Effect of Different Fertilizer Types on Quality of Foxtail Millet under Low Nitrogen Conditions
Abstract
:1. Introduction
2. Results
2.1. Effect of Different Fertilizer Treatments on Agronomic Traits of Foxtail Millet
2.2. Effect of Different Fertilizer Treatments on the Nutritional Components of Foxtail Millet
2.3. Effects of Different Fertilizer Treatments on the Amino Acid Composition of Foxtail Millet
2.4. Effects of Different Fertilizers on Starch Pasting Characteristics of Foxtail Millet
2.5. Correlation Analysis
2.6. Principal Component Analysis
2.7. Systematic Clustering Analysis of Different Fertilizer Treatments
3. Discussion
3.1. Effect of Different Fertilizer Treatments on Agronomic Traits
3.2. Effect of Different Fertilizer Treatments on Nutritional Components and Amino Acid Composition
3.3. Effects of Different Fertilizer Treatments on the Starch Pasting Characteristics
4. Materials and Methods
4.1. Experimental Design
4.2. Indicators and Methods of Determination
4.2.1. Determination of Agronomic Traits
4.2.2. Determination of Nutrient Fractions and Appearance Quality
4.2.3. Determination of Cooking Quality
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.G.; Liu, F.; Liu, M.; Cheng, R.H.; Xia, E.J.; Diao, X.M. Current Status and Future Prospective of Foxtail Millet Production and Seed Industry in China. Sci. Agric. Sin. 2021, 54, 459–470. (In Chinese) [Google Scholar] [CrossRef]
- Doust, A.N.; Kellogg, E.A.; Devos, K.M.; Bennetzen, J.L. Foxtail Millet: A Sequence-Driven Grass Model System. Plant Physiol. 2009, 149, 137–141. [Google Scholar] [CrossRef]
- Liu, S.C.; Cao, X.N.; Wen, Q.F.; Wang, H.G.; Tian, X.; Wang, J.J.; Chen, L.; Qin, H.B.; Wang, L.; Qiao, Z.J. Comprehensive Evaluation of Agronomic Traits and Quality Traits of Foxtail Millet Landrace in Shanxi. Sci. Agric. Sin. 2020, 53, 2137–2148. (In Chinese) [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Q.; Cui, T.; Xiao, H. Structural and Physical Properties of Starches Isolated from Six Varieties of Millet Grown in China. Int. J. Food Prop. 2014, 17, 2344–2360. [Google Scholar] [CrossRef]
- Wang, L.; Mao, Q.; Chen, C.; Hong, J. Characterization of Nutritional Components of Foxtail Millet (Setaria italica (L.) P. Beauv) cv. Jingu 21 Cultivated in Soil with Different Nutrient Contents in China. J. Food Compos. Anal. 2024, 127, 105950. [Google Scholar] [CrossRef]
- Dang, P.; Li, C.; Huang, T.; Lu, C.; Li, Y.; Qin, X.; Siddique, K.H.M. Effects of Different Continuous Fertilizer Managements on Soil Total Nitrogen Stocks in China: A Meta-Analysis. Pedosphere 2022, 32, 39–48. [Google Scholar] [CrossRef]
- Fang, X.; Li, Y.; Nie, J.; Wang, C.; Huang, K.; Zhang, Y.; Zhang, Y.; She, H.; Liu, X.; Ruan, R.; et al. Effects of Nitrogen Fertilizer and Planting Density on the Leaf Photosynthetic Characteristics, Agronomic Traits and Grain Yield in Common Buckwheat (Fagopyrum esculentum M.). Field Crop. Res. 2018, 219, 160–168. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, Y.; Liu, J.; Wang, H.; Ma, Q.; Zhou, Y.; Liu, C.; Gong, X.; Feng, B. Comparative Transcriptome and Physiological Analysis Unravel Proso Millet (Panicum miliaceum L.) Source Leaf Adaptation to Nitrogen Deficiency with High Nitrogen Use Efficiency. Environ. Exp. Bot. 2022, 199, 104891. [Google Scholar] [CrossRef]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Masoni, A.; Ercoli, L.; Mariotti, M.; Arduini, I. Post-Anthesis Accumulation and Remobilization of Dry Matter, Nitrogen and Phosphorus in Durum Wheat as Affected by Soil Type. Eur. J. Agron. 2007, 26, 179–186. [Google Scholar] [CrossRef]
- Asad, M.A.U.; Guan, X.; Zhou, L.; Qian, Z.; Yan, Z.; Cheng, F. Involvement of Plant Signaling Network and Cell Metabolic Homeostasis in Nitrogen Deficiency-Induced Early Leaf Senescence. Plant Sci. 2023, 336, 111855. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Chen, Y. The Physiological Response of Photosynthesis to Nitrogen Deficiency. Plant Physiol. Biochem. 2021, 158, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, C.; Zhou, G.; Huo, Z. Effects of Nitrogen Level on Structure and Physicochemical Properties of Rice Starch. Food Hydrocoll. 2017, 63, 525–532. [Google Scholar] [CrossRef]
- Wang, H.; Li, D.; Ma, Q.; Wu, E.; Gao, L.; Yang, P.; Gao, J.; Feng, B. Nitrogen Fertilizer Affects Starch Synthesis to Define Non-Waxy and Waxy Proso Millet Quality. Carbohydr. Polym. 2023, 302, 120423. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Chu, Q.; Yuan, L.; Liu, J.; Chen, X.; Chen, F.; Mi, G.; Zhang, F. Identification of Quantitative Trait Loci for Leaf Area and Chlorophyll Content in Maize (Zea mays) under Low Nitrogen and Low Phosphorus Supply. Mol. Breed. 2012, 30, 251–266. [Google Scholar] [CrossRef]
- Veronica, N.; Subrahmanyam, D.; Vishnu Kiran, T.; Yugandhar, P.; Bhadana, V.P.; Padma, V.; Jayasree, G.; Voleti, S.R. Influence of Low Phosphorus Concentration on Leaf Photosynthetic Characteristics and Antioxidant Response of Rice Genotypes. Photosynthetica 2017, 55, 285–293. [Google Scholar] [CrossRef]
- Nadeem Shah, M.; Wright, D.L.; Hussain, S.; Koutroubas, S.D.; Seepaul, R.; George, S.; Ali, S.; Naveed, M.; Khan, M.; Tanveer Altaf, M.; et al. Organic Fertilizer Sources Improve the Yield and Quality Attributes of Maize (Zea mays L.) Hybrids by Improving Soil Properties and Nutrient Uptake under Drought Stress. J. King Saud Univ.-Sci. 2023, 35, 102570. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, L.; Wang, W.; Xu, Y.; Zhang, W.; Zhang, H.; Liu, L.; Wang, Z.; Gu, J.; Yang, J. Effects of Application of Rapeseed Cake as Organic Fertilizer on Rice Quality at High Yield Level. J. Sci. Food Agric. 2022, 102, 1832–1841. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yang, Y.; Wu, Y.; Liu, B.; Tao, L.; Zhan, Y.; Ni, X.; Yang, Y. Better Performance of Compound Fertilizers than Bulk-Blend Fertilizers on Reducing Ammonia Emission and Improving Wheat Productivity. Agric. Ecosyst. Environ. 2022, 335, 108018. [Google Scholar] [CrossRef]
- Wen, S.; Cui, N.; Gong, D.; Xing, L.; Wu, Z.; Zhang, Y.; Wang, Z.; Wang, J. Optimizing Nitrogen Fertilizer Application for Achieving High Yield with Low Environmental Risks in Apple Orchard. Agric. Water Manag. 2023, 289, 108501. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, C.; Su, Y.; Peng, W.; Lu, R.; Liu, Y.; Huang, H.; He, X.; Yang, M.; Zhu, S. Soil Acidification Caused by Excessive Application of Nitrogen Fertilizer Aggravates Soil-Borne Diseases: Evidence from Literature Review and Field Trials. Agric. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, T.; Ding, H.; Guo, L.; Li, C.; Jiang, Y.; Cao, C. Application Rates of Nitrogen Fertilizers Change the Pattern of Soil Organic Carbon Fractions in a Rice-Wheat Rotation System in China. Agric. Ecosyst. Environ. 2022, 338, 108081. [Google Scholar] [CrossRef]
- Liu, Y.; Chu, G.; Stirling, E.; Zhang, H.; Chen, S.; Xu, C.; Zhang, X.; Ge, T.; Wang, D. Nitrogen Fertilization Modulates Rice Seed Endophytic Microbiomes and Grain Quality. Sci. Total Environ. 2023, 857, 159181. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Wang, S.; He, Z.; Zhang, Y. Effects of Reduced Nitrogen Fertilization and Irrigation on Structure and Physicochemical Properties of Starch in Two Bread Wheat Cultivars. Agriculture 2021, 11, 26. [Google Scholar] [CrossRef]
- Liu, A.; Ma, X.; Zhang, Z.; Liu, J.; Luo, D.; Yang, L.; Lv, N.; Zhang, Y.; Yang, G.; Dong, H. Single Dose Fertilization at Reduced Nitrogen Rate Improves Nitrogen Utilization without Yield Reduction in Late-Planted Cotton under a Wheat–Cotton Cropping System. Ind. Crop. Prod. 2022, 176, 114346. [Google Scholar] [CrossRef]
- Qiao, J.; Wang, J.; Zhao, D.; Zhou, W.; Schwenke, G.; Yan, T.; Liu, D.L. Optimizing N Fertilizer Rates Sustained Rice Yields, Improved N Use Efficiency, and Decreased N Losses via Runoff from Rice-Wheat Cropping Systems. Agric. Ecosyst. Environ. 2022, 324, 107724. [Google Scholar] [CrossRef]
- Bizimana, F.; Luo, J.; Timilsina, A.; Dong, W.; Gaudel, G.; Ding, K.; Qin, S.; Hu, C. Estimating Field N2 Emissions Based on Laboratory-Quantified N2O/(N2O + N2) Ratios and Field-Quantified N2O Emissions. J Soils Sediments 2022, 22, 2196–2208. [Google Scholar] [CrossRef]
- Zhu, M.; He, Q.; Lyu, M.; Shi, T.; Gao, Q.; Zhi, H.; Wang, H.; Jia, G.; Tang, S.; Cheng, X.; et al. Integrated Genomic and Transcriptomic Analysis Reveals Genes Associated with Plant Height of Foxtail Millet. Crop J. 2023, 11, 593–604. [Google Scholar] [CrossRef]
- Li, C.; Chang, Y.; Luo, Y.; Li, W.; Jin, M.; Wang, Y.; Cui, H.; Sun, S.; Li, Y.; Wang, Z. Nitrogen Regulates Stem Lodging Resistance by Breaking the Balance of Photosynthetic Carbon Allocation in Wheat. Field Crop. Res. 2023, 296, 108908. [Google Scholar] [CrossRef]
- Xing, G.; Ma, J.; Liu, X.; Lei, B.; Wang, G.; Hou, S.; Han, Y. Influence of Different Nitrogen, Phosphorus, and Potassium Fertilizer Ratios on the Agronomic and Quality Traits of Foxtail Millet. Agronomy 2023, 13, 2005. [Google Scholar] [CrossRef]
- Shangguan, Z.; Shao, M.; Dyckmans, J. Effects of Nitrogen Nutrition and Water Deficit on Net Photosynthetic Rate and Chlorophyll Fluorescence in Winter Wheat. J. Plant Physiol. 2000, 156, 46–51. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Song, N.; Chen, Q.; Sun, H.; Peng, T.; Huang, S.; Zhao, Q. Response of Grain-Filling Rate and Grain Quality of Mid-Season Indica Rice to Nitrogen Application. J. Integr. Agric. 2021, 20, 1465–1473. [Google Scholar] [CrossRef]
- Dissanayaka, D.M.S.B.; Ghahremani, M.; Siebers, M.; Wasaki, J.; Plaxton, W.C. Recent Insights into the Metabolic Adaptations of Phosphorus-Deprived Plants. J. Exp. Bot. 2021, 72, 199–223. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, H.; Tao, P.; Chen, H. Comparative Proteomic Analyses Provide New Insights into Low Phosphorus Stress Responses in Maize Leaves. PLoS ONE 2014, 9, e98215. [Google Scholar] [CrossRef] [PubMed]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Müller, T. Fertilizer Placement to Improve Crop Nutrient Acquisition and Yield: A Review and Meta-Analysis. Field Crop. Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Warren, J.G.; Phillips, S.B.; Mullins, G.L.; Keahey, D.; Penn, C.J. Environmental and Production Consequences of Using Alum-Amended Poultry Litter as a Nutrient Source for Corn. J. Environ. Qual. 2006, 35, 172–182. [Google Scholar] [CrossRef]
- Ma, K.; Zhao, L.; Zhao, X.; Li, X.; Dong, S.; Zhang, L.; Guo, P.; Yuan, X.; Diao, X. The Relationship between Ecological Factors and Commercial Quality of High-Quality Foxtail Millet “Jingu 21”. Food Res. Int. 2023, 163, 112225. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, C.M.; Zheng, Z.R.; Zhou, Z.N.; He, M.R.; Wang, Z. Activities of the Enzymes Involved in Starch Synthesis and Starch Accumulation in Grains of Wheat Cultivars GC8901 and SN1391. Sci. Agric. Sin. 2005, 897–903. (In Chinese) [Google Scholar]
- Li, J.M.; Wang, Z.L.; Gao, R.J.; Li, S.F.; Cai, R.G.; Yan, S.H.; Yu, A.L.; Yin, Y.P. Activities of Enzymes Involved in Sucrose and Starch Synthesis during Grain Filling and the Relation to Nitrogen Metabolism in Strong- and Weak-Gluten Wheat Cultivars. Acta Agron. Sin. 2008, 1019–1026. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.C.; Xiong, S.P.; Ma, X.M.; Zhang, J.J.; Wang, Z.Q. Effect of different nitrogen forms on key enzyme ac-tivity involved in nitrogen metabolism and grain protein content in speciality wheat cultivars. Acta Ecol. Sin. 2005, 802–807. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.F.; Yu, Z.W.; Li, S.X.; Yu, S.L. Effect of Nitrogen Nutrient on the change of key enzyme activity during the nitrogen metabolism and kernel protein content in winter wheat. Acta Agron. Sin. 2002, 743–748. (In Chinese) [Google Scholar] [CrossRef]
- Liang, C.; Chen, L.; Wang, Y.; Liu, J.; Xu, G.; Li, T. High Temperature at Grain-Filling Stage Affects Nitrogen Metabolism Enzyme Activities in Grains and Grain Nutritional Quality in Rice. Rice Sci. 2011, 18, 210–216. [Google Scholar] [CrossRef]
- Lou, F.; Zuo, Y.P.; Li, M.; Dai, X.M.; Wang, J.; Han, J.L.; Wu, S.; Li, X.L.; Duan, H.J. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize. Acta Agron. Sin. 2024, 50, 1054–1064. (In Chinese) [Google Scholar] [CrossRef]
- Lee, S.-K.; Jeon, J.-S. Review: Crucial Role of Inorganic Pyrophosphate in Integrating Carbon Metabolism from Sucrose Breakdown to Starch Synthesis in Rice Endosperm. Plant Sci. 2020, 298, 110572. [Google Scholar] [CrossRef]
- Yi, B.; Zhou, Y.; Gao, M.; Zhang, Z.; Han, Y.; Yang, G.; Xu, W.; Huang, R. Effect of Drought Stress During Flowering Stage on Starch Accumulation and Starch Synthesis Enzymes in Sorghum Grains. J. Integr. Agric. 2014, 13, 2399–2406. [Google Scholar] [CrossRef]
- Gao, L.; Wang, H.; Wan, C.; Wang, P.; Eeckhout, M.; Gao, J. Suitable Nitrogen Fertilizer Application Drives the Endosperm Development and Starch Synthesis to Improve the Physicochemical Properties of Common Buckwheat Grain. Int. J. Biol. Macromol. 2023, 235, 123837. [Google Scholar] [CrossRef] [PubMed]
- Singletary, G.W.; Doehlert, D.C.; Wilson, C.M.; Muhitch, M.J.; Below, F.E. Response of Enzymes and Storage Proteins of Maize Endosperm to Nitrogen Supply. Plant Physiol. 1990, 94, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xia, M.; Wan, C.; Jia, Y.; Yang, L.; Wang, M.; Wang, P.; Yang, Q.; Yang, P.; Gao, X.; et al. Analysis of Synthesis, Accumulation and Physicochemical Properties of Tartary Buckwheat Starches Affected by Nitrogen Fertilizer. Carbohydr. Polym. 2021, 273, 118570. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, C.; Fu, K.; Li, C.; Li, C. Phosphorus Alters Starch Morphology and Gene Expression Related to Starch Biosynthesis and Degradation in Wheat Grain. Front. Plant Sci. 2018, 8, 2252. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.Q.; Feng, C.N.; Huang, L.; Guo, W.S.; Zhu, X.K.; Peng, Y.X. Effect of phosphorus application on grain yiele and quality of wheat for different end uses. J. Triticeae Crop. 2006, 26, 113–116. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, C.; Wei, H.; Gao, H.; Hu, Y.; Cui, P.; et al. Effect of Nitrogen Management on the Structure and Physicochemical Properties of Rice Starch. J. Agric. Food Chem. 2016, 64, 8019–8025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Liu, X.; Wang, G.; Wang, H.; Liu, J.; Zhao, W.; Zhang, Y. Crude Fat Content and Fatty Acid Profile and Their Correlations in Foxtail Millet. Cereal Chem. 2015, 92, 455–459. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, C.; Zhao, G.; Gong, X.; Dang, K.; Yang, Q.; Feng, B. Transcriptome Analysis Reveals the Mechanism Associated with Dynamic Changes in Fatty Acid and Phytosterol Content in Foxtail Millet (Setaria italica) during Seed Development. Food Res. Int. 2021, 145, 110429. [Google Scholar] [CrossRef]
- Gu, H.; Li, J.; Lu, Z.; Li, X.; Cong, R.; Ren, T.; Lu, J. Effects of Combined Application of Nitrogen and Potassium on Oil Concentration and Fatty Acid Component of Oilseed Rape (Brassica napus L.). Field Crop. Res. 2024, 306, 109229. [Google Scholar] [CrossRef]
- Belay, A.; Claassens, A.S.; Wehner, F.C.; de Beer, J.M. Influence of Residual Manure on Selected Nutrient Elements and Microbial Composition of Soil under Long-Term Crop Rotation. S. Afr. J. Plant Soil 2001, 18, 1–6. [Google Scholar] [CrossRef]
- Qi, B.; Hu, J.; Zhu, L.; Duan, Y.; Zhang, W.; Gou, L. Response of Maize Stalk to Plant Density on Cellulose Accumulation by Modulating Enzymes Activities. Field Crop. Res. 2023, 304, 109152. [Google Scholar] [CrossRef]
- Deng, Y.C.; Liu, W.G.; Yuan, X.Q.; Yuan, J.; Zou, J.L.; Du, J.B.; Yang, W.Y. Relationship between cellulose syn-thesis metabolism and lodging resistance in intercropping soybean at seedling stage. Chin. J. Appl. Ecol. 2016, 27, 469–476. (In Chinese) [Google Scholar] [CrossRef]
- Peng, L.; Kawagoe, Y.; Hogan, P.; Delmer, D. Sitosterol-β-Glucoside as Primer for Cellulose Synthesis in Plants. Science 2002, 295, 147–150. [Google Scholar] [CrossRef]
- Zuo, R.; Zhang, Y.; Yang, Y.; Wang, C.; Zhi, H.; Zhang, L.; Tang, S.; Guan, Y.; Li, S.; Cheng, R.; et al. Haplotype Variation and KASP Markers for SiPSY1—A Key Gene Controlling Yellow Kernel Pigmentation in Foxtail Millet. Crop J. 2023, 11, 1902–1911. [Google Scholar] [CrossRef]
- Nisar, N.; Li, L.; Lu, S.; Khin, N.C.; Pogson, B.J. Carotenoid Metabolism in Plants. Mol. Plant 2015, 8, 68–82. [Google Scholar] [CrossRef]
- Dhami, N.; Tissue, D.T.; Cazzonelli, C.I. Leaf-Age Dependent Response of Carotenoid Accumulation to Elevated CO2 in Arabidopsis. Arch. Biochem. Biophys. 2018, 647, 67–75. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Q.-Y.; Huang, L.-B.; Yang, M.-Y.; Cen, Y.-J.; Xu, C.-B.; Gao, X.-Y. Carotenoid Gene Expression and Metabolic Changes in the Pericarp of Mandarin ‘Shatangju’ under Net Shed Shading during Growth. J. Food Compos. Anal. 2024, 126, 105862. [Google Scholar] [CrossRef]
- Li, C. Recent Progress in Understanding Starch Gelatinization—An Important Property Determining Food Quality. Carbohydr. Polym. 2022, 293, 119735. [Google Scholar] [CrossRef]
- Kong, X.; Zhu, P.; Sui, Z.; Bao, J. Physicochemical Properties of Starches from Diverse Rice Cultivars Varying in Apparent Amylose Content and Gelatinisation Temperature Combinations. Food Chem. 2015, 172, 433–440. [Google Scholar] [CrossRef]
- Li, C.; Hu, Y.; Li, E. Effects of Amylose and Amylopectin Chain-Length Distribution on the Kinetics of Long-Term Rice Starch Retrogradation. Food Hydrocoll. 2021, 111, 106239. [Google Scholar] [CrossRef]
- Zhou, T.Y.; Li, Z.K.; Li, E.P.; Wang, W.L.; Yuan, L.M.; Zhang, H.; Liu, L.J.; Wang, Z.Q.; Gu, J.F.; Yang, J.C. Optimization of Nitrogen Fertilization Improves Rice Quality by Affecting the Structure and Physicochemical Properties of Starch at High Yield Levels. J. Integr. Agric. 2022, 21, 1576–1592. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, G.; Chen, L.; Zhang, W.; Wang, X.; Pan, K.; Li, L.; Wang, J.; Liu, J.; Cao, C.; et al. Different Nitrogen Fertilizer Application in the Field Affects the Morphology and Structure of Protein and Starch in Rice during Cooking. Food Res. Int. 2023, 163, 112193. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wu, G.; Cheng, L.; Zhang, H.; Wang, L.; Qian, H.; Qi, X. Investigation on Molecular and Morphology Changes of Protein and Starch in Rice Kernel during Cooking. Food Chem. 2020, 316, 126262. [Google Scholar] [CrossRef] [PubMed]
- Thiex, N. Evaluation of Analytical Methods for the Determination of Moisture, Crude Protein, Crude Fat, and Crude Fiber in Distillers Dried Grains with Solubles. J. AOAC Int. 2009, 92, 61–73. [Google Scholar] [CrossRef]
- Goudar, G.; Manne, M.; Sathisha, G.J.; Sharma, P.; Mokalla, T.R.; Kumar, S.B.; Ziouzenkova, O. Phenolic, Nutritional and Molecular Interaction Study among Different Millet Varieties. Food Chem. Adv. 2023, 2, 100150. [Google Scholar] [CrossRef]
- Li, S.; Zhao, W.; Liu, S.; Li, P.; Zhang, A.; Zhang, J.; Wang, Y.; Liu, Y.; Liu, J. Characterization of Nutritional Properties and Aroma Compounds in Different Colored Kernel Varieties of Foxtail Millet (Setaria italica). J. Cereal Sci. 2021, 100, 103248. [Google Scholar] [CrossRef]
Treatment | Plant Height/cm | Spike Length/cm | Stem Thickness/mm | Spike Weight/g | Grain Weight/g |
---|---|---|---|---|---|
JCK | 146.11 ± 3.27 c | 20.63 ± 0.94 a | 7.11 ± 0.43 abc | 14.75 ± 1.25 a | 13.48 ± 1.82 ab |
JN | 158.78 ± 0.38 d | 22.56 ± 0.25 ab | 8.10 ± 0.34 c | 19.31 ± 1.64 abc | 15.75 ± 0.39 b |
JS | 150.78 ± 0.84 c | 23.11 ± 1.26 ab | 7.64 ± 0.65 bc | 22.76 ± 2.80 c | 16.79 ± 1.27 b |
JC | 161.89 ± 1.02 d | 22.72 ± 0.54 ab | 7.56 ± 1.05 bc | 17.49 ± 0.39 ab | 13.66 ± 1.10 ab |
JP | 149.70 ± 3.79 c | 21.59 ± 0.80 ab | 7.51 ± 0.90 abc | 18.60 ± 2.02 abc | 14.47 ± 1.58 ab |
ZCK | 108.78 ± 3.34 a | 23.11 ± 2.01 ab | 6.83 ± 0.33 ab | 18.19 ± 2.73 abc | 14.52 ± 2.02 ab |
ZN | 114.33 ± 2.96 b | 23.78 ± 2.55 b | 7.44 ± 0.53 abc | 21.65 ± 4.33 bc | 16.91 ± 3.39 ab |
ZS | 109.67 ± 3.93 ab | 21.72 ± 2.86 ab | 6.40 ± 0.84 a | 17.32 ± 1.69 ab | 14.27 ± 0.87 ab |
ZC | 114.67 ± 1.53 b | 22.22 ± 1.17 ab | 7.08 ± 0.34 abc | 17.00 ± 4.06 ab | 13.10 ± 2.27 a |
ZP | 108.33 ± 5.36 a | 23.22 ± 0.69 ab | 6.60 ± 0.24 ab | 17.88 ± 1.05 ab | 14.46 ± 1.26 ab |
Variety | 0.000 ** | 0.159 | 0.082 * | 0.745 | 0.968 |
Treatment | 0.488 | 0.601 | 0.971 | 0.333 | 0.838 |
Amino Acid | JCK | JC | JN | JP | JS | ZCK | ZC | ZN | ZP | ZS | |
---|---|---|---|---|---|---|---|---|---|---|---|
EAA/(%) Essential amino acids | Thr | 0.36 b | 0.36 b | 0.37 a | 0.35 c | 0.34 d | 0.34 d | 0.35 c | 0.37 a | 0.33 e | 0.36 b |
Val | 0.43 d | 0.44 cd | 0.46 b | 0.43 e | 0.41 f | 0.42 e | 0.44 d | 0.47 a | 0.41 f | 0.45 c | |
Trp | 0.09 bc | 0.09 bc | 0.09 b | 0.09 cd | 0.08 d | 0.09 b | 0.10 a | 0.11 a | 0.09 bc | 0.10 a | |
Lys | 0.19 b | 0.18 bc | 0.21 a | 0.19 b | 0.19 b | 0.18 c | 0.18 bc | 0.18 bc | 0.17 c | 0.18 bc | |
Phe | 0.52 c | 0.54 b | 0.55 a | 0.52 cd | 0.50 ef | 0.50 f | 0.51 def | 0.54 ab | 0.47 g | 0.52 cde | |
Ile | 0.34 cd | 0.34 b | 0.35 a | 0.33 d | 0.32 e | 0.32 e | 0.33 d | 0.36 a | 0.31 f | 0.34 bc | |
Met | 0.26 b | 0.26 b | 0.27 a | 0.25 cd | 0.25 d | 0.25 cd | 0.26 c | 0.27 a | 0.24 e | 0.26 b | |
NEAA/(%) Non-essential amino acids | Arg | 0.36 b | 0.36 b | 0.38 a | 0.36 bc | 0.35 bc | 0.33 ef | 0.34 de | 0.35 bc | 0.32 f | 0.34 cd |
His | 0.20 bc | 0.20 b | 0.21 a | 0.20 c | 0.19 d | 0.19 d | 0.20 c | 0.21 a | 0.18 e | 0.20 bc | |
Asp | 0.69 c | 0.70 b | 0.73 a | 0.68 c | 0.66 d | 0.66 d | 0.69 c | 0.73 a | 0.64 e | 0.69 bc | |
Cys | 0.15 ef | 0.16 cd | 0.16 d | 0.15 ef | 0.15 f | 0.16 bcd | 0.17 bc | 0.18 a | 0.16 de | 0.17 b | |
Glu | 1.81 c | 1.85 bc | 1.89 b | 1.77 de | 1.71 f | 1.75 ef | 1.81 cd | 1.95 a | 1.66 g | 1.85 bc | |
Gly | 0.27 b | 0.27 b | 0.29 a | 0.27 bc | 0.26 cd | 0.26 d | 0.26 cd | 0.27 b | 0.25 e | 0.27 bc | |
Pro | 0.66 bcd | 0.68 ab | 0.69 a | 0.65 cde | 0.64 de | 0.60 g | 0.61 fg | 0.67 bc | 0.57 h | 0.63 ef | |
Ser | 0.41 d | 0.42 bc | 0.43 b | 0.40 e | 0.39 f | 0.41 de | 0.42 c | 0.45 a | 0.39 f | 0.43 b | |
EAA | 2.19 bc | 2.21 b | 2.30 a | 2.16 d | 2.09 e | 2.10 e | 2.17 cd | 2.30 a | 2.02 f | 2.21 b | |
NEAA | 4.55 bcd | 4.64 b | 4.78 a | 4.48 d | 4.35 e | 4.36 e | 4.50 cd | 4.81 a | 4.17 f | 4.58 bc | |
TAA Total amino acids | 6.74 bcd | 6.85 b | 7.08 a | 6.64 d | 6.44 e | 6.46 e | 6.67 cd | 7.11 a | 6.19 f | 6.79 bc |
Month | Precipitation (mm) | Temperature (°C) | Mean Relative Humidity (%) | Average Wind Speed (m/s) | Duration of Daylight (h) | ||
---|---|---|---|---|---|---|---|
Average | Highest | Lowest | |||||
5 | 7.2 | 18.7 | 35.3 | 4.0 | 32 | 3.7 | 370.8 |
6 | 65.1 | 23.5 | 36.7 | 11.8 | 41 | 3.1 | 353.2 |
7 | 85.4 | 22.9 | 34.2 | 12.7 | 63 | 2.7 | 346.5 |
8 | 139.0 | 21.3 | 32.9 | 12.4 | 71 | 2.3 | 257.0 |
9 | 58.4 | 15.9 | 27.7 | 3.7 | 66 | 1.9 | 243.5 |
10 | 7.4 | 7.8 | 20.7 | −5.2 | 47 | 2.2 | 259.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, T.; Wang, S.; Wang, M.; Mao, J.; Xu, Y.; Ren, J.; Liu, Y.; Liu, S.; Qiao, Z.; Cao, X. Effect of Different Fertilizer Types on Quality of Foxtail Millet under Low Nitrogen Conditions. Plants 2024, 13, 1830. https://doi.org/10.3390/plants13131830
Zheng T, Wang S, Wang M, Mao J, Xu Y, Ren J, Liu Y, Liu S, Qiao Z, Cao X. Effect of Different Fertilizer Types on Quality of Foxtail Millet under Low Nitrogen Conditions. Plants. 2024; 13(13):1830. https://doi.org/10.3390/plants13131830
Chicago/Turabian StyleZheng, Tingting, Shu Wang, Mengyao Wang, Jiao Mao, Yuanmeng Xu, Jiangling Ren, Yuhan Liu, Sichen Liu, Zhijun Qiao, and Xiaoning Cao. 2024. "Effect of Different Fertilizer Types on Quality of Foxtail Millet under Low Nitrogen Conditions" Plants 13, no. 13: 1830. https://doi.org/10.3390/plants13131830
APA StyleZheng, T., Wang, S., Wang, M., Mao, J., Xu, Y., Ren, J., Liu, Y., Liu, S., Qiao, Z., & Cao, X. (2024). Effect of Different Fertilizer Types on Quality of Foxtail Millet under Low Nitrogen Conditions. Plants, 13(13), 1830. https://doi.org/10.3390/plants13131830