Seed Priming by Low-Dose Radiation Improves Growth of Lactuca sativa and Valerianella locusta
Abstract
:1. Introduction
2. Results
2.1. Seed Germination
2.2. Morphological Traits
2.3. Total Antioxidant and Phenol Contents
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Seed Irradiation
4.3. Seed Germination
4.4. Antioxidant Content
4.5. Total Phenolic Compounds (TPC)
4.6. Data Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Michelon, N.; Pennisi, G.; Myint, N.O.; Dall’Olio, G.; Batista, L.P.; Salviano, A.A.C.; Gruda, N.S.; Orsini, F.; Gianquinto, G. Strategies for improved yield and water use efficiency of lettuce (Lactuca sativa L.) through simplified soilless cultivation under semi-arid climate. Agronomy 2020, 10, 1379. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; Pannico, A.; El-Nakhel, C.; Fascella, G.; Duri, L.G.; Cristofano, F.; Gentile, B.R.; Giordano, M.; Rouphael, Y. Nutrient solution deprivation as a tool to improve hydroponics sustainability: Yield, physiological, and qualitative response of lettuce. Agronomy 2021, 11, 1469. [Google Scholar] [CrossRef]
- Pinotti, L.; Manoni, M.; Fumagalli, F.; Rovere, N.; Luciano, A.; Ottoboni, M.; Ferrari, L.; Cheli, F.; Djuragic, O. Reduce, reuse, recycle for food waste: A second life for fresh-cut leafy salad crops in animal diets. Animals 2020, 10, 1082. [Google Scholar] [CrossRef]
- Sharma, K.; Singh, U.; Sharma, P.; Kumar, A.; Sharma, L. Seed treatments for sustainable agriculture-A review. J. Appl. Nat. Sci. 2015, 7, 521–539. [Google Scholar] [CrossRef]
- Selma, M.V.; Luna, M.C.; Martínez-Sánchez, A.; Tudela, J.A.; Beltrán, D.; Baixauli, C.; Gil, M.I. Sensory quality, bioactive constituents and microbiological quality of green and red fresh-cut lettuces (Lactuca sativa L.) are influenced by soil and soilless agricultural production systems. Postharvest Biol. Technol. 2012, 63, 16–24. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Ashraf, M. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol. Biochem. 2021, 160, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Pawar, V.; Laware, S. Seed priming a critical review. Int. J. Sci. Res. Biol. Sci 2018, 5, 94–101. [Google Scholar] [CrossRef]
- Bera, K.; Dutta, P.; Sadhukhan, S. Seed priming with non-ionizing physical agents: Plant responses and underlying physiological mechanisms. Plant Cell Rep. 2022, 41, 53–73. [Google Scholar] [CrossRef]
- Harwalker, M.R.; Donger, T.K.; Padwal-Desai, S.R. Radiation disinfestations of spice and spice products. I. Radiation sensitivity of developmental stages of Lasioderma serricorne and Stegobium panicium. J. Food Sci. Technol. 1995, 32, 249–251. [Google Scholar]
- Sitton, J.; Borsa, J.; Schultz, T.; Maguire, J. Electron beam irradiation effects on wheat quality, seed vigor, and viability and pathogenicity of teliospores of Tilletia controversa and T. tritici. Emir. J. Food Agric. 1995, 24, 415–424. [Google Scholar]
- Nagy, P.B.; Kent, R.M. Ultrasonic assessment of Poisson’s ratio in thin rods. J. Acoust. Soc. Am. 1995, 98, 2694–2701. [Google Scholar] [CrossRef]
- Stephenson, M.; Kushalappa, A.; Raghavan, G.; Mather, D. Response surface models to describe the effects and phytotoxic thresholds of microwave treatments on barley seed germination and vigour. Seed Sci. Technol. 1996, 24, 49–66. [Google Scholar]
- Aladjadjiyan, A. Effect of microwave irradiation on seeds of lentils (Lens culinaris, med.). Rom. J. Biophys. 2010, 20, 213–221. [Google Scholar]
- Gupta, P.R.K.; Chaturvedi, G.S. Effect of pre germination exposure of ultraviolet radiation on forage seeds. Seed Res. 1987, 15, 143–148. [Google Scholar]
- Reddy, M.B.; Kushalappa, A.; Raghavan, G.; Stephenson, M. Use of microwave energy for the eradication of seedborne Maporthe phaseolorum in soybean and its effect on seed quality. J. Microw. Power Electromagn. Energy 1995, 30, 199–204. [Google Scholar]
- Reddy, M.B.; Raghavan, G.; Kushalappa, A.; Paulitz, T. Effect of microwave treatment on quality of wheat seeds infected with Fusarium graminearum. J. Agric. Eng. Res. 1998, 71, 113–117. [Google Scholar] [CrossRef]
- Therdetskaya, T.; Levashenko, G. Pre-sowing disinfestations of cucumber seed by bactericidal rays. Zashchita I Karantin Rastenii 1996, 4, 43. [Google Scholar]
- Al-Enezi, N.; Al-Bahrany, A.; Al-Khayri, J. Effect of X-irradiation on date palm seed germination and seedling growth. Emir. J. Food Agric. 2012, 24, 415–424. [Google Scholar]
- Arena, C.; De Micco, V.; De Maio, A. Growth alteration and leaf biochemical responses in Phaseolus vulgaris exposed to different doses of ionising radiation. Plant Biol. 2014, 16, 194–202. [Google Scholar] [CrossRef]
- Esnault, M.-A.; Legue, F.; Chenal, C. Ionizing radiation: Advances in plant response. Environ. Exp. Bot. 2010, 68, 231–237. [Google Scholar] [CrossRef]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Hoy, M.K.; Sebastian, R.S.; Goldman, J.D.; Enns, C.W.; Moshfegh, A.J. Consuming vegetable-based salad is associated with higher nutrient intakes and diet quality among US adults, What We Eat in America, National Health and Nutrition Examination Survey 2011–2014. J. Acad. Nutr. Diet. 2019, 119, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- Noumedem, J.; Djeussi, D.; Hritcu, L.; Mihasan, M.; Kuete, V. Lactuca sativa. In Medicinal Spices and Vegetables from Africa; Elsevier: Amsterdam, The Netherlands, 2017; pp. 437–449. [Google Scholar]
- Yang, X.; Feng, L.; Zhao, L.; Liu, X.; Hassani, D.; Huang, D. Effect of glycine nitrogen on lettuce growth under soilless culture: A metabolomics approach to identify the main changes occurred in plant primary and secondary metabolism. J. Sci. Food Agric. 2018, 98, 467–477. [Google Scholar] [CrossRef]
- Al-Enezi, N.A.; Al-Khayri, J.M. Effect of X-irradiation on proline accumulation, growth and water content of date palm (Phoenix dactylifera L.) seedlings. J. Biol. Sci. 2012, 12, 146–153. [Google Scholar] [CrossRef]
- De Micco, V.; De Pascale, S.; Paradiso, R.; Aronne, G. Microgravity effects on different stages of higher plant life cycle and completion of the seed-to-seed cycle. Plant Biol. 2014, 16, 31–38. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- Jeevan Kumar, S.; Rajendra Prasad, S.; Banerjee, R.; Thammineni, C. Seed birth to death: Dual functions of reactive oxygen species in seed physiology. Ann. Bot. 2015, 116, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Damerum, A.; Selmes, S.L.; Biggi, G.F.; Clarkson, G.J.; Rothwell, S.D.; Truco, M.J.; Michelmore, R.W.; Hancock, R.D.; Shellcock, C.; Chapman, M.A. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa). Hortic. Res. 2015, 2, 15055. [Google Scholar] [CrossRef]
- Długosz-Grochowska, O.; Kołton, A.; Wojciechowska, R. Modifying folate and polyphenol concentrations in Lamb’s lettuce by the use of LED supplemental lighting during cultivation in greenhouses. J. Funct. Foods 2016, 26, 228–237. [Google Scholar] [CrossRef]
- Nicolle, C.; Carnat, A.; Fraisse, D.; Lamaison, J.L.; Rock, E.; Michel, H.; Amouroux, P.; Remesy, C. Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). J. Sci. Food Agric. 2004, 84, 2061–2069. [Google Scholar] [CrossRef]
- Sinkovič, L.; Sinkovič, D.K.; Ugrinović, K. Yield and nutritional quality of soil-cultivated crisphead lettuce (Lactuca sativa L. var. capitata) and corn salad (Valerianella spp.) harvested at different growing periods. Food Sci. Nutr. 2023, 11, 1755–1769. [Google Scholar] [CrossRef] [PubMed]
- Hernández, J.A.; Almansa, M.S. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol. Plant. 2002, 115, 251–257. [Google Scholar] [CrossRef]
- Talaat, N.B.; Shawky, B.T. Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J. Plant Nutr. Soil Sci. 2011, 174, 283–291. [Google Scholar] [CrossRef]
- Pratyusha, S. Phenolic compounds in the plant development and defense: An overview. In Plant Stress Physiology–Perspectives in Agriculture; IntechOpen: London, UK, 2022; pp. 125–140. [Google Scholar] [CrossRef]
- Naikoo, M.I.; Dar, M.I.; Raghib, F.; Jaleel, H.; Ahmad, B.; Raina, A.; Khan, F.A.; Naushin, F. Role and regulation of plants phenolics in abiotic stress tolerance: An overview. In Plant Signaling Molecules; Elsevier: Amsterdam, The Netherlands, 2019; pp. 157–168. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, P.; Verma, V.; Sharma, R.; Bhargava, B.; Irfan, M. Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. Plant Physiol. Biochem. 2022, 179, 10–24. [Google Scholar] [CrossRef]
- Skrypnik, L.; Styran, T.; Savina, T.; Golubkina, N. Effect of selenium application and growth stage at harvest on hydrophilic and lipophilic antioxidants in lamb’s lettuce (Valerianella locusta L. Laterr.). Plants 2021, 10, 2733. [Google Scholar] [CrossRef] [PubMed]
- Nikzad, N.; Parastar, H. Evaluation of the effect of organic pollutants exposure on the antioxidant activity, total phenolic and total flavonoid content of lettuce (Lactuca sativa L.) using UV–Vis spectrophotometry and chemometrics. Microchem. J. 2021, 170, 106632. [Google Scholar] [CrossRef]
- Liu, X.; Ardo, S.; Bunning, M.; Parry, J.; Zhou, K.; Stushnoff, C.; Stoniker, F.; Yu, L.; Kendall, P. Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT-Food Sci. Technol. 2007, 40, 552–557. [Google Scholar] [CrossRef]
- Długosz-Grochowska, O.; Wojciechowska, R.; Kruczek, M.; Habela, A. Supplemental lighting with LEDs improves the biochemical composition of two Valerianella locusta (L.) cultivars. Hortic. Environ. Biotechnol. 2017, 58, 441–449. [Google Scholar] [CrossRef]
- Ellis, R.H.; Roberts, E.H. Towards a Rational Basis for Testing Seed Quality. 1980. Available online: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALAGROLINEINRA8110154127 (accessed on 27 October 2023).
- Gianinetti, A. Basic features of the analysis of germination data with generalized linear mixed models. Data 2020, 5, 6. [Google Scholar] [CrossRef]
- Munzuroglu, O.; Geckil, H. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch. Environ. Contam. Toxicol. 2002, 43, 203–213. [Google Scholar] [CrossRef]
- Sorrentino, M.C.; Capozzi, F.; Amitrano, C.; De Tommaso, G.; Arena, C.; Iuliano, M.; Giordano, S.; Spagnuolo, V. Facing metal stress by multiple strategies: Morphophysiological responses of cardoon (Cynara cardunculus L.) grown in hydroponics. Environ. Sci. Pollut. Res. 2021, 28, 37616–37626. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circular. Calif. Agric. Exp. Stn. 1950, 347. [Google Scholar]
- Sorrentino, M.C.; Granata, A.; Pugliese, M.; Manti, L.; Giordano, S.; Capozzi, F.; Spagnuolo, V. Evaluation of morpho-physiological responses and genotoxicity in Eruca sativa (Mill.) grown in hydroponics from seeds exposed to X-rays. PeerJ 2023, 11, e15281. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
L. sativa | ||||||
---|---|---|---|---|---|---|
Leaf Number | Root Length (cm) | Plant Height (cm) | F.W. Aerial Part (g) | D.W. Aerial Part (g) | D.W./F.W. | |
C | 10.8 ± 1.2 b | 21.1 ± 1.9 b | 17.8 ± 1.2 b | 11 ± 0.85 c | 0.6 ± 0.1 b | 5% |
1 Gy | 10.8 ± 0.9 b | 28.6 ± 4.3 ab | 18.1 ± 1.4 ab | 13 ± 0.65 b | 0.7 ± 0.1 a | 5% |
10 Gy | 12.1 ± 1.2 a | 35.5 ± 10.8 a | 19.3 ± 0.9 a | 14.1 ± 0.9 a | 0.7 ± 0.1 a | 5% |
V. locusta | ||||||
C | 7.7 ± 1.2 | 13.8 ± 1.3 | 4 ± 0.7 b | 2.4 ± 0.1 b | 0.1 ± 0.05 | 4% |
1 Gy | 8.6 ± 0.5 | 14.9 ± 2.7 | 5.2 ± 0.5 a | 2.8 ± 0.1 a | 0.1 ± 0.07 | 4% |
10 Gy | 8.3 ± 0.9 | 13.2 ± 1.2 | 4.2 ± 0.4 b | 2.3 ± 0.1 b | 0.1 ± 0.05 | 4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorrentino, M.C.; Granata, A.; Cantalupo, M.; Manti, L.; Pugliese, M.; Giordano, S.; Capozzi, F.; Spagnuolo, V. Seed Priming by Low-Dose Radiation Improves Growth of Lactuca sativa and Valerianella locusta. Plants 2024, 13, 165. https://doi.org/10.3390/plants13020165
Sorrentino MC, Granata A, Cantalupo M, Manti L, Pugliese M, Giordano S, Capozzi F, Spagnuolo V. Seed Priming by Low-Dose Radiation Improves Growth of Lactuca sativa and Valerianella locusta. Plants. 2024; 13(2):165. https://doi.org/10.3390/plants13020165
Chicago/Turabian StyleSorrentino, Maria Cristina, Angelo Granata, Martina Cantalupo, Lorenzo Manti, Mariagabriella Pugliese, Simonetta Giordano, Fiore Capozzi, and Valeria Spagnuolo. 2024. "Seed Priming by Low-Dose Radiation Improves Growth of Lactuca sativa and Valerianella locusta" Plants 13, no. 2: 165. https://doi.org/10.3390/plants13020165