Regulation of Proline Accumulation and Protein Secretion in Sorghum under Combined Osmotic and Heat Stress
Abstract
:1. Introduction
2. Results and Discussion
2.1. Osmotic Stress, Heat, and Their Combination Exert Differential Effects on Sorghum Cell Metabolic Activity
2.2. Proline and Glycine Betaine Accumulation Is Not Universal across Osmotic Stress, Heat Stress, or Combined Stress
2.3. Combined Osmotic and Heat Stress Modulates Protein Secretion in Sorghum Cell Cultures
2.4. Majority of Differentially Expressed Proteins Use the Classical Secretory Pathway for Extracellular Localization
2.5. Putative Functional Groups of the Combined Osmotic and Heat Stress-Responsive Secretome
2.5.1. Defence/Oxidative Stress Response
2.5.2. Cell Wall Modification
2.5.3. Proteolysis
2.5.4. Signal Transduction
2.5.5. Other Functional Groupings
2.6. qPCR Analysis of Target Genes Following Combined Osmotic and Heat Stress Treatment
3. Materials and Methods
3.1. Stress Treatments of Sorghum Cell Suspension Cultures
3.2. Analysis of Cell Metabolic Activity and Cellular Osmolyte Content
3.3. Secreted Protein Extraction, iTRAQ and LC-MS/MS Analyses
3.4. Protein Identification and Bioinformatics Analysis
3.5. Total RNA Extraction and Gene Expression Analysis
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Levitt, J. Responses of Plants to Environmental Stresses: Water, Radiation, Salt and Other Stresses, 2nd ed.; Academic Press: New York, NY, USA, 1980; Volume 2. [Google Scholar]
- Levitt, J. Responses of Plants to Environmental Stresses: Chilling, Freezing, and High Temperature Stress, 2nd ed.; Academic Press: New York, NY, USA, 1980; Volume 1. [Google Scholar]
- Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Ramegowda, V.; Senthil-Kumar, M. Shared and unique responses of plants to multiple individual stresses and stress combinations: Physiological and molecular mechanisms. Front. Plant Sci. 2015, 6, 723. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2014: Synthesis Report. Contributions of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Working Team, Pachauri, R.K., Meyer, L.A., Eds.; IPPC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2011, 13, 587–605. [Google Scholar] [CrossRef]
- Gan, T.Y.; Ito, M.; Hulsmann, S.; Qin, X.; Lu, X.X.; Liong, S.Y.; Rutschman, P.; Disse, M.; Koivusalo, H. Possible climate change/variability and human impacts, vulnerability of drought-prone regions, water resources and capacity building for Africa. Hydrol. Sci. J. 2016, 61, 1209–1226. [Google Scholar] [CrossRef]
- Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Schaeffer, M.; Perrette, M.; Reinhardt, J. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Chang. 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Mendelsohn, R.; Hassan, R.; Benhin, J.; Deressa, T.; Diop, M.; Eid, H.M.; Fosu, K.Y.; Gbetibouo, G.; Jain, S.; et al. Will African agriculture survive climate change? World Bank Econ. Rev. 2006, 20, 367–388. [Google Scholar] [CrossRef]
- Mittler, R.; Blumwald, E. Genetic engineering for modern agriculture: Challenges and perspectives. Annu. Rev. Plant Biol. 2010, 61, 443–462. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Anami, S.; De Block, M.; Machuka, J.; Van Lijsebettens, M. Molecular improvement of tropical maize for drought stress tolerance in Sub-Saharan Africa. Crit. Rev. Plant Sci. 2009, 28, 16–35. [Google Scholar] [CrossRef]
- Janni, M.; Gulli, M.; Maestri, E.; Marmiroli, M.; Valliyodan, B.; Nguyen, H.T.; Marmiroli, N. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. J. Exp. Bot. 2020, 71, 3780–3802. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, K.; Yamaguchi-Shinozaki, K. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 2000, 3, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Knight, H.; Knight, M.R. Abiotic stress signalling pathways: Specificity and cross-talk. Trends Plant Sci. 2001, 6, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Roychoudhury, A.; Paul, S.; Basu, S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep. 2013, 32, 985–1006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.N.; Sonnewald, U. Differences and commonalities of plant responses to single and combined stresses. Plant J. 2017, 90, 839–855. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Mittler, R.; Balfagon, D.; Arbona, V.; Gomez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol Plant. 2018, 162, 2–12. [Google Scholar] [CrossRef]
- Lawas, L.M.F.; Zuther, E.; Jagadish, S.V.K.; Hincha, D.K. Molecular mechanisms of combined heat and drought stress resilience in cereals. Curr. Opin. Plant Biol. 2018, 45, 212–217. [Google Scholar] [CrossRef]
- Ngara, R.; Chivasa, S. Applications of “omics” technologies in plant responses to combined drought and heat stress: Trends and future perspectives. In Multiple Abiotic Stress Tolerances in Higher Plants: Addressing the Growing Challenges; Gupta, N.K., Shavrukov, Y., Singhal, R.K., Borisjuk, N., Eds.; CRC Press: Boca Raton, FL, USA, 2023; pp. 267–276. [Google Scholar]
- Rivero, R.N.; Mittler, R.; Blumwald, E.; Zandalinas, S.I. Developing climate-resilient crops: Improving plant tolerance to stress combination. Plant J. 2022, 109, 373–389. [Google Scholar] [CrossRef]
- Rizhsky, L.; Liang, H.J.; Mittler, R. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 2002, 130, 1143–1151. [Google Scholar] [CrossRef]
- Rizhsky, L.; Liang, H.J.; Shuman, J.; Shulaev, V.; Davletova, S.; Mittler, R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004, 134, 1683–1696. [Google Scholar] [CrossRef]
- Johnson, S.M.; Lim, F.L.; Finkler, A.; Fromm, H.; Slabas, A.R.; Knight, M.R. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genom. 2014, 15, 456. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.B.; Liu, L.J.; Ma, Y.L.; Li, S.; Dong, S.K.; Zu, W. Transcriptome profilling analysis characterized the gene expression patterns responded to combined drought and heat stresses in soybean. Comput. Biol. Chem. 2018, 77, 413–429. [Google Scholar] [CrossRef] [PubMed]
- Demirel, U.; Morris, W.L.; Ducreux, L.J.M.; Yavuz, C.; Asim, A.; Tindas, I.; Campbell, R.; Morris, J.A.; Verrall, S.R.; Hedley, P.E.; et al. Physiological, biochemical, and transcriptional responses to single and combined abiotic stress in stress-tolerant and stress-sensitive potato genotypes. Front. Plant Sci. 2020, 11, 169. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, R.; Duhan, N.; Kaundal, R.; Smertenko, A.; Nazarov, T.; Bregitzer, P. Heat and drought induced transcriptomic changes in barley varieties with contrasting stress response phenotypes. Front. Plant Sci. 2022, 13, 1066421. [Google Scholar] [CrossRef] [PubMed]
- Sewelam, N.; Brilhaus, D.; Brautigam, A.; Alseekh, S.; Fernie, A.R.; Maurino, V.G. Molecular plant responses to combined abiotic stresses put a spotlight on unknown and abundant genes. J. Exp. Bot. 2020, 71, 5098–5112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.H.; Li, G.W.; Huang, W.; Bi, T.; Chen, G.Y.; Tang, Z.C.; Su, W.A.; Sun, W.N. Proteomic study of in response to combined heat and drought stress. Proteomics 2010, 10, 3117–3129. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.L.; Wu, L.J.; Zhao, F.Y.; Zhang, D.Y.; Li, N.N.; Zhu, G.H.; Li, C.H.; Wang, W. Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress. Front. Plant Sci. 2015, 6, 298. [Google Scholar] [CrossRef] [PubMed]
- Ashoub, A.; Baeumlisberger, M.; Neupaertl, M.; Karas, M.; Bruggemann, W. Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination. Plant Mol. Biol. 2015, 87, 459–471. [Google Scholar] [CrossRef]
- Zhao, F.Y.; Zhang, D.Y.; Zhao, Y.L.; Wang, W.; Yang, H.; Tai, F.J.; Li, C.H.; Hu, X.L. The difference of physiological and proteomic changes in maize leaves adaptation to drought, heat, and combined both stresses. Front. Plant Sci. 2016, 7, 1471. [Google Scholar] [CrossRef]
- Katam, R.; Shokri, S.; Murthy, N.; Singh, S.K.; Suravajhala, P.; Khan, M.N.; Bahmani, M.; Sakata, K.; Reddy, K.R. Proteomics, physiological, and biochemical analysis of cross tolerance mechanisms in response to heat and water stresses in soybean. PLoS ONE 2020, 15, e0233905. [Google Scholar] [CrossRef] [PubMed]
- Dobra, J.; Motyka, V.; Dobrev, P.; Malbeck, J.; Prasil, I.T.; Haisel, D.; Gaudinova, A.; Havlova, M.; Gubis, J.; Vankova, R. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J. Plant Physiol. 2010, 167, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Obata, T.; Witt, S.; Lisec, J.; Palacios-Rojas, N.; Florez-Sarasa, I.; Yousfi, S.; Araus, J.L.; Cairns, J.E.; Fernie, A.R. Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol. 2015, 169, 2665–2683. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, M.V.J.; Ramegowda, V.; Ramakrishnan, P.; Nataraja, K.N.; Sheshshayee, M.S. Comparative metabolite profiling of rice contrasts reveal combined drought and heat stress signatures in flag leaf and spikelets. Plant Sci. 2022, 320, 111262. [Google Scholar] [CrossRef] [PubMed]
- López-Hidalgo, C.; Lamelas, L.; Cañal, M.J.; Valledor, L.; Meijón, M. Untargeted metabolomics revealed essential biochemical rearrangements towards combined heat and drought stress acclimatization in Pinus pinaster. Environ. Exp. Bot. 2023, 208, 105261. [Google Scholar] [CrossRef]
- Sinha, R.; Fritschi, F.B.; Zandalinas, S.I.; Mittler, R. The impact of stress combination on reproductive processes in crops. Plant Sci. 2021, 311, 111007. [Google Scholar]
- Agrawal, G.K.; Jwa, N.S.; Lebrun, M.H.; Job, D.; Rakwal, R. Plant secretome: Unlocking secrets of the secreted proteins. Proteomics 2010, 10, 799–827. [Google Scholar] [CrossRef] [PubMed]
- Krause, C.; Richter, S.; Knoll, C.; Jurgens, G. Plant secretome—From cellular process to biological activity. Biochim. Biophys. Acta 2013, 1834, 2429–2441. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Chung, K.P.; Lin, W.L.; Jiang, L.W. Protein secretion in plants: Conventional and unconventional pathways and new techniques. J. Exp. Bot. 2018, 69, 21–37. [Google Scholar] [CrossRef]
- Farvardin, A.; González-Hernández, A.I.; Llorens, E.; García-Agustín, P.; Scalschi, L.; Vicedo, B. The apoplast: A key player in plant survival. Antioxidants 2020, 9, 604. [Google Scholar] [CrossRef]
- House, L.R. A Guide to Sorghum Breeding, 2nd ed.; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 1985; p. 238. [Google Scholar]
- Doggett, H. Sorghum, 2nd ed.; Longman Scientific & Technical: Essex, UK, 1988; p. 512. [Google Scholar]
- Ngara, R.; Ndimba, B.K. Model plant systems in salinity and drought stress proteomics studies: A perspective on Arabidopsis and Sorghum. Plant Biol. 2014, 16, 1029–1032. [Google Scholar] [CrossRef] [PubMed]
- Showalter, A.M. Structure and function of plant cell wall proteins. Plant Cell 1993, 5, 9–23. [Google Scholar] [PubMed]
- Hoson, T. Apoplast as the site of response to environmental signals. J. Plant Res. 1998, 111, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Ngara, R.; Ramulifho, E.; Movahedi, M.; Shargie, N.G.; Brown, A.P.; Chivasa, S. Identifying differentially expressed proteins in sorghum cell cultures exposed to osmotic stress. Sci. Rep. 2018, 8, 8671. [Google Scholar] [CrossRef] [PubMed]
- Ngcala, M.G.; Goche, T.; Brown, A.P.; Chivasa, S.; Ngara, R. Heat stress triggers differential protein accumulation in the extracellular matrix of sorghum cell suspension cultures. Proteomes 2020, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Raja, V.; Qadir, S.U.; Alyemeni, M.N.; Ahmad, P. Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersium. 3 Biotech 2020, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef]
- Qaseem, M.F.; Qureshi, R.; Shaheen, H. Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Sci. Rep. 2019, 9, 6955. [Google Scholar] [CrossRef]
- Goche, T.; Shargie, N.G.; Cummins, I.; Brown, A.P.; Chivasa, S.; Ngara, R. Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Sci. Rep. 2020, 10, 11835. [Google Scholar] [CrossRef]
- Xu, Z.J.; Sun, M.L.; Jiang, X.F.; Sun, H.P.; Dang, X.M.; Cong, H.Q.; Qiao, F. Glycine betaine biosynthesis in response to osmotic stress depends on jasmonate signaling in watermelon suspension cells. Front. Plant Sci. 2018, 9, 1469. [Google Scholar] [CrossRef] [PubMed]
- Alexandersson, E.; Ali, A.; Resjo, S.; Andreasson, E. Plant secretome proteomics. Front. Plant Sci. 2013, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Muthego, D.; Moloi, S.J.; Brown, A.P.; Goche, T.; Chivasa, S.; Ngara, R. Exogenous abscisic acid treatment regulates protein secretion in sorghum cell suspension cultures. Plant Signal. Behav. 2023, 18, e2291618. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.P.; Zeng, Y. An overview of protein secretion in plant cells. Methods Mol. Biol. 2017, 1662, 19–32. [Google Scholar] [PubMed]
- Kunze, M.; Berger, J. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance. Front. Physiol. 2015, 6, 259. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.J.; Kang, B.H.; Heringer, A.S.; Wilkop, T.E.; Drakakaki, G. Unconventional protein secretion in plants. Methods Mol. Biol. 2016, 1459, 47–63. [Google Scholar]
- Ding, Y.; Wang, J.; Wang, J.Q.; Stierhof, Y.D.; Robinson, D.G.; Jiang, L.W. Unconventional protein secretion. Trends Plant Sci. 2012, 17, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Carnielli, C.M.; Winck, F.V.; Leme, A.F.P. Functional annotation and biological interpretation of proteomics data. Biochim. Biophys. Acta 2015, 1854, 46–54. [Google Scholar] [CrossRef]
- UniProt, C. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar]
- Jeffery, C.J. Protein moonlighting: What is it, and why is it important? Phil. Trans. R. Soc. B 2017, 373, 20160523. [Google Scholar] [CrossRef] [PubMed]
- Hiraga, S.; Sasaki, K.; Ito, H.; Ohashi, Y.; Matsui, H. A large family of class III plant peroxidases. Plant Cell Physiol. 2001, 42, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Almagro, L.; Ros, L.V.G.; Belchi-Navarro, S.; Bru, R.; Barceló, A.R.; Pedreño, M.A. Class III peroxidases in plant defence reactions. J. Exp. Bot. 2009, 60, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Shigeto, J.; Tsutsumi, Y. Diverse functions and reactions of class III peroxidases. New Phytol. 2016, 209, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Lane, B.G.; Dunwell, J.M.; Ray, J.A.; Schmitt, M.R.; Cuming, A.C. Germin, a protein marker of early plant development, is an oxalate oxidase. J. Biol. Chem. 1993, 268, 12239–12242. [Google Scholar] [CrossRef] [PubMed]
- Caliskan, M. Germin, an oxalate oxidase, has a function in many aspects of plant life. Turk. J. Biol. 2000, 24, 717–724. [Google Scholar]
- Govindan, G.; Sandhiya, K.R.; Alphonse, V.; Somasundram, S. Role of germin-like proteins (GLPs) in biotic and abiotic stress responses in major crops: A review on plant defense mechanisms and stress tolerance. Plant Mol. Biol. Rep. 2024. [CrossRef]
- Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002, 53, 1331–1341. [Google Scholar] [CrossRef]
- Marrs, K.A. The functions and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Phys. 1996, 47, 127–158. [Google Scholar] [CrossRef]
- Dixon, D.P.; Cummins, I.; Cole, D.J.; Edwards, R. Glutathione-mediated detoxification systems in plants. Curr. Opin. Plant Biol. 1998, 1, 258–266. [Google Scholar] [CrossRef]
- Mittler, R.; Zandalinas, S.I.; Fichman, Y.; Van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 663–679. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, D.; Pandey, A.; Choudhary, M.K.; Datta, A.; Chakraborty, S.; Chakraborty, N. Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol. Cell Proteom. 2007, 6, 1868–1884. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Rajamani, U.; Verma, J.; Subba, P.; Chakraborty, N.; Datta, A.; Chakraborty, S.; Chakraborty, N. Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: A proteomic approach. J. Proteome Res. 2010, 9, 3443–3464. [Google Scholar] [CrossRef] [PubMed]
- Pinski, A.; Betekhtin, A.; Skupien-Rabian, B.; Jankowska, U.; Jamet, E.; Hasterok, R. Changes in the cell wall proteome of leaves in response to high temperature stress in Brachypodium distachyon. Int. J. Mol. Sci. 2021, 22, 6750. [Google Scholar] [CrossRef] [PubMed]
- Pernis, M.; Salaj, T.; Bellová, J.; Danchenko, M.; Baráth, P.; Klubicová, K. Secretome analysis revealed that cell wall remodeling and starch catabolism underlie the early stages of somatic embryogenesis in Pinus nigra. Front. Plant Sci. 2023, 14, 1225424. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, D.J. Plant expansins: Diversity and interactions with plant cell walls. Curr. Opin. Plant Biol. 2015, 25, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Tenhaken, R. Cell wall remodeling under abiotic stress. Front. Plant Sci. 2015, 5, 771. [Google Scholar] [CrossRef] [PubMed]
- Willick, I.R.; Takahashi, D.; Fowler, D.B.; Uemura, M.; Tanino, K.K. Tissue-specific changes in apoplastic proteins and cell wall structure during cold acclimation of winter wheat crowns. J. Exp. Bot. 2018, 69, 1221–1234. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, D.; Gorka, M.; Erban, A.; Graf, A.; Kopka, J.; Zuther, E.; Hincha, D.K. Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana. Sci. Rep. 2019, 9, 2289. [Google Scholar] [CrossRef]
- Trentin, A.R.; Pivato, M.; Mehdi, S.M.M.; Barnabas, L.E.; Giaretta, S.; Fabrega-Prats, M.; Prasad, D.; Arrigoni, G.; Masi, A. Proteome readjustments in the apoplastic space of Arabidopsis thaliana ggt1 mutant leaves exposed to UV-B radiation. Front. Plant Sci. 2015, 6, 128. [Google Scholar] [CrossRef]
- Micheli, F. Pectin methylesterases: Cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 2001, 6, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Wormit, A.; Usadel, B. The multifaceted role of pectin methylesterase inhibitors (PMEIs). Int. J. Mol. Sci. 2018, 19, 2878. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.C.; Bulgakov, V.P.; Jinn, T.L. Pectin methylesterases: Cell wall remodeling proteins are required for plant response to heat stress. Front. Plant Sci. 2018, 9, 1612. [Google Scholar] [CrossRef]
- Pelloux, J.; Rustérucci, C.; Mellerowicz, E.J. New insights into pectin methylesterase structure and function. Trends Plant Sci. 2007, 12, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, R.; Voesenek, L.A.C.J.; Pierik, R. Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Crit. Rev. Plant Sci. 2011, 30, 548–562. [Google Scholar] [CrossRef]
- Vierstra, R.D. Proteolysis in plants: Mechanisms and functions. Plant Mol. Biol. 1996, 32, 275–302. [Google Scholar] [CrossRef] [PubMed]
- Schaller, A. A cut above the rest: The regulatory function of plant proteases. Planta 2004, 220, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Kidrič, M.; Kos, J.; Sabotič, J. Proteases and their endogenous inhibitors in the plant response to abiotic stress. Bot. Serb. 2014, 38, 139–158. [Google Scholar]
- Mosolov, V.V.; Valueva, T.A. Inhibitors of proteolytic enzymes under abiotic stresses in plants (review). Appl. Biochem. Microbiol. 2011, 47, 453–459. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, Q.; Wu, R.; Songbuerbatu; Zhu, M.; Dorjee, T.; Zhou, Y.; Gao, F. The alteration of proteins and metabolites in leaf apoplast and the related gene expression associated with the adaptation of Ammopiptanthus mongolicus to winter freezing stress. Int. J. Biol. Macromol. 2023, 240, 124479. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wang, Y. Apoplastic proteases: Powerful weapons against pathogen infection in plants. Plant Commun. 2020, 1, 100085. [Google Scholar] [CrossRef]
- Godson, A.; van der Hoorn, R.A.L. The front line of defence: A meta-analysis of apoplastic proteases in plant immunity. J. Exp. Bot. 2021, 72, 3381–3394. [Google Scholar] [CrossRef]
- Simoes, I.; Faro, C. Structure and function of plant aspartic proteinases. Eur. J. Biochem. 2004, 271, 2067–2075. [Google Scholar] [CrossRef] [PubMed]
- van der Hoorn, R.A.L. Plant proteases: From phenotypes to molecular mechanisms. Ann. Rev. Plant Biol. 2008, 59, 191–223. [Google Scholar] [CrossRef] [PubMed]
- Moloi, S.J.; Ngara, R. The roles of plant proteases and protease inhibitors in drought response: A review. Front. Plant Sci. 2023, 14, 1165845. [Google Scholar] [CrossRef]
- Xu, F.Q.; Xue, H.W. The ubiquitin-proteasome system in plant responses to environments. Plant Cell Environ. 2019, 42, 2931–2944. [Google Scholar] [CrossRef]
- Dorion, S.; Rivoal, J. Clues to the functions of plant NDPK isoforms. Naunyn-Schmiedebergs Arch. Pharmacol. 2015, 388, 119–132. [Google Scholar] [CrossRef]
- Lee, K.-W.; Kim, Y.-G.; Rahman, M.A.; Kim, D.-H.; Alam, I.; Lee, S.-H.; Kim, Y.-H.; Kwak, S.-S.; Yun, D.-J.; Lee, B.-H. Stress inducible overexpression of Arabidopsis nucleotide diphosphate kinase 2 gene confers enhanced tolerance to salt stress in tall fescue plants. J. Korean Soc. Grassl. Forage Sci. 2017, 37, 223–230. [Google Scholar] [CrossRef]
- Tuteja, N.; Mahajan, S. Calcium signaling network in plants: An overview. Plant Signal. Behav. 2007, 2, 79–85. [Google Scholar] [CrossRef]
- Kundu, P.; Nehra, A.; Gill, R.; Tuteja, N.; Gill, S.S. Unraveling the importance of EF-hand mediated calcium signaling in plants. S. Afr. J. Bot. 2022, 148, 615–633. [Google Scholar] [CrossRef]
- Kaur, A.; Sharma, A.; Madhu; Verma, P.C.; Upadhyay, S.K. EF-hand domain-containing proteins in Triticum aestivum: Insight into their roles in stress response and signalling. S. Afr. J. Bot. 2022, 149, 663–681. [Google Scholar] [CrossRef]
- Knight, H. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 2000, 195, 269–324. [Google Scholar] [PubMed]
- Cheng, F.Y.; Blackburn, K.; Lin, Y.M.; Goshe, M.B.; Williamson, J.D. Absolute protein quantification by LC/MS for global analysis of salicylic acid-induced plant protein secretion responses. J. Proteome Res. 2009, 8, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Damaris, R.N.; Yang, P. Protein phosphorylation response to abiotic stress in plants. Methods Mol. Biol. 2021, 2358, 17–43. [Google Scholar] [PubMed]
- Zhang, W.J.; Zhou, Y.W.; Zhang, Y.; Su, Y.H.; Xu, T.D. Protein phosphorylation: A molecular switch in plant signaling. Cell Rep. 2023, 42, 112729. [Google Scholar] [CrossRef] [PubMed]
- Mithoe, S.C.; Menke, F.L.H. Phosphoproteomics perspective on plant signal transduction and tyrosine phosphorylation. Phytochemistry 2011, 72, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.S.P. Sensing the environment: Key roles of membrane-localized kinases in plant perception and response to abiotic stress. J. Exp. Bot. 2013, 64, 445–458. [Google Scholar] [CrossRef]
- Ramulifho, E.; Goche, T.; Van As, J.; Tsilo, T.J.; Chivasa, S.; Ngara, R. Establishment and characterization of callus and cell suspension cultures of selected Sorghum bicolor (L.) Moench varieties: A resource for gene discovery in plant stress biology. Agronomy 2019, 9, 218. [Google Scholar] [CrossRef]
- Ngara, R. A Proteomic Analysis of Drought and Salt Stress Responsive Proteins of Different Sorghum Varieties. Ph.D. Thesis, University of the Western Cape, Cape Town, South Africa, 2009. [Google Scholar]
- Prinsen, H.; Schiebergen-Bronkhorst, B.G.M.; Roeleveld, M.W.; Jans, J.J.M.; de Sain-van der Velden, M.G.M.; Visser, G.; van Hasselt, P.M.; Verhoeven-Duif, N.M. Rapid quantification of underivatized amino acids in plasma by hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass-spectrometry. J. Inherit. Metab. Dis. 2016, 39, 651–660. [Google Scholar] [CrossRef]
- Smith, S.J.; Kroon, J.T.; Simon, W.J.; Slabas, A.R.; Chivasa, S. A novel function for Arabidopsis CYCLASE1 in programmed cell death revealed by isobaric tags for relative and absolute quantitation (iTRAQ) analysis of extracellular matrix proteins. Mol. Cell Proteom. 2015, 14, 1556–1568. [Google Scholar] [CrossRef]
- Mulder, N.J.; Apweiler, R.; Attwood, T.K.; Bairoch, A.; Bateman, A.; Binns, D.; Biswas, M.; Bradley, P.; Bork, P.; Bucher, P.; et al. InterPro: An integrated documentation resource for protein families, domains and functional sites. Brief Bioinform. 2002, 3, 225–235. [Google Scholar] [PubMed]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Teufel, F.; Almagro Armenteros, J.J.; Johansen, A.R.; Gislason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 2022, 40, 1023–1025. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fan, F.; Wang, L.; Zhan, Q.; Wu, P.; Du, J.; Yang, X.; Liu, Y. Cloning and expression analysis of cinnamoyl-CoA reductase (CCR) genes in sorghum. PeerJ 2016, 4, e2005. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef]
- Sharma, P.; Gayen, D. Plant protease as regulator and signaling molecule for enhancing environmental stress-tolerance. Plant Cell Rep. 2021, 40, 2081–2095. [Google Scholar] [CrossRef]
Accession a | Protein Name b | Ratio c | SD d | p-Value e | SP f | Protein Family g |
---|---|---|---|---|---|---|
Cell Wall Modification | ||||||
C5XYP5 | Fibronectin type III-like domain-containing protein | −1.41 | 0.04 | 3.31 × 10−3 | + | Beta-D-xylosidase |
A0A1B6QHZ6 | Beta-glucosidase | −1.34 | 0.10 | 6.33 × 10−3 | − | Cellulose degradation glycosyl hydrolase 3 |
C5Z8N0 | FAS1 domain-containing protein | −1.57 | 0.12 | 7.97 × 10−3 | + | Fasciclin-like arabinogalactan protein |
C5WXC7 | Alpha-galactosidase | −1.83 | 0.05 | 1.89 × 10−3 | + | Glycoside hydrolase, family 27 |
A0A1W0W3H0 | Alpha-galactosidase | −1.69 | 0.02 | 3.02 × 10−3 | − | Glycoside hydrolase, family 27 |
A0A1B6QE21 | UTP--glucose-1-phosphate uridylyltransferase | 1.62 | 0.14 | 3.56 × 10−4 | − | UTP--glucose-1-phosphate uridylyltransferase |
C5XT36 | Endoglucanase | −2.11 | 0.12 | 7.99 × 10−3 | + | Glycosyl hydrolase, family 9 |
A0A1Z5R476 | Glucan endo-1,3-beta-D-glucosidase GVI | 3.87 | 0.73 | 8.10 × 10−4 | + | Glycoside hydrolase, family 17 |
C5XIT5 | Pectinesterase | −1.56 | 0.07 | 7.40 × 10−3 | + | Pectinesterase family |
Defence/Oxidative Stress Response | ||||||
C5WYQ4 | Peroxidase | −1.81 | 0.08 | 1.38 × 10−3 | + | Plant peroxidase |
C5X5K6 | Peroxidase | −1.49 | 0.07 | 1.93 × 10−5 | + | Plant peroxidase |
C5XB39 | GH18 domain-containing protein | 2.69 | 0.54 | 1.95 × 10−3 | + | Glycoside hydrolase 18 family chitinases |
C5XJT8 | Protein disulfide-isomerase | 2.93 | 0.73 | 3.88 × 10−3 | + | Protein disulfide isomerase |
A0A1B6PQR2 | Protein disulfide-isomerase | 2.08 | 0.44 | 6.89 × 10−3 | + | Protein disulfide isomerase |
C5XB38 | GH18 domain-containing protein | 1.41 | 0.14 | 5.14 × 10−3 | + | Glycoside hydrolase 18 family chitinases |
A0A1B6QFT1 | Peroxidase | −2.24 | 0.08 | 2.57 × 10−4 | + | Plant peroxidase |
C5XL59 | Peroxidase | −2.93 | 0.06 | 1.62 × 10−3 | − | Plant peroxidase |
C5X3C1 | Peroxidase | −2.25 | 0.08 | 9.64 × 10−3 | + | Plant peroxidase |
C5X3C6 | Peroxidase | −2.09 | 0.08 | 1.45 × 10−3 | + | Plant peroxidase |
C5XN52 | Thaumatin-like protein | 2.00 | 0.43 | 7.06 × 10−3 | + | Thaumatin family |
C5YQ75 | Peroxidase | −1.57 | 0.06 | 1.14 × 10−3 | + | Plant peroxidase |
C5YHR8 | Peroxidase | −1.40 | 0.05 | 3.56 × 10−3 | + | Plant peroxidase |
C5WVD3 | Heat shock 70 kDa protein, mitochondrial | 3.99 | 1.37 | 9.44 × 10−3 | − | Heat shock protein 70 family |
C5YVR0 | Superoxide dismutase | 2.78 | 0.07 | 1.27 × 10−6 | − | Manganese/iron superoxide dismutase |
C5YYX3 | Glutathione dehydrogenase (ascorbate) | 2.58 | 0.23 | 1.25 × 10−4 | − | Dehydroascorbate reductases DHAR1/2/3/4 |
A0A1B6QA33 | Calreticulin | 1.97 | 0.20 | 2.23 × 10−4 | + | Calreticulin |
A0A1B6QG28 | Superoxide dismutase [Cu-Zn] | 3.26 | 0.75 | 2.39 × 10−3 | − | Superoxide dismutase [Cu-Zn]/superoxide dismutase copper chaperone |
A0A1Z5RIL8 | Dirigent protein | 1.94 | 0.28 | 3.53 × 10−3 | + | Dirigent protein |
A0A1B6Q818 | Glutathione transferase | 1.89 | 0.33 | 4.12 × 10−3 | − | Glutathione-S-transferase |
C5YXM1 | Dienelactone hydrolase domain-containing protein | 1.72 | 0.30 | 8.64 × 10−3 | - | Dienelactone hydrolase family |
C5YQ75 | Peroxidase | −1.57 | 0.056 | 1.14 × 10−3 | + | Plant peroxidase |
Proteolysis | ||||||
C5Z6U2 | Ubiquitin-like domain-containing protein | 1.97 | 0.30 | 3.34 × 10−3 | − | Ubiquitin and ubiquitin-like |
C5Y675 | Peptidase A1 domain-containing protein | −1.59 | 0.03 | 2.58 × 10−3 | + | Aspartic peptidase A1 family |
C5XQ74 | Peptidase A1 domain-containing protein | −1.66 | 0.08 | 2.43 × 10−3 | + | Aspartic peptidase A1 family |
C5X3T4 | Peptidase A1 domain-containing protein | −1.84 | 0.07 | 3.09 × 10−5 | + | Aspartic peptidase A1 family |
C5XQP2 | Peptidase A1 domain-containing protein | −1.39 | 0.02 | 8.17 × 10−3 | + | Aspartic peptidase A1 family |
C5XG67 | Cystatin domain-containing protein | 2.76 | 0.70 | 6.17 × 10−3 | + | Cystatin |
A0A1B6P6G7 | Aspartic proteinase | −2.00 | 0.11 | 7.05 × 10−3 | + | Aspartic peptidase A1 family |
Metabolism | ||||||
C5XX52 | Glyceraldehyde-3-phosphate dehydrogenase | −1.47 | 0.11 | 3.62 × 10−3 | − | Glyceraldehyde-3-phosphate dehydrogenase, type I |
A0A194YMV2 | Phosphoglycerate kinase | 2.12 | 0.30 | 9.56 × 10−4 | − | Phosphoglycerate kinase |
C5Y9T3 | Aldose 1-epimerase | −1.36 | 0.06 | 8.43 × 10−3 | + | Aldose 1-epimerase |
A0A1W0VY92 | GDSL esterase/lipase | −1.99 | 0.04 | 7.30 × 10−3 | + | GDSL lipase/esterase-like, plant |
C5Z861 | Phytocyanin domain-containing protein | −1.48 | 0.06 | 4.79 × 10−3 | + | Phytocyanin-like |
C5Z4E5 | Esterase | −2.77 | 0.11 | 3.64 × 10−4 | + | GDSL lipase/esterase-like, plant |
Signal Transduction | ||||||
C5WPY7 | Protein kinase domain-containing protein | −1.85 | 0.10 | 2.13 × 10−3 | + | Protein tyrosine and serine/threonine kinase |
C5XQS6 | EF-hand domain-containing protein | 3.67 | 0.13 | 6.94 × 10−3 | − | None |
Unclassified | ||||||
C5XBP7 | Leucine-rich repeat-containing N-terminal plant-type domain-containing protein | −3.70 | 0.05 | 3.06 × 10−5 | + | Polygalacturonase-inhibiting protein |
A0A1Z5R915 | Purple acid phosphatase | −2.04 | 0.04 | 6.53 × 10−3 | − | Purple acid phosphatase |
C5Z6Y0 | Uncharacterized protein | −1.66 | 0.06 | 1.11 × 10−3 | + | Protein exordium-like |
C5X4M5 | DOMON domain-containing protein | −2.45 | 0.11 | 1.46 × 10−3 | + | Protein of unknown function (DUF568) |
C5Y2R8 | Leucine-rich repeat-containing N-terminal plant type domain-containing protein | 3.81 | 0.31 | 8.46 × 10−6 | + | Leucine-rich repeat-containing N-terminal plant type |
Protein Accession | Protein Regulation a | ||
---|---|---|---|
Combined Stress b | Osmotic Stress c | Heat Stress d | |
Common to all stresses | |||
C5Z475 | down | up | down |
C5X5K6 | down | up | down |
A0A1B6QFT1 | down | up | up |
C5XL59 | down | down | down |
C5XIY1 | down | up | up |
C5YQ75 | down | up | down |
C6JSB7 | down | up | down |
C5YQ75 | down | up | down |
Combined stress and Osmotic stress | |||
C5Y360 | down | up | n.d. |
C5X3C1 | down | up | n.d. |
A0A1B6QGB6 | down | up | n.d. |
C5YZJ2 | down | up | n.d. |
Combined stress and Heat stress | |||
A0A1W0W7I8 | down | n.d. | up |
C5Z469 | down | n.d. | down |
C5X040 | up | n.d. | up |
C5XYY5 | down | n.d. | down |
C5Z0N8 | down | n.d. | up |
A0A1W0W7T8 | down | n.d. | down |
Combined stress | |||
C5WYQ4 | down | n.d. | n.d. |
C5X0X1 | up | n.d. | n.d. |
C5YHR8 | down | n.d. | n.d. |
C5X3C6 | down | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngwenya, S.P.; Moloi, S.J.; Shargie, N.G.; Brown, A.P.; Chivasa, S.; Ngara, R. Regulation of Proline Accumulation and Protein Secretion in Sorghum under Combined Osmotic and Heat Stress. Plants 2024, 13, 1874. https://doi.org/10.3390/plants13131874
Ngwenya SP, Moloi SJ, Shargie NG, Brown AP, Chivasa S, Ngara R. Regulation of Proline Accumulation and Protein Secretion in Sorghum under Combined Osmotic and Heat Stress. Plants. 2024; 13(13):1874. https://doi.org/10.3390/plants13131874
Chicago/Turabian StyleNgwenya, Samkelisiwe P., Sellwane J. Moloi, Nemera G. Shargie, Adrian P. Brown, Stephen Chivasa, and Rudo Ngara. 2024. "Regulation of Proline Accumulation and Protein Secretion in Sorghum under Combined Osmotic and Heat Stress" Plants 13, no. 13: 1874. https://doi.org/10.3390/plants13131874
APA StyleNgwenya, S. P., Moloi, S. J., Shargie, N. G., Brown, A. P., Chivasa, S., & Ngara, R. (2024). Regulation of Proline Accumulation and Protein Secretion in Sorghum under Combined Osmotic and Heat Stress. Plants, 13(13), 1874. https://doi.org/10.3390/plants13131874