.045 | 0.831 | 0.518 | 0.472 | 0.015 | 0.904 | 0.254 | 0.614 |
M × P | 1 | 0.046 | 0.831 | 0.752 | 0.386 | 0.024 | 0.877 | 0.027 | 0.868 | 0.750 | 0.386 | 0.007 | 0.932 | 0.262 | 0.609 |
M × O | 1 | 8.916 | 0.003 | 26.858 | <0.001 | 4.926 | 0.026 | 2.112 | 0.146 | 0.798 | 0.372 | 13.157 | <0.001 | 3.124 | 0.077 |
N × P | 1 | 0.266 | 0.606 | 0.110 | 0.740 | 0.054 | 0.817 | 0.211 | 0.646 | 0.025 | 0.875 | 0.042 | 0.838 | 2.208 | 0.137 |
N × O | 1 | 0.073 | 0.787 | 0.697 | 0.404 | 111.069 | <0.001 | 45.667 | <0.001 | 8.903 | 0.003 | 38.463 | <0.001 | 198.947 | <0.001 |
P × O | 1 | 1.345 | 0.246 | 1.939 | 0.164 | 0.065 | 0.799 | 0.484 | 0.487 | 0.863 | 0.353 | 0.263 | 0.608 | 1.308 | 0.253 |
M × N × P | 1 | 0.097 | 0.755 | 0.154 | 0.695 | 0.542 | 0.461 | 0.538 | 0.463 | 0.028 | 0.868 | 0.298 | 0.585 | 0.479 | 0.489 |
M × N × O | 1 | 3.797 | 0.051 | 5.612 | 0.018 | 4.990 | 0.025 | 0.238 | 0.626 | 3.088 | 0.079 | 5.769 | 0.016 | 2.022 | 0.155 |
M × P × O | 1 | 1.184 | 0.277 | 0.639 | 0.424 | 1.803 | 0.179 | 2.501 | 0.114 | 0.006 | 0.940 | 0.000 | 0.999 | 0.825 | 0.364 |
N × P × O | 1 | 0.014 | 0.907 | 0.344 | 0.557 | 0.587 | 0.444 | 0.000 | 0.993 | 0.053 | 0.818 | 0.153 | 0.696 | 0.000 | 0.986 |
Random effects | SD | SD | SD | SD | SD | SD | SD | ||||||||
Family | <0.001 | <0.001 | <0.001 | <0.001 | 0.001 | 1.171 | <0.001 | ||||||||
Species | 0.801 | 0.385 | 0.478 | 0.802 | 1.440 | 1.369 | 0.780 | ||||||||
Residuals | 0.515 | 0.279 | 0.275 | 0.478 | 1.169 | 0.943 | 0.456 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Yang, G.; Zheng, Y. Effects of Microplastics, Fertilization and Pesticides on Alien and Native Plants. Plants 2024, 13, 2947. https://doi.org/10.3390/plants13212947
Shi X, Yang G, Zheng Y. Effects of Microplastics, Fertilization and Pesticides on Alien and Native Plants. Plants. 2024; 13(21):2947. https://doi.org/10.3390/plants13212947
Chicago/Turabian StyleShi, Xiong, Guilin Yang, and Yulong Zheng. 2024. "Effects of Microplastics, Fertilization and Pesticides on Alien and Native Plants" Plants 13, no. 21: 2947. https://doi.org/10.3390/plants13212947
APA StyleShi, X., Yang, G., & Zheng, Y. (2024). Effects of Microplastics, Fertilization and Pesticides on Alien and Native Plants. Plants, 13(21), 2947. https://doi.org/10.3390/plants13212947