Optimal Plant Density Is Key for Maximizing Maize Yield in Calcareous Soil of the South Pannonian Basin
Abstract
:1. Introduction
2. Results
Grain Yield and Grain Moisture
3. Discussion
4. Materials and Methods
4.1. Overview of Experimental Site Description
4.2. Agronomic Management
4.3. Climatic Data
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duvick, N.D. The Contribution of Breeding to Yield Advances in maize (Zea mays L.). Adv. Agron. 2005, 86, 83–145. [Google Scholar] [CrossRef]
- Bavec, F.; Bavec, M. Effect of plant population on leaf area index, cob characteristics and grain yield of early maturing maize cultivar (FAO–100–400). Eur. J. Agron. 2002, 16, 151–159. [Google Scholar] [CrossRef]
- Sangoi, L. Understanding plant density effects on maize growth and development: An important issue to maximize grain yield. Ci. Rur. 2001, 31, 159–168. [Google Scholar] [CrossRef]
- Assefa, Y.; Prasad, P.V.V.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Paszkiewicz, S.; Ciampitti, A.I. A New Insight into Corn Yield: Trends from 1987 through 2015. Crop Sci. 2017, 57, 2799–2811. [Google Scholar] [CrossRef]
- Williams, T.R.; Hallauer, A.R. Genetic diversity among maize hybrids. Maydica 2000, 45, 163–171. [Google Scholar]
- Farnham, D.E. Row spacing, plant density and hybrid effects on corn grain yield and moisture. Agron. J. 2001, 93, 1049–1053. [Google Scholar] [CrossRef]
- Djalovic, I.; Prasad, P.V.V.; Akhtar, K.; Paunović, A.; Riaz, M.; Dugalic, M.; Katanski, S.; Zaheer, S. Nitrogen Fertilization and Cultivar Interactions Determine Maize Yield and Grain Mineral Composition in Calcareous Soil under Semiarid Conditions. Plants 2024, 13, 844. [Google Scholar] [CrossRef] [PubMed]
- Șimon, A.; Moraru, P.I.; Ceclan, A.; Russu, F.; Chețan, F.; Bărdaș, M.; Popa, A.; Rusu, T.; Pop, A.I.; Bogdan, I. The Impact of Climatic Factors on the Development Stages of Maize Crop in the Transylvanian Plain. Agronomy 2023, 13, 1612. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Yearbook; FAO: Rome, Italy, 2023. [Google Scholar]
- Mansfield, B.D.; Mumm, R.H. Survey of plant density tolerance in U.S. maize germplasm. Crop Sci. 2014, 54, 157–173. [Google Scholar] [CrossRef]
- Berzsenyi, Z.; Tokatlidis, I.S. Density-dependence rather maturity deter-mines hybrid selection in dryland maize production. Agron. J. 2012, 104, 331–336. [Google Scholar] [CrossRef]
- Luetchens, J.; Lorena, A.J. Changes in dynamic leaf traits in maize associated with year of hybrid release. Crop Sci. 2018, 58, 551–563. [Google Scholar] [CrossRef]
- Wang, K.; Wang, K.R.; Wang, Y.H.; Zhao, J.; Zhao, R.L.; Wang, X.M.; Li, J.; Liang, M.X.; Li, S.K. Effects of density on maize yield and yield components. Sci. Agric. Sin. 2012, 45, 3437–3445. [Google Scholar] [CrossRef]
- Tollenaar, M. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Sci. 1989, 29, 1365–1371. [Google Scholar] [CrossRef]
- Cox, W.J. Whole-plant physiological and yield responses of maize to plant density. Agron. J. 1996, 88, 489–496. [Google Scholar] [CrossRef]
- Luque, S.F.; Cirilo, A.G.; Otegui, M.E. Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids. Field Crop. Res. 2006, 95, 383–397. [Google Scholar] [CrossRef]
- Cao, Y.; Zhong, Z.; Wang, H.; Shen, R. Leaf angle: A target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnol. J. 2022, 20, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Tollenaar, M. Is low plant density a stress in maize? Maydica 1992, 37, 305–311. [Google Scholar]
- Gonzalez, V.H.; Tollenaar, M.; Bowman, A.; Good, B.; Lee, E.A. Maize yield potential and density tolerance. Crop Sci. 2018, 58, 472–485. [Google Scholar] [CrossRef]
- Borras, L.; Maddonni, G.A.; Otegui, M.E. Leaf senescence in maize hybrids: Plant population: Row spacing and kernel set effects. Field Crop. Res. 2003, 82, 13–26. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Vyn, T.J. Physiological perspective of changes over time in maize grain yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crop. Res. 2012, 13, 48–67. [Google Scholar] [CrossRef]
- Rizzo, G.; Monzon, J.P.; Tenorio, F.A.; Howard, R.; Cassman, K.G.; Grassini, P. Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. Proc. Natl. Acad. Sci. USA 2022, 119, e2113629119. [Google Scholar] [CrossRef] [PubMed]
- Widdicombe, W.D.; Thelen, K.D. Row width and plant density effects on corn grain production in the Northern Corn Belt. Agron. J. 2002, 94, 1020. [Google Scholar] [CrossRef]
- Jafari, F.; Wang, B.; Wang, H.; Zou, J. Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond. J. Integr. Plant Biol. 2024, 66, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Jia, Q.; Li, J.; Zhang, P.; Ren, X.; Jia, Z. Increased photosynthesis and grain yields in maize grown with less irrigation water combined with density adjustment in semiarid regions. PeerJ 2020, 8, e9959. [Google Scholar] [CrossRef]
- Edwards, T.J.; Purcell, C.L.; Vories, D.E. Light interception and yield potential of short season maize (Zea mays L.) hybrids in the mid south. Agron. J. 2005, 97, 225–234. [Google Scholar] [CrossRef]
- Dehdashti, S.M.; Riahinia, S. Effect of plant density on some growth indexes, radiation interception and grain yield in maize (Zea mays L.). J. Biol. Sci. 2008, 8, 908–913. [Google Scholar] [CrossRef]
- Saberali, F.S.; Baghestani, A.M.; Zand, E. Influence of plant density and planting pattern of corn on its growth and yield under competition with common Lambesquarters (Chenopodium album L.). Pajouhesh and Sazandegi. Weed Biol. Manag. 2007, 74, 143–152. [Google Scholar] [CrossRef]
- Valentinuz, O.; Barbagelata, P.; Paparotti, O. Row spacing in maize (Zea mays L.) hybrids with different plant structure. Rev. Cient. Agroprcuaria 2003, 7, 7–11. [Google Scholar]
- Kim, K.H.; Lee, B.M. Effects of Climate Change and Drought Tolerance on Maize Growth. Plants 2023, 12, 3548. [Google Scholar] [CrossRef]
- Mandić, V.; Đorđević, S.; Brankov, M.; Živković, V.; Lazarević, M.; Keškić, T.; Krnjaja, V. Response of Yield Formation of Maize Hybrids to Different Planting Densities. Agriculture 2024, 14, 351. [Google Scholar] [CrossRef]
- Esechie, H.A.; Rodriguez, V.; Al-Asmi, H. Comparison of local and exotic maize varieties for stalk lodging components in a desert climate. Eur. J. Agron. 2004, 21, 21–30. [Google Scholar] [CrossRef]
- Ma, D.L.; Xie, R.Z.; Liu, X.; Niu, X.K.; Hou, P.; Wang, K.R.; Lu, Y.L.; Li, S.K. Lodging-related stalk characteristics of maize varieties in China since the 1950s. Crop Sci. 2014, 54, 2805–2814. [Google Scholar] [CrossRef]
- Robertson, D.J.; Julias, M.; Gardunia, B.W.; Barten, T.; Cook, D.D. Corn stalk lodging: A forensic engineering approach provides insights into failure patterns and mechanisms. Crop Sci. 2015, 55, 2833–2841. [Google Scholar] [CrossRef]
- Sekhon, R.S.; Joyner, C.N.; Ackerman, A.J.; McMahan, C.S.; Robertson, D.J. Stalk bending strength is strongly associated with maize stalk lodging incidence across multiple environments. Field Crop. Res. 2020, 249, 107737. [Google Scholar] [CrossRef]
- Berry, P.M.; Sterling, M.J.H.; Spink, C.J.; Baker, R.; Sylvester-Bradley, S.J.; Mooney, A.R. Understanding and reducing lodging cereals. Adv. Agron. 2004, 84, 217–271. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Slafer, G.A.; Davies, W.J.; Berry, P.M.; Sylvester-Bradley, R.; Martre, P.; Calderini, D.F.; Griffiths, S.; Reynolds, M.P. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Bot. 2011, 62, 469–486. [Google Scholar] [CrossRef]
- Tollenaar, M.; Lee, E.A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica 2006, 51, 399–408. [Google Scholar]
- Tollenaar, M.; Ahmadzadeh, A.; Lee, A.E. Physiological basis for grain yield improvement in maize. Crop Sci. 2004, 44, 2086–2094. [Google Scholar] [CrossRef]
- Fasoula, V.A.; Tollenaar, M. The impact of plant population density on crop yield and response to selection in maize. Maydica 2005, 50, 39–48. [Google Scholar]
- Cardwell, V.B. Fifty years of Minnesota corn production: Sources of yield increase. Agron. J. 1982, 74, 984–990. [Google Scholar] [CrossRef]
- Assefa, Y.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Ciampitti, I.A. Analysis of Long Term Study Indicates Both Agronomic Optimal Plant Density and Increase Maize Yield per Plant Contributed to Yield Gain. Sci. Rep. 2018, 8, 4937. [Google Scholar] [CrossRef]
- Basso, B.; Ritchie, J. Temperature and drought effects on maize yield. Nat. Clim. Chang. 2014, 4, 233. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.-S.; Meng, Q.-F.; Hu, Y.-C.; Schmidhalter, U.; Zhong, C.-H.; Zou, G.-Y.; Chen, X.-P. Optimizing Agronomic, Environmental, Health and Economic Performances in Summer Maize Production through Fertilizer Nitrogen Management Strategies. Plants 2023, 12, 1490. [Google Scholar] [CrossRef]
- Grover, D.; Rai, L. Experimental Designing and Data Analysis in Agriculture and Biology; Agrotech Publishing Academy, Vinayak Complex B: Udafipur, India, 2010. [Google Scholar]
- Laffont, J.-L.; Hanafi, M.; Wright, K. Numerical and graphical measures to facilitate the interpretation of GGE biplots. Crop Sci. 2007, 47, 990–996. [Google Scholar] [CrossRef]
(a) | |||||
Source | Nparm | DFNum | DFDen | F Ratio | Prob > F |
Hybrid (H) | 23 | 23 | 1043.0 | 15.750 | <0.0001 ** |
Planting density (PD) | 3 | 3 | 1043.0 | 5.001 | 0.0019 ** |
Hybrid (H) × Planting density (PD) | 69 | 69 | 1043.0 | 0.707 | 0.9657 ns |
(b) | |||||
Source | Nparm | DFNum | DFDen | F Ratio | Prob > F |
Hybrid (H) | 23 | 23 | 1043.0 | 60.643688 | <0.0001 ** |
Planting density (PD) | 3 | 3 | 1043.0 | 0.8314738 | 0.4766 ns |
Hybrid (H) × Planting density (PD) | 69 | 69 | 1043.0 | 0.4710766 | 0.9999 ns |
Planting Density (PD) | GY (t ha−1) | Std Error | Lower 95% | Upper 95% |
---|---|---|---|---|
PD1 ab | 9.50 | 0.54 | 8.31 | 10.68 |
PD2 a | 9.65 | 0.54 | 8.46 | 10.83 |
PD3 a | 9.55 | 0.54 | 8.37 | 10.74 |
PD4 b | 9.23 | 0.54012569 | 8.05 | 10.42 |
Parameter | GY (t ha−1) | Prob > Chi Square | Lower 95% | Upper 95% |
Intercept | 9.11 | <0.0001 ** | 9.08 | 9.14 |
Slope | 0.50 | <0.0001 ** | 0.48 | 0.53 |
Quadratic | −0.12 | <0.0001 ** | −0.12 | −0.11 |
FAO Group | Parameter | Estimate | Prob > Chi Square | Lower 95% | Upper 95% |
---|---|---|---|---|---|
Intercept | 8.8280847 | <0.0001 ** | 8.4373621 | 9.2188072 | |
FAO 200 | Slope | 0.188511 | 0.2999 ns | −0.167938 | 0.5449601 |
Quadratic | −0.074503 | 0.0375 * | −0.144679 | −0.004327 | |
Intercept | 8.9275037 | <0.0001 ** | 8.5894006 | 9.2656069 | |
FAO 300 | Slope | 0.3469867 | 0.0275 * | 0.0385414 | 0.6554321 |
Quadratic | −0.093034 | 0.0027 ** | −0.153759 | −0.032309 | |
Intercept | 9.4059601 | <0.0001 ** | 8.955744 | 9.8561762 | |
FAO 400 | Slope | 0.6707859 | 0.0014 ** | 0.2600619 | 1.0815098 |
Quadratic | −0.142305 | 0.0006 ** | −0.223167 | −0.061444 | |
Intercept | 8.4767842 | <0.0001 ** | 8.317291 | 8.6362773 | |
FAO 500 | Slope | 0.6502111 | <0.0001 ** | 0.5047084 | 0.7957137 |
Quadratic | −0.149373 | <0.0001 ** | −0.178019 | −0.120728 | |
Intercept | 9.5357623 | <0.0001** | 9.0404337 | 10.031091 | |
FAO 600 | Slope | 0.3188509 | 0.1667 ns | −0.133028 | 0.7707301 |
Quadratic | −0.084217 | 0.0635 ns | −0.173181 | 0.0047464 |
Experimental Sites | Geographic Coordinates | Sowing Date | Hybrid | Plant Density (Plants ha−1) | Soil Type |
---|---|---|---|---|---|
Rimski Šančevi | 45°19′44.3″ N 19°49′40.7″ E | 14 April | 24 hybrids (H1–H24) FAO 200 (H1) FAO 300 (H2–H3) FAO 400 (H4–H9) FAO 500 (H10–H16) FAO 600 (H17–H24) | PD1: 55,000 PD2: 65,000 PD3: 75,000 PD4: 85,000 | Chernozem |
Srbobran | 45°31′59″ N 19°47′34″ E | 21 April | 24 hybrids (H1–H24) FAO 200 (H1) FAO 300 (H2–H3) FAO 400 (H4–H9) FAO 500 (H10–H16) FAO 600 (H17–H24) | PD1: 55,000 PD2: 65,000 PD3: 75,000 PD4: 85,000 | Chernozem |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djalovic, I.; Prasad, P.V.V.; Dunđerski, D.; Katanski, S.; Latković, D.; Kolarić, L. Optimal Plant Density Is Key for Maximizing Maize Yield in Calcareous Soil of the South Pannonian Basin. Plants 2024, 13, 1799. https://doi.org/10.3390/plants13131799
Djalovic I, Prasad PVV, Dunđerski D, Katanski S, Latković D, Kolarić L. Optimal Plant Density Is Key for Maximizing Maize Yield in Calcareous Soil of the South Pannonian Basin. Plants. 2024; 13(13):1799. https://doi.org/10.3390/plants13131799
Chicago/Turabian StyleDjalovic, Ivica, P. V. Vara Prasad, Dušan Dunđerski, Snežana Katanski, Dragana Latković, and Ljubiša Kolarić. 2024. "Optimal Plant Density Is Key for Maximizing Maize Yield in Calcareous Soil of the South Pannonian Basin" Plants 13, no. 13: 1799. https://doi.org/10.3390/plants13131799
APA StyleDjalovic, I., Prasad, P. V. V., Dunđerski, D., Katanski, S., Latković, D., & Kolarić, L. (2024). Optimal Plant Density Is Key for Maximizing Maize Yield in Calcareous Soil of the South Pannonian Basin. Plants, 13(13), 1799. https://doi.org/10.3390/plants13131799