Integrated Transcriptomic and Metabolomic Analysis Revealed Abscisic Acid-Induced Regulation of Monoterpene Biosynthesis in Grape Berries
Abstract
1. Introduction
2. Results and Discussion
2.1. Effects of Exogenous ABA on Key Parameters in Grape Berry Development
2.2. Effects of Exogenous ABA on the Monoterpene Compounds of Grape Berries
2.3. ABA-Treated Grape Berries Transcriptome Analysis
2.4. GO and KEGG annotations of DEGs
2.5. DEGs Involved in Monoterpene and ABA Biosynthesis in Grape Berries
2.6. WGCNA Analysis of ABA-Induced DEGs Related to the Accumulation of Monoterpenoid Compounds in Grape Berries
2.7. Validation of DEGs through qRT–PCR Analysis
3. Materials and Methods
3.1. Grape Materials and Growth Conditions
3.2. Monoterpene Metabolite Analysis in Grape Berries using HS-SPME/GC–MS
3.3. RNA Extraction, Llumine Sequencing, and Transcriptome Analysis
3.4. Validation of Transcriptome Data Using qRT–PCR Analysis
3.5. Extraction and Determination of ABA
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Robinson, A.L.; Boss, P.K.; Solomon, P.S.; Trengove, R.D.; Heymann, H.; Ebeler, S.E. Origins of Grape and Wine Aroma. Part 1. Chemical Components and Viticultural Impacts. Am. J. Enol. Vitic. 2013, 65, 1–24. [Google Scholar] [CrossRef]
- Ruiz, G.L.; Hellín, P.; Flores, P.; Fenoll, J. Prediction of Muscat aroma in table grape by analysis of rose oxide. Food Chem. 2014, 154, 151–157. [Google Scholar] [CrossRef] [PubMed]
- José, A.M.; Pilar, H.; Leonor, R.; Pilar, F. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chem. 2009, 14, 420–428. [Google Scholar]
- Yang, Y.W.; Wu, B.; Fang, J.; Li, S. Volatile compounds evolution of three table grapes with different flavour during and after maturation. Food Chem. 2011, 128, 823–830. [Google Scholar] [CrossRef]
- Mele, M.A.; Kang, H.-M.; Lee, Y.-T.; Islam, M.Z. Grape terpenoids: Flavor importance, genetic regulation, and future potential. Crit. Rev. Food Sci. Nutr. 2020, 61, 1429–1447. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, W.; Song, S.; Xu, W.; Zhang, C.; Ma, C.; Wang, L.; Wang, S. Evolution of volatile compounds during the development of Muscat grape ‘Shine Muscat’ (Vitis labrusca × V. vinifera). Food Chem. 2020, 309, 125778. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; He, L.; An, X.H.; Yu, K.J.; Meng, N.; Duan, C.Q.; Pan, Q.H. VviWRKY40, a WRKY Transcription Factor, Regulates Glycosylated Monoterpenoid Production by VviGT14 in Grape Berry. Genes 2020, 11, 485. [Google Scholar] [CrossRef] [PubMed]
- Estévez, J.M.; Cantero, A.; Reindl, A.; Reichler, S.; León, P. 1-Deoxy-d-xylulose-5-phosphate Synthase, a Limiting Enzyme for Plastidic Isoprenoid Biosynthesis in Plants. J. Biol. Chem. 2001, 276, 22901–22909. [Google Scholar] [CrossRef] [PubMed]
- Croteau, S. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc. Natl. Acad. Sci. USA 2001, 98, 8915–8920. [Google Scholar]
- Battilana, J.; Emanuelli, F.; Gambino, G.; Gribaudo, I.; Gasperi, F.; Boss, P.K.; Grando, M.S. Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation. J. Exp. Bot. 2011, 62, 5497–5508. [Google Scholar] [CrossRef]
- Wright, L.P.; Rohwer, J.M.; Ghirardo, A.; Hammerbacher, A.; Ortiz-Alcaide, M.; Raguschke, B.; Schnitzler, J.-P.; Gershenzon, J.; Phillips, M.A. Deoxyxylulose 5-Phosphate Synthase Controls Flux through the Methylerythritol 4-Phosphate Pathway in Arabidopsis. Plant Physiol. 2014, 165, 1488–1504. [Google Scholar] [CrossRef] [PubMed]
- Battilana, J.; Costantini, L.; Emanuelli, F.; Sevini, F.; Segala, C.; Moser, S.; Velasco, R.; Versini, G.; Grando, M.S. The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor. Appl. Genet. 2008, 118, 653–669. [Google Scholar] [CrossRef]
- Emanuelli, F.; Battilana, J.; Costantini, L.; Le Cunff, L.; Boursiquot, J.-M.; This, P.; Grando, M.S. A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biol. 2010, 10, 241. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.Q.; Zhong, G.Y.; Gao, Y.; Lan, Y.B.; Duan, C.Q.; Pan, Q.H. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biol. 2015, 15, 240. [Google Scholar] [CrossRef]
- Whittington, D.A.; Wise, M.L.; Urbansky, M.; Coates, R.M.; Croteau, R.B.; Christianson, D.W. Bornyl diphosphate synthase: Structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc. Natl. Acad. Sci. USA 2002, 99, 15375–15380. [Google Scholar] [CrossRef]
- Joe Ross, Y.L.; Lim, E.-K.; Bowles, D.J. Higher plant glycosyltransferases. Genome Biol. 2001, 2, 3004.1. [Google Scholar] [CrossRef]
- Bowles, D.; Lim, E.-K.; Poppenberger, B.; Vaistij, F.E. Glycosyltransferases of Lipophilic Small Molecules. Annu. Rev. Plant Biol. 2006, 57, 567–597. [Google Scholar] [CrossRef]
- Bonisch, F.; Frotscher, J.; Stanitzek, S.; Ruhl, E.; Wust, M.; Bitz, O.; Schwab, W. A UDP-Glucose:Monoterpenol Glucosyltransferase Adds to the Chemical Diversity of the Grapevine Metabolome. Plant Physiol. 2014, 165, 561–581. [Google Scholar] [CrossRef]
- Bonisch, F.; Frotscher, J.; Stanitzek, S.; Ruhl, E.; Wust, M.; Bitz, O.; Schwab, W. Activity-based profiling of a physiologic aglycone library reveals sugar acceptor promiscuity of family 1 UDP-glucosyltransferases from grape. Plant Physiol. 2014, 166, 23–39. [Google Scholar] [CrossRef]
- Zhang, E.; Chai, F.; Zhang, H.; Li, S.; Liang, Z.; Fan, P. Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Food Chem. 2017, 237, 379–389. [Google Scholar] [CrossRef]
- Li, X.Y.; Wen, Y.Q.; Meng, N.; Qian, X.; Pan, Q.H. Monoterpenyl Glycosyltransferases Differentially Contribute to Production of Monoterpenyl Glycosides in Two Aromatic Vitis vinifera Varieties. Front. Plant Sci. 2017, 8, 1226. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, B.; Li, X.; Wang, L.; Zhang, W.; Duan, S.; Wang, S. Regulatory effect of root restriction on aroma quality of Red Alexandria grape. Food Chem. 2022, 372, 131118. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Xu, X.Q.; Wang, Y.; Chen, W.K.; Sun, R.Z.; Cheng, G.; Liu, B.; Chen, W.; Duan, C.Q.; Wang, J.; et al. Modulation of volatile compound metabolome and transcriptome in grape berries exposed to sunlight under dry-hot climate. BMC Plant Biol. 2020, 20, 59. [Google Scholar] [CrossRef]
- Yue, X.; Liu, S.; Wei, S.; Fang, Y.; Zhang, Z.; Ju, Y. Transcriptomic and Metabolic Analyses Provide New Insights into the Effects of Exogenous Sucrose on Monoterpene Synthesis in “Muscat Hamburg” Grapes. J. Agric. Food Chem. 2021, 69, 4164–4176. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, W.; Yang, S.; Ma, Z.; Zhou, Q.; Mao, J.; Han, S.; Chen, B. Transcriptome and Metabolite Conjoint Analysis Reveals that Exogenous Methyl Jasmonate Regulates Monoterpene Synthesis in Grape Berry Skin. J. Agric. Food Chem. 2020, 68, 5270–5281. [Google Scholar] [CrossRef]
- Lee, D. The effects of GA3 CPPU and ABA applications on the quality of kyoho (Vitis vinifera L. X Labrusca L.) grape. Acta Hortic. 2004, 653, 193–197. [Google Scholar]
- An, J.P.; Zhang, X.W.; Bi, S.Q.; You, C.X.; Wang, X.F.; Hao, Y.J. MdbHLH93, an apple activator regulating leaf senescence, is regulated by ABA and MdBT2 in antagonistic ways. New Phytol. 2019, 222, 735–751. [Google Scholar] [CrossRef] [PubMed]
- Massimo Galbiati, J.T.M.; Francia, P.; Rusconi, F.; Cañón, P.; Medina, C.; Conti, L.; Cominelli, E.; Tonelli, C.; Arce-Johnson, P. The grapevine guard cell-related VvMYB60 transcription factor is involved in the regulation of stomatal activity and is differentially expressed in response to ABA and osmotic stress. BMC Plant Biol. 2011, 11, 142. [Google Scholar]
- He, L.; Meng, N.; Castellarin, S.D.; Wang, Y.; Sun, Q.; Li, X.Y.; Dong, Z.G.; Tang, X.-P.; Duan, C.-Q.; Pan, Q.-H. Combined Metabolite and Transcriptome Profiling Reveals the Norisoprenoid Responses in Grape Berries to Abscisic Acid and Synthetic Auxin. Int. J. Mol. Sci. 2021, 22, 1420. [Google Scholar] [CrossRef]
- Meng, N.; Wei, Y.; Gao, Y.; Yu, K.J.; Cheng, J.; Li, X.Y.; Duan, C.Q.; Pan, Q.H. Characterization of Transcriptional Expression and Regulation of Carotenoid Cleavage Dioxygenase 4b in Grapes. Front. Plant Sci. 2020, 11, 483. [Google Scholar] [CrossRef]
- Murcia, G.; Fontana, A.; Pontin, M.; Baraldi, R.; Bertazza, G.; Piccoli, P.N. ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine. Phytochemistry 2017, 135, 34–52. [Google Scholar] [CrossRef]
- Zhang, Q.; Ahmad, N.; Li, Z.; He, J.; Wang, N.; Naeem, M.; Jin, L.; Yao, N.; Liu, X. CtCYP71A1 promotes drought stress tolerance and lignin accumulation in Safflower and Arabidopsis. Environ. Exp. Bot. 2023, 105430. [Google Scholar] [CrossRef]
- Coombe, B.G. Adoption of a system for identifying grapevine grow th stages. Aust. J. Grape Res. 1995, 1, 104–110. [Google Scholar] [CrossRef]
- Lan, Y.B.; Qian, X.; Yang, Z.J.; Xiang, X.F.; Yang, W.X.; Liu, T.; Zhu, B.Q.; Pan, Q.H.; Duan, C.Q. Striking changes in volatile profiles at sub-zero temperatures during over-ripening of ‘Beibinghong’ grapes in Northeastern China. Food Chem. 2016, 212, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Zhang, K.; Ma, J.; Yuan, M.; Zhao, S.; Wang, M.; Deng, L.; Ren, L.; Gangurde, S.S.; Pan, J.; et al. Transcriptional networks orchestrating red and pink testa color in peanut. BMC Plant Biol. 2023, 23, 44. [Google Scholar] [CrossRef] [PubMed]
- Pilati, S.; Bagagli, G.; Sonego, P.; Moretto, M.; Brazzale, D.; Castorina, G.; Simoni, L.; Tonelli, C.; Guella, G.; Engelen, K. Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network. Front. Plant Sci. 2017, 8, 1093. [Google Scholar] [CrossRef]
- Kanjana, M.P.; Thomas, D.; Russell, R. Comparison of Three Lychee Cultivar Odor Profiles Using Gas Chromatography−Olfactometry and Gas Chromatography−Sulfur Detection. J. Agric. Food Chem. 2007, 55, 1939–1944. [Google Scholar]
- Wu, Y.; Zhu, B.; Tu, C.; Duan, C.; Pan, Q. Generation of Volatile Compounds in Litchi Wine during Winemaking and Short-Term Bottle Storage. J. Agric. Food Chem. 2011, 59, 4923–4931. [Google Scholar] [CrossRef] [PubMed]
- Peinado, R.A.; Mauricio, J.C.; Moreno, J. Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions by Saccharomyces cerevisiae var. capensis. Food Chem. 2006, 94, 232–239. [Google Scholar] [CrossRef]
- Noguerol, P.R.; González, B.C.; Cancho, G.B.; Martínez, M.C.; Santiago, J.L.; Simal, G.J. Floral, spicy and herbaceous active odorants in Gran Negro grapes from shoulders and tips into the cluster, and comparison with Brancellao and Mouratón varieties. Food Chem. 2012, 135, 2771–2782. [Google Scholar] [CrossRef]
- González, Á.M.; González, B.C.; Cancho, G.B.; Simal, J. Relationships between Godello white wine sensory properties and its aromatic fingerprinting obtained by GC–MS. Food Chem. 2011, 129, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Michael, C.; Qian, Y.W. Seasonal Variation of Volatile Composition and Odor Activity Value of ‘Marion’ (Rubus spp. hyb) and ‘Thornless Evergreen’ (R. laciniatus L.) Blackberries. J. Food Sci. 2005, 70, C13–C20. [Google Scholar]
- Genovese, A.; Lamorte, S.A.; Gambuti, A.; Moio, L. Aroma of Aglianico and Uva di Troia grapes by aromatic series. Food Res. Int. 2013, 53, 15–23. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem. 2004, 84, 585–590. [Google Scholar] [CrossRef]
- Gómez, M.J.; Gómez-Míguez, M.; Vicario, I.M.; Heredia, F.J. Assessment of colour and aroma in white wines vinifications: Effects of grape maturity and soil type. J. Food Eng. 2007, 79, 758–764. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Ahmad, N.; Sheng, X.; Iqbal, B.; Naeem, M.; Wang, N.; Li, F.; Yao, N.; Liu, X. Unraveling the functional characterization of a jasmonate-induced flavonoid biosynthetic CYP45082G24 gene in Carthamus tinctorius. Funct. Integr. Genom. 2023, 23, 172. [Google Scholar] [CrossRef] [PubMed]
- Hikaru Matsumoto, Y.I. Effect of postharvest temperature on the muscat flavor and aroma volatile content in the berries of ‘Shine Muscat’ (Vitis labruscana Baily × V. vinifera L.). Postharvest Biol. Technol. 2016, 112, 256–265. [Google Scholar] [CrossRef]
- Ahmad, N.; Hou, L.; Ma, J.; Zhou, X.; Xia, H.; Wang, M.; Leal-Bertioli, S.; Zhao, S.; Tian, R.; Pan, J. Bulk RNA-Seq Analysis Reveals Differentially Expressed Genes Associated with Lateral Branch Angle in Peanut. Genes 2022, 13, 841. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, Y.; Liu, X.; Ahmad, N.; Wang, N.; Jin, L.; Yao, N.; Liu, X. A Cinnamate 4-HYDROXYLASE1 from Safflower Promotes Flavonoids Accumulation and Stimulates Antioxidant Defense System in Arabidopsis. Int. J. Mol. Sci. 2023, 24, 5393. [Google Scholar] [CrossRef]
- Li, W.; Sun, J.; Zhang, X.; Ahmad, N.; Hou, L.; Zhao, C.; Pan, J.; Tian, R.; Wang, X.; Zhao, S. The Mechanisms Underlying Salt Resistance Mediated by Exogenous Application of 24-Epibrassinolide in Peanut. Int. J. Mol. Sci. 2022, 23, 6376. [Google Scholar] [CrossRef]
- Mescher, M.; Wu, X.; Xu, S.; Zhao, P.; Zhang, X.; Yao, X.; Sun, Y.; Fang, R.; Ye, J. The Orthotospovirus nonstructural protein NSs suppresses plant MYC-regulated jasmonate signaling leading to enhanced vector attraction and performance. PLOS Pathog. 2019, 15, e1007897. [Google Scholar]
- Fontana, A.; Held, M.; Fantaye, C.A.; Turlings, T.C.; Degenhardt, J.; Gershenzon, J. Attractiveness of Constitutive and Herbivore-Induced Sesquiterpene Blends of Maize to the Parasitic Wasp Cotesia marginiventris (Cresson). J. Chem. Ecol. 2011, 37, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Erb, M.; Veyrat, N.; Robert, C.A.M.; Xu, H.; Frey, M.; Ton, J.; Turlings, T.C.J. Indole is an essential herbivore-induced volatile priming signal in maize. Nat. Commun. 2015, 6, 6273. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Naeem, M.; Ali, H.; Alabbosh, K.F.; Hussain, H.; Khan, I.; Siddiqui, S.A.; Khan, A.A.; Iqbal, B.J.S.H. From challenges to solutions: The impact of melatonin on abiotic stress synergies in horticultural plants via redox regulation and epigenetic signaling. Sci. Hortic. 2023, 321, 112369. [Google Scholar] [CrossRef]
- Rinaldo, A. An Investigation of the Role of the Regulatory Gene VvMYBA1 in Colour, Flavour and Aroma Metabolism Using Transgenic Grapevines. Ph.D. Thesis, The University of Adelaide School of Agriculture, Food and Wine, Urrbrae, SA, Australia, 2014. [Google Scholar]
- Murcia, G.; Pontin, M.; Reinoso, H.; Baraldi, R.; Bertazza, G.; Gómez-Talquenca, S.; Bottini, R.; Piccoli, P.N. ABA and GA3increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. Physiol. Plant. 2016, 156, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Villalobos-González, L.; Peña-Neira, A.; Ibáñez, F.; Pastenes, C. Long-term effects of abscisic acid (ABA) on the grape berry phenylpropanoid pathway: Gene expression and metabolite content. Plant Physiol. Biochem. 2016, 105, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Cramer, G.R.; Ghan, R.; Schlauch, K.A.; Tillett, R.L.; Heymann, H.; Ferrarini, A.; Delledonne, M.; Zenoni, S.; Fasoli, M.; Pezzotti, M. Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin. BMC Plant Biol. 2014, 14, 370. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Shen, S.; Yin, X.; Klee, H.; Zhang, B.; Chen, K. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. J. Exp. Bot. 2017, 68, 4929–4938. [Google Scholar] [CrossRef]
Retention Time | Retention Index | ABA-E_L35 | ABA-E_L36 | ABA-E_L37 | ABA-E_L38 | CK-E_L35 | CK-E_L36 | CK-E_L37 | CK-E_L38 | |
---|---|---|---|---|---|---|---|---|---|---|
Beta-Myrcene | 13.32 | 1164 | 14.04 ± 0.17 | 15.58 ± 0.47 | 24.66 ± 0.1 | 52.63 ± 1.04 | 14.8 ± 0.09 | 15.01 ± 0.16 | 17.95 ± 0.45 | 28.69 ± 1.12 |
Limonene | 14.65 | 1193 | 36.52 ± 1.92 | 44.34 ± 1.91 | 61.5 ± 0.25 | 42.3 ± 0.64 | 55.1 ± 2.87 | 38.39 ± 1 | 31.64 ± 0.23 | 38.54 ± 0.15 |
trans-beta-Ocimene | 16.25 | 1240 | 0.31 ± 0.08 | 0.2 ± 0.01 | 3.94 ± 0.02 | 9.21 ± 0.02 | 0.45 ± 0.03 | 0.62 ± 0.29 | 1.52 ± 0.17 | 4.4 ± 0.25 |
Gamma-Terpinene | 17.25 | 1130 | 1.93 ± 0.24 | 2.42 ± 0.15 | 1.69 ± 0.01 | 16.83 ± 0.29 | 1.94 ± 0.03 | 3.25 ± 0.03 | 3.36 ± 0.25 | 3.38 ± 0.06 |
Terpinolene | 18.31 | 1290 | 0.34 ± 0.13 | 1.04 ± 0.07 | 6.25 ± 0.03 | 7.59 ± 0.14 | 0.73 ± 0.13 | 1.65 ± 0.1 | 2.2 ± 0.23 | 5.36 ± 0.11 |
cis Rose oxide | 21.10 | 1356 | 114 ± 0.05 | 2.31 ± 0.16 | 8.8 ± 0.04 | 3.91 ± 0.14 | 1.29 ± 0.07 | 1.67 ± 0.03 | 2.08 ± 0.16 | 2.11 ± 0.15 |
Allo-Ocimene | 21.52 | 1366 | 0.55 ± 0.08 | 1.31 ± 0.09 | 7.91 ± 0.03 | 9.5 ± 0.34 | 0.91 ± 0.16 | 2.08 ± 0.13 | 2.79 ± 0.29 | 6.27 ± 0.59 |
trans-Rose oxide | 21.70 | 1370 | 0.47 ± 0.02 | 0.69 ± 0.03 | 2.49 ± 0.01 | 1.4 ± 0.05 | 0.5 ± 0.01 | 0.58 ± 0.01 | 0.68 ± 0.03 | 0.77 ± 0.06 |
Nerol oxide | 26.05 | 1474 | 2.72 ± 0.19 | 2.28 ± 0.05 | 4.91 ± 0.02 | 4.06 ± 0.37 | 2.36 ± 0.71 | 3.36 ± 0.14 | 2.73 ± 0.47 | 7.74 ± 0.73 |
Linalool | 29.05 | 1547 | 43.56 ± 0.51 | 51.93 ± 1.15 | 126.9 ± 0.52 | 292.15 ± 0.64 | 42.41 ± 0.28 | 50.1 ± 0.42 | 64.33 ± 2.52 | 286.52 ± 10.88 |
Hotrienol | 31.64 | 1613 | 11.58 ± 0.28 | 15.46 ± 0.83 | 27.46 ± 0.11 | 51.39 ± 0.82 | 7.41 ± 0.92 | 11.69 ± 0.19 | 20.86 ± 2.07 | 57.77 ± 1.66 |
Terpinen-4-ol | 31.78 | 1603 | 1.34 ± 0.11 | 1.39 ± 0.1 | 1.33 ± 0.01 | 1.91 ± 0.01 | 1.8 ± 0.15 | 1.66 ± 0.02 | 1.41 ± 0.14 | 2.19 ± 0.05 |
Neral | 34.52 | 1689 | 0.09 ± 0.01 | 0.07 ± 0 | 0.18 ± 0 | 0.07 ± 0 | 0.08 ± 0.01 | 0.08 ± 0 | 0.09 ± 0.02 | 0.09 ± 0.01 |
a-Terpineol | 35.02 | 1703 | 3.62 ± 0.14 | 5.76 ± 0.29 | 9.96 ± 0.04 | 26.59 ± 1.18 | 3.13 ± 0.17 | 4.95 ± 0.04 | 8.17 ± 0.64 | 29.75 ± 0.79 |
Citral | 36.42 | 1741 | 31.54 ± 0.18 | 32.4 ± 0.79 | 32.47 ± 0.13 | 33.25 ± 0.75 | 31.74 ± 0.02 | 31.77 ± 0.28 | 31.89 ± 0.02 | 31.79 ± 0.16 |
cis-Pyranoid linalool oxide | 36.45 | 1742 | 3.19 ± 0.13 | 7.46 ± 0.66 | 22.52 ± 0.09 | 75.08 ± 0.71 | 2.42 ± 0.03 | 4.04 ± 0.05 | 8.12 ± 0.47 | 56.1 ± 4.67 |
trans-Pyranoid linalool oxide | 37.27 | 1765 | 3.05 ± 0.02 | 2.24 ± 0.13 | 4.39 ± 0.02 | 7.34 ± 0.05 | 2.39 ± 0.04 | 2 ± 0.03 | 2.09 ± 0.08 | 6.14 ± 0.34 |
Citronellol | 37.47 | 1770 | 6.81 ± 0 | 7.02 ± 0.17 | 7.08 ± 0.03 | 7.25 ± 0.15 | 6.9 ± 0 | 6.94 ± 0.07 | 6.89 ± 0.01 | 6.96 ± 0.03 |
Nerol | 38.81 | 1808 | 4.27 ± 1.13 | 12.04 ± 0.65 | 46.85 ± 0.19 | 102.42 ± 2.19 | 4.96 ± 1.19 | 4.13 ± 0.07 | 19.98 ± 1.2 | 115.06 ± 3.11 |
Isogeraniol | 39.10 | 1816 | 0.12 ± 5.53 | 0.81 ± 0.15 | 0.12 ± 0 | 4.2 ± 0.2 | 0.11 ± 0 | 0.12 ± 0 | 0.12 ± 0 | 0.34 ± 0 |
Geraniol | 40.45 | 1855 | 12.06 ± 0.21 | 20.46 ± 1.16 | 66.57 ± 0.27 | 103.92 ± 1.12 | 11.58 ± 2.28 | 19.87 ± 0.18 | 26.14 ± 1.31 | 81.88 ± 3.33 |
Geranic acid | 56.13 | 2350 | 0.9 ± 0.11 | 0.91 ± 0.02 | 0.9 ± 0 | 0.94 ± 0.02 | 0.9 ± 0 | 0.9 ± 0.01 | 0.9 ± 0.01 | 0.9 ± 0 |
Monoterpenes Profiles (μg/L) | Retention Time | Retention Index | ABA-E_L35 | ABA-E_L36 | ABA-E_L37 | ABA-E_L38 | CK-E_L35 | CK-E_L36 | CK-E_L37 | CK-E_L38 |
---|---|---|---|---|---|---|---|---|---|---|
Beta-Myrcene | 13.32 | 1164 | 21.65 ± 0.58 | 29.84 ± 1.38 | 45.56 ± 0.76 | 74.41 ± 2.99 | 20.23 ± 0.64 | 28.51 ± 0.7 | 31.28 ± 1.11 | 81.94 ± 5.28 |
Limonene | 14.65 | 1193 | 73.81 ± 9.53 | 54.68 ± 7.3 | 69.44 ± 5.3 | 97.41 ± 3.37 | 79.23 ± 1.79 | 97.89 ± 1.34 | 74.86 ± 7.2 | 64.96 ± 3.37 |
trans-beta-Ocimene | 16.25 | 1240 | 1.48 ± 0.03 | 2.87 ± 0.38 | 5.36 ± 0.21 | 11.76 ± 0.56 | 1.28 ± 0.1 | 2.52 ± 0.19 | 3.15 ± 0.34 | 11.95 ± 1.37 |
Gamma-Terpinene | 17.25 | 1130 | 1.57 ± 0.03 | 1.55 ± 0.04 | 1.62 ± 0.1 | 1.89 ± 0.02 | 1.53 ± 0.02 | 1.64 ± 0.06 | 1.6 ± 0.07 | 1.9 ± 0.18 |
Terpinolene | 18.31 | 1290 | 0.04 ± 0 | 0.06 ± 0.02 | 0.43 ± 0.11 | 0.68 ± 0.03 | 0.23 ± 0.14 | 0.05 ± 0.01 | 0.44 ± 0.03 | 0.59 ± 0.08 |
cis Rose oxide | 21.10 | 1356 | 1.56 ± 0.14 | 2.03 ± 0.26 | 2.69 ± 0.48 | 3.76 ± 0.15 | 1.54 ± 0.24 | 2.43 ± 0.22 | 2.11 ± 0.18 | 3.05 ± 0.22 |
Allo-Ocimene | 21.52 | 1366 | 0.54 ± 0.03 | 0.81 ± 0.08 | 4.87 ± 0.59 | 4.66 ± 0.23 | 3.54 ± 0.2 | 3.14 ± 0.21 | 2.66 ± 0.09 | 2.94 ± 0.23 |
trans-Rose oxide | 21.70 | 1370 | 0.73 ± 0.05 | 0.92 ± 0.11 | 1.04 ± 0.02 | 1.49 ± 0.05 | 0.71 ± 0.07 | 1 ± 0.06 | 0.97 ± 0.05 | 1.35 ± 0.09 |
Nerol oxide | 26.05 | 1474 | 0.37 ± 0.01 | 0.54 ± 0.02 | 0.21 ± 0.04 | 0.06 ± 0 | 0.16 ± 0.11 | 0.36 ± 0.08 | 0.18 ± 0.08 | 0.42 ± 0.07 |
Linalool | 29.05 | 1547 | 41.3 ± 0.52 | 49.38 ± 1.01 | 57.83 ± 0.49 | 274.24 ± 21.91 | 45.45 ± 3.55 | 48.21 ± 0.42 | 61.68 ± 1.96 | 227.02 ± 9.19 |
Hotrienol | 31.64 | 1613 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.05 ± 0.01 | 0.07 ± 0 | 0.01 ± 0 | 0.04 ± 0 | 0.04 ± 0 | 0.03 ± 0 |
Terpinen-4-ol | 31.78 | 1603 | 1.66 ± 0.14 | 2.84 ± 0.31 | 1.07 ± 0.03 | 1.49 ± 0.07 | 0.57 ± 0.02 | 1.12 ± 0.1 | 1 ± 0.07 | 2.57 ± 0.12 |
Neral | 34.52 | 1689 | 0.25 ± 0.01 | 2.16 ± 0.24 | 0.08 ± 0 | 0.23 ± 0.01 | 0.1 ± 0.04 | 0.05 ± 0.02 | 0.16 ± 0.06 | 0.09 ± 0.02 |
a-Terpineol | 35.02 | 1703 | 5.81 ± 0.08 | 2.48 ± 0.58 | 3.86 ± 0.04 | 6.01 ± 0.2 | 3.8 ± 0.05 | 5.38 ± 0.29 | 4.32 ± 0.09 | 8.26 ± 0.75 |
Citral | 36.42 | 1741 | 34.89 ± 0.54 | 31.52 ± 0.02 | 38.33 ± 0.7 | 48.34 ± 0.82 | 33.19 ± 1 | 37.86 ± 1.01 | 36.97 ± 0.31 | 41.57 ± 0.76 |
cis-Pyranoid linalool oxide | 36.45 | 1742 | 30.21 ± 0.44 | 40.45 ± 2.26 | 172.23 ± 187.06 | 454.71 ± 14.28 | 6.25 ± 0.3 | 24.52 ± 1.5 | 35.12 ± 1.07 | 247.13 ± 12 |
trans-Pyranoid linalool oxide | 37.27 | 1765 | 31 ± 0.39 | 28.69 ± 2.12 | 10.75 ± 0.63 | 24.66 ± 1.15 | 9.52 ± 0.46 | 22.95 ± 1.43 | 16.06 ± 0.55 | 43.25 ± 4.3 |
Citronellol | 37.47 | 1770 | 8.77 ± 0.12 | 6.91 ± 0.02 | 8.48 ± 0.14 | 8.52 ± 0.08 | 8.22 ± 0.05 | 8.78 ± 0.18 | 8.15 ± 0.06 | 10.53 ± 0.57 |
Nerol | 38.81 | 1808 | 325.49 ± 3.98 | 578.88 ± 51.47 | 675.12 ± 21.87 | 1677.58 ± 120.83 | 394.2 ± 9.19 | 71.67 ± 2.88 | 1191.76 ± 84.46 | 1490.04 ± 40.86 |
Isogeraniol | 39.10 | 1816 | 12.12 ± 0.16 | 3.17 ± 0.04 | 3.05 ± 0.49 | 5.06 ± 0.24 | 2.01 ± 0.05 | 2.77 ± 0.23 | 2.94 ± 0.14 | 19.67 ± 2.62 |
Geraniol | 40.45 | 1855 | 127.05 ± 1.6 | 418 ± 0.99 | 698.77 ± 6.52 | 906.8 ± 43.84 | 144.32 ± 4.49 | 307.42 ± 30.61 | 403.71 ± 14.05 | 677.82 ± 18.92 |
Geranic acid | 56.13 | 2350 | 14.07 ± 2.92 | 22.95 ± 1.17 | 19.27 ± 1.35 | 43.4 ± 2.07 | 7.99 ± 0.72 | 14.56 ± 2 | 15.85 ± 0.31 | 24.12 ± 2.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yan, Y.; Wang, L.; Li, G.; Wu, Y.; Zhang, Y.; Xu, L.; Wang, S. Integrated Transcriptomic and Metabolomic Analysis Revealed Abscisic Acid-Induced Regulation of Monoterpene Biosynthesis in Grape Berries. Plants 2024, 13, 1862. https://doi.org/10.3390/plants13131862
Li X, Yan Y, Wang L, Li G, Wu Y, Zhang Y, Xu L, Wang S. Integrated Transcriptomic and Metabolomic Analysis Revealed Abscisic Acid-Induced Regulation of Monoterpene Biosynthesis in Grape Berries. Plants. 2024; 13(13):1862. https://doi.org/10.3390/plants13131862
Chicago/Turabian StyleLi, Xiangyi, Yixuan Yan, Lei Wang, Guanhan Li, Yusen Wu, Ying Zhang, Lurong Xu, and Shiping Wang. 2024. "Integrated Transcriptomic and Metabolomic Analysis Revealed Abscisic Acid-Induced Regulation of Monoterpene Biosynthesis in Grape Berries" Plants 13, no. 13: 1862. https://doi.org/10.3390/plants13131862
APA StyleLi, X., Yan, Y., Wang, L., Li, G., Wu, Y., Zhang, Y., Xu, L., & Wang, S. (2024). Integrated Transcriptomic and Metabolomic Analysis Revealed Abscisic Acid-Induced Regulation of Monoterpene Biosynthesis in Grape Berries. Plants, 13(13), 1862. https://doi.org/10.3390/plants13131862