Microbial Organic Fertilizer Combined with Magnetically Treated Water Drip Irrigation Promoted the Stability of Desert Soil Aggregates and Improved the Yield and Quality of Jujubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. Experimental Design
2.2.1. Irrigation and Fertilization Modes
2.2.2. Experimental Design of Applying Microbial Organic Fertilizer under Drip Irrigation with Magnetically Treated Water
2.3. Quantitative Analysis of Indicators
2.3.1. Determination of Soil Moisture Constants and Hydraulic Parameters
2.3.2. Determination of Soil Nutrient Content and Enzyme Activity
2.3.3. Jujube Yield and Quality Determination
2.4. Gauss Model
2.5. Statistical Methods
3. Results and Discussion
3.1. Effects of Microbial Organic Fertilizer Applied through Magnetically Treated Water Drip Irrigation on Soil Physical Properties
3.1.1. Soil Bulk Density
3.1.2. Soil Pore Volume
3.2. Effects of Microbial Organic Fertilizer Applied through Magnetically Treated Water Drip Irrigation on Soil Hydraulic Parameters
3.2.1. Saturated Hydraulic Conductivity
3.2.2. Soil Water-Holding Capacity
3.3. Effects of Applying Microbial Organic Fertilizer under Magnetically Treated Water Drip Irrigation on Soil Enzyme Activity
3.3.1. Urease Activity
3.3.2. Catalase Activity
3.3.3. Sucrase Activity
3.4. Effects of Applying Microbial Organic Fertilizer under Magnetically Treated Water Drip Irrigation on the Stability of Soil Aggregates
3.4.1. Aggregate Composition
3.4.2. Proportion of Water-Stable Aggregates
3.5. Effects of Applying Microbial Organic Fertilizer under Magnetically Treated Water Drip Irrigation on the Yield and Quality of Jujubes
3.5.1. Jujube Yield
3.5.2. Quality
3.6. Quantitative Characterization of Gauss Model
3.6.1. Prediction of Optimal Application Amount of Microbial Organic Fertilizer Based on Soil Pore Volume, Urease Activity, and WSA
3.6.2. Construction of Jujube Yield and Quality Prediction Model Based on Microbial Organic Fertilizer Application Amount
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Wu, Y.; Zhang, Z.; Guo, R.; Wang, L. Effects of magnetization on photosynthesis, mineral elements and yield of lettuce vary with water sources. J. Irrig. Drain. 2021, 40, 40–47. [Google Scholar]
- Bai, T.; Zhang, N.; Wang, T.; Wang, D.; Yu, C.; Meng, W.; Fei, H.; Chen, R.; Li, Y.; Zhou, B. Simulating on the effects of irrigation on jujube tree growth, evapotranspiration and water use based on crop growth model. Agric. Water Manag. 2021, 243, 106517. [Google Scholar] [CrossRef]
- Yu, K.; Zhao, Y.; Li, X.; Shao, Y.; Zhu, F.; He, Y. Identification of crack features in fresh jujube using Vis/NIR hyperspectral imaging combined with image processing. Comput. Electron. Agric. 2014, 103, 1–10. [Google Scholar] [CrossRef]
- Bai, T.; Wang, T.; Zhang, N.; Chen, Y.; Mercatoris, B. Growth simulation and yield prediction for perennial jujube fruit tree by integrating age into the WOFOST model. J. Integr. Agric. 2020, 19, 721–734. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Liang, Z. Analysis on planting patterns and industry status of Chinese jujube in Xinjiang. Acta Hortic. Sin. 2014, 41, 1116–1124. [Google Scholar]
- Yao, J.; Zhao, Y.; Chen, Y.; Yu, X.; Zhang, R. Multi-scale assessments of droughts: A case study in Xinjiang, China. Sci. Total Environ. 2018, 630, 444–452. [Google Scholar] [CrossRef]
- Li, Y.; Yao, N.; Liang, J.; Wang, X.; Niu, B.; Jia, Y.; Jiang, F.; Yu, Q.; Liu, D.; Feng, H.; et al. Rational biochar application rate for cotton nutrient content, growth, yields, productivity, and economic benefits under film-mulched trickle irrigation. Agric. Water Manag. 2023, 276, 108079. [Google Scholar] [CrossRef]
- Jamily, A.S.; Koyama, Y.; Win, T.A.; Toyota, K.; Chikamatsu, S.; Shirai, T.; Uesugi, T.; Murakami, H.; Ishida, T.; Yasuhara, T. Effects of inoculation with a commercial microbial inoculant Bacillus subtilis C-3102 mixture on rice and barley growth and its possible mechanism in the plant growth stimulatory effect. J. Plant Prot. Res. 2019, 59, 193–205. [Google Scholar] [CrossRef]
- Shao, F.; Zeng, S.; Wang, Q.; Tao, W.; Wu, J.; Su, L.; Yan, H.; Zhang, Y.; Lin, S. Synergistic effects of biochar and carboxymethyl cellulose sodium (CMC) applications on improving water retention and aggregate stability in desert soils. J. Environ. Manag. 2023, 331, 117305. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gerard, V.D.S.; Beguería, S.; Azorin-Molina, C.; LopezMoreno, J.I. Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J. Hydrol. 2015, 526, 42–54. [Google Scholar] [CrossRef]
- Liang, J.; Shi, W.; He, Z.; Pang, L.; Zhang, Y. Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China. Agric. Water Manag. 2019, 218, 48–59. [Google Scholar] [CrossRef]
- Yao, A.V.; Bochow, H.; Karimov, S.; Boturov, U.; Sanginboy, S.; Sharipov, A.K. Effect of FZB 24® Bacillus subtilis as a biofertilizer on cotton yields in field tests. Arch. Phytopath. Plant Protect. 2006, 39, 323–328. [Google Scholar] [CrossRef]
- Lee, S.; Trịnh, C.S.; Lee, W.J.; Jeong, C.Y.; Truong, H.A.; Chung, N.; Kang, C.S.; Lee, H. Bacillus subtilis strain L1 promotes nitrate reductase activity in Arabidopsis and elicits enhanced growth performance in Arabidopsis, lettuce, and wheat. J. Plant Res. 2020, 133, 231–244. [Google Scholar] [CrossRef]
- Qiu, F.; Liu, W.; Chen, L.; Wang, Y.; Ma, Y.; Lyu, Q.; Yi, S.; Xie, R.; Zheng, Y. Bacillus subtilis biofertilizer application reduces chemical fertilization and improves fruit quality in fertigated Tarocco blood orange groves. Sci. Hortic. 2021, 281, 110004. [Google Scholar] [CrossRef]
- Cozzolino, V.; Di, M.V.; Monda, H.; Spaccini, R.; Piccolo, A. The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biol. Fertil. Soils 2016, 52, 15–29. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, X.; Huang, H.Y.; Jing, J.Q.; Zhao, H.J.; Wang, L.; Long, X.E. Contrasting beneficial and pathogenic microbial communities across consecutive cropping fields of greenhouse strawberry. Appl. Microbiol. Biotechnol. 2018, 102, 5717–5729. [Google Scholar] [CrossRef]
- Yang, K.; Xiao, J.L.; Zhang, Y.; Wei, L.; Liang, Z.H. Application of soil fumigation technology on controlling watermelon fusarium wilt. J. Chang. Veg. 2020, 18, 31–33. (In Chinese) [Google Scholar]
- Cocetta, G.; Passera, A.; Vacchini, V.; Shahzad, G.; Cortellino, G.; Picchi, V.; Ferrante, A.; Casati, P.; Piazza, L. Use of microbial inoculants during cultivation maintain the physiological, nutritional and technological quality of fresh-cut romaine lettuce. Postharvest Biol. Technol. 2021, 175, 111411. [Google Scholar] [CrossRef]
- Kim, K.Y.; Jordan, D.; McDonald, G.A. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol. Fertil. Soils 1998, 26, 79–87. [Google Scholar] [CrossRef]
- Tuo, Y.; Wang, Z.; Zheng, Y.; Shi, X.; Liu, X.; Ding, M.; Yang, Q. Effect of water and fertilizer regulation on the soil microbial biomass carbon and nitrogen, enzyme activity, and saponin content of Panax notoginseng. Agric. Water Manag. 2023, 278, 108145. [Google Scholar] [CrossRef]
- Ning, C.C.; Gao, P.D.; Wang, B.Q.; Lin, W.P.; Jiang, N.H.; Cai, K.Z. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agric. 2017, 16, 1819–1831. [Google Scholar] [CrossRef]
- Zou, H.; Fan, J.; Zhang, F.; Xiang, Y.; Wu, L.; Yan, S. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric. Water Manag. 2020, 230, 105986. [Google Scholar]
- Li, Q.; Zhang, D.; Cheng, H.; Ren, L.; Jin, X.; Fang, W.; Yan, D.; Li, Y.; Wang, Q.; Cao, A. Organic fertilizers activate soil enzyme activities and promote the recovery of soil beneficial microorganisms after dazomet fumigation. J. Environ. Manag. 2022, 309, 114666. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Liu, X.; Yang, W.; Yang, X.; Li, W.; Xia, Q.; Li, J.; Gao, Z.; Yang, Z. Rhizosphere soil properties, microbial community, and enzyme activities: Short-term responses to partial substitution of chemical fertilizer with organic manure. J. Environ. Manag. 2021, 299, 113650. [Google Scholar] [CrossRef] [PubMed]
- Quaggio, J.A.; Souza, T.R.; Zambrosi, F.C.B.; Mattos, D.; Boaretto, R.M.; Silva, G. Citrus fruit yield response to nitrogen and potassium fertilization depends on nutrient-water management system. Sci. Hortic. 2019, 249, 329–333. [Google Scholar]
- Liang, J.; Li, Y.; Si, B.; Wang, Y.; Chen, X.; Wang, X.; Chen, H.; Wang, H.; Zhang, F.; Bai, Y.; et al. Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils. Sci. Total Environ. 2021, 771, 144802. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Tao, W.; Yan, H.; Wang, Q. Effects of Microbial Organic Fertilizer (MOF) Application on Desert Soil Enzyme Activity and Jujube Yield and Quality. Agronomy 2023, 13, 2427. [Google Scholar] [CrossRef]
- NY 884-2012; Microbial Organic Fertilizers. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2012.
- Shao, F.; Yan, H.; Lin, S.; Wang, Q.; Tao, W.; Wu, J.; Su, L. Magnetically treated water drip irrigation combined with carboxymethyl cellulose (CMC) application: A regulating strategy for enhancing the jujube yield and quality in southern Xinjiang of China. Sci. Hortic. 2024, 326, 112723. [Google Scholar] [CrossRef]
Soil Depth (cm) | Sand (%) | Silt (%) | Clay (%) | Soil Texture | Soil Bulk Density (g/cm3) | pH | Fast-Acting Potassium (mg/kg) | Fast-Acting Phosphorus (mg/kg) |
---|---|---|---|---|---|---|---|---|
0–20 | 86.77 | 13.20 | 0.03 | Sand | 1.62 | 8.3 | 25.31 | 12.31 |
20–40 | 86.68 | 13.14 | 0.18 | Sand | 1.61 | 8.2 | 22.14 | 8.29 |
40–60 | 85.49 | 12.33 | 2.18 | Sand | 1.59 | 8.3 | 20.11 | 6.52 |
60–80 | 85.29 | 12.47 | 2.24 | Sand | 1.60 | 8.4 | 15.18 | 4.87 |
Year | Irrigation Time | Irrigation Amount (mm) | Urea (kg/ha) | P2O5 (kg/ha) | K2O (kg/ha) |
---|---|---|---|---|---|
2021 | 20 April | 32 | 37.95 | 18.90 | 6.48 |
5 May | 32 | 37.95 | 18.90 | 6.48 | |
20 May | 32 | 37.95 | 18.90 | 6.48 | |
3 June | 32 | 37.95 | 18.90 | 6.48 | |
17 June | 32 | 37.95 | 18.90 | 6.48 | |
2 July | 32 | 43.20 | 14.40 | 38.40 | |
15 July | 32 | 43.20 | 14.40 | 38.40 | |
1 August | 32 | 43.20 | 14.40 | 38.40 | |
16 August | 32 | 43.20 | 14.40 | 38.40 | |
2 September | 32 | 43.20 | 14.40 | 38.40 | |
2022 | 28 April | 32 | 37.95 | 18.90 | 6.48 |
13 May | 32 | 37.95 | 18.90 | 6.48 | |
28 May | 32 | 37.95 | 18.90 | 6.48 | |
10 June | 32 | 37.95 | 18.90 | 6.48 | |
25 June | 32 | 37.95 | 18.90 | 6.48 | |
8 July | 32 | 43.20 | 14.40 | 38.40 | |
21 July | 32 | 43.20 | 14.40 | 38.40 | |
2 August | 32 | 43.20 | 14.40 | 38.40 | |
18 August | 32 | 43.20 | 14.40 | 38.40 | |
3 September | 32 | 43.20 | 14.40 | 38.40 | |
2023 | 27 April | 32 | 37.95 | 18.90 | 6.48 |
8 May | 32 | 37.95 | 18.90 | 6.48 | |
20 May | 32 | 37.95 | 18.90 | 6.48 | |
3 June | 32 | 37.95 | 18.90 | 6.48 | |
16 June | 32 | 37.95 | 18.90 | 6.48 | |
1 July | 32 | 43.20 | 14.40 | 38.40 | |
15 July | 32 | 43.20 | 14.40 | 38.40 | |
29 July | 32 | 43.20 | 14.40 | 38.40 | |
13 August | 32 | 43.20 | 14.40 | 38.40 | |
28 August | 32 | 43.20 | 14.40 | 38.40 |
Year | Treatment | Soil Aggregate Size Distribution (%) | |||
---|---|---|---|---|---|
2–0.5 mm | 0.5–0.25 mm | 0.25–0.125 mm | <0.125 mm | ||
2021 | CK | 0 | 8.32 e | 21.72 f | 69.96 a |
M0 | 0 | 10.13 de | 26.01 d | 63.86 b | |
M6 | 1.63 e | 12.12 d | 28.27 c | 57.98 c | |
M12 | 3.88 d | 14.82 c | 28.61 c | 52.69 d | |
M18 | 4.76 c | 16.76 b | 28.22 c | 50.26 e | |
M24 | 6.36 b | 20.18 a | 31.33 a | 42.13 g | |
2022 | CK | 0 | 9.18 e | 23.21 e | 67.61 a |
M0 | 0 | 10.85 d | 25.17 d | 63.98 b | |
M6 | 1.93 e | 11.83 d | 27.32 cd | 58.92 c | |
M12 | 2.52 d | 13.69 c | 28.63 c | 55.16 d | |
M24 | 4.63 c | 18.95 b | 30.14 ab | 46.28 f | |
M48 | 7.28 ab | 21.32 a | 33.16 a | 38.24 | |
2023 | CK | 0 | 8.72 e | 24.21 de | 67.07 a |
M0 | 0 | 10.83 d | 25.47 d | 63.70 b | |
M6 | 1.91 e | 12.11 d | 26.25 d | 59.73 c | |
M12 | 2.95 d | 14.34 c | 29.15 c | 53.56 d | |
M24 | 5.31 b | 17.36 bc | 31.48 ab | 45.85 f | |
M48 | 8.11 a | 20.35 a | 34.37 a | 37.17 h |
Year | Treatment | Percentage of Jujube Fruit Grades (%) | Optimal Fruit Rate (%) | ||||
---|---|---|---|---|---|---|---|
Special | Level 1 | Level 2 | Level 3 | Outside the Level | |||
2021 | CK | 8.73 g | 12.13 g | 17.61 g | 33.14 a | 28.39 a | 38.47 j |
M0 | 9.65 f | 15.12 e | 16.77 g | 30.18 b | 28.28 a | 41.54 i | |
M6 | 10.38 f | 16.35 e | 18.22 f | 29.16 b | 25.89 a | 44.95 h | |
M12 | 11.52 e | 17.62 d | 21.62 e | 27.24 c | 22.00 c | 50.76 f | |
M18 | 12.66 e | 18.84 c | 27.67 c | 23.17 d | 17.66 d | 59.17 d | |
M24 | 15.62 d | 22.18 b | 31.68 b | 21.22 e | 9.30 g | 69.48 b | |
2022 | CK | 10.34 f | 15.40 e | 21.20 e | 27.60 c | 25.46 b | 46.94 g |
M0 | 12.12 e | 14.13 e | 24.31 d | 23.87 d | 25.57 b | 50.56 f | |
M6 | 14.12 d | 17.30 d | 26.42 c | 23.19 d | 18.97 d | 57.84 d | |
M12 | 15.31 d | 19.14 c | 31.39 b | 20.11 e | 14.05 f | 65.84 c | |
M24 | 20.13 b | 23.16 b | 36.33 a | 13.35 f | 7.03 h | 79.62 a | |
M48 | 14.88 d | 20.36 c | 33.27 b | 23.36 d | 8.13 h | 68.51 b | |
2023 | CK | 11.33 f | 14.28 f | 17.35 g | 37.32 a | 19.72 d | 42.96 i |
M0 | 12.51 e | 15.34 e | 19.22 f | 36.79 a | 16.14 e | 47.07 g | |
M6 | 14.32 d | 17.27 d | 23.17 d | 30.76 b | 14.48 f | 54.76 e | |
M12 | 17.31 c | 20.33 c | 32.61 b | 22.66 d | 7.09 h | 70.25 b | |
M24 | 23.32 a | 26.17 a | 33.28 b | 12.69 f | 4.54 i | 82.77 a | |
M48 | 16.73 c | 19.33 c | 35.27 a | 23.28 d | 5.39 i | 71.33 b |
Year | Index | Optimal Application Amount | Optimal Index Value | R2 | RMSE |
---|---|---|---|---|---|
2021 | SPV | 2.40 | 0.45 | 0.968 | 0.003 |
WSA | 2.83 | 27.41 | 0.999 | 0.096 | |
UA | 3.73 | 4.15 | 0.991 | 0.066 | |
2022 | SPV | 3.89 | 0.46 | 0.936 | 0.006 |
WSA | 4.18 | 29.43 | 0.999 | 0.207 | |
UA | 5.13 | 4.51 | 0.996 | 0.085 | |
2023 | SPV | 4.60 | 0.46 | 0.992 | 0.002 |
WSA | 4.13 | 29.47 | 0.968 | 0.356 | |
UA | 5.86 | 4.33 | 0.998 | 0.057 |
Year | Index | a | x0 | β | TV0 | TV0 + a | R2 | RMSE |
---|---|---|---|---|---|---|---|---|
2022 | Yield | 0.180 | 2.947 | 1.513 | 0.832 | 1.011 | 0.999 | 0.0002 |
OFR | 0.574 | 3.096 | 2.014 | 0.459 | 1.033 | 0.999 | 0.0006 | |
TA | −0.325 | 3.330 | 1.867 | 1.012 | 0.687 | 0.854 | 0.0333 | |
SS | 0.081 | 2.769 | 1.383 | 0.922 | 1.003 | 0.999 | 0.0003 | |
FL | 0.499 | 3.102 | 1.344 | 0.563 | 1.063 | 0.998 | 0.0061 | |
ET | −0.090 | 3.160 | 1.768 | 1.012 | 0.922 | 0.999 | 0.0008 | |
2023 | Yield | 0.275 | 2.833 | 2.459 | 0.728 | 1.002 | 0.987 | 0.0048 |
OFR | 0.995 | 3.100 | 2.693 | 0.046 | 1.040 | 0.984 | 0.0192 | |
TA | −1.800 | 3.273 | 5.329 | 2.458 | 0.658 | 0.999 | 0.0012 | |
SS | 0.253 | 3.218 | 3.186 | 0.755 | 1.008 | 0.999 | 0.0003 | |
FL | 0.505 | 2.904 | 1.745 | 0.514 | 1.020 | 0.999 | 0.0033 | |
ET | −0.077 | 3.297 | 1.340 | 0.998 | 0.921 | 0.999 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, W.; Shao, F.; Yan, H.; Wang, Q. Microbial Organic Fertilizer Combined with Magnetically Treated Water Drip Irrigation Promoted the Stability of Desert Soil Aggregates and Improved the Yield and Quality of Jujubes. Plants 2024, 13, 1930. https://doi.org/10.3390/plants13141930
Tao W, Shao F, Yan H, Wang Q. Microbial Organic Fertilizer Combined with Magnetically Treated Water Drip Irrigation Promoted the Stability of Desert Soil Aggregates and Improved the Yield and Quality of Jujubes. Plants. 2024; 13(14):1930. https://doi.org/10.3390/plants13141930
Chicago/Turabian StyleTao, Wanghai, Fanfan Shao, Haokui Yan, and Quanjiu Wang. 2024. "Microbial Organic Fertilizer Combined with Magnetically Treated Water Drip Irrigation Promoted the Stability of Desert Soil Aggregates and Improved the Yield and Quality of Jujubes" Plants 13, no. 14: 1930. https://doi.org/10.3390/plants13141930
APA StyleTao, W., Shao, F., Yan, H., & Wang, Q. (2024). Microbial Organic Fertilizer Combined with Magnetically Treated Water Drip Irrigation Promoted the Stability of Desert Soil Aggregates and Improved the Yield and Quality of Jujubes. Plants, 13(14), 1930. https://doi.org/10.3390/plants13141930