Differential Effects of Nitrogen and Phosphorus Fertilization Rates and Fertilizer Placement Methods on P Accumulations in Maize
Abstract
:1. Introduction
2. Results
2.1. Leaf P Concentration and Accumulation
2.1.1. Leaf P Concentration
2.1.2. Leaf P Accumulation
2.2. Stem P Concentration and Accumulation
2.2.1. Stem P Concentration
2.2.2. Stem P Accumulation
2.3. Root P Concentration and Accumulation
2.3.1. Root P Concentration
2.3.2. Root P Accumulation
2.4. Seed P Concentration and Accumulation
2.4.1. Seed P Concentration
2.4.2. Seed P Accumulation
2.5. Total plant P Accumulation
2.6. Total Soil P Concentration
2.7. Olsen-P
2.8. Phosphorus Use Efficiency
2.9. Relationships between Plant Tissue P Accumulations and Concentrations or between Tissue P Concentrations or Accumulations and Soil Olsen-P Concentrations
3. Discussions
3.1. Greater P Concentration under Deep Band
3.2. Greater Soil Total P and Olsen-P Concentrations under Deep Band
3.3. Greater P Accumulation and Yield Production under Deep Band
3.4. Greater P Use Efficiency under Deep Band
3.5. Variations in Relationships between Concentrations of Tissue P, Soil P, and Plant P Accumulations
4. Materials and Methods
4.1. Study Site and Plant Materials
4.2. Experimental Design and Treatments
4.3. Harvesting and Phosphorus Variables Determination
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, F.; Siddique, A.B.; Shabala, S.; Zhou, M.; Zhao, C. Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants 2023, 12, 2861. [Google Scholar] [CrossRef] [PubMed]
- Santoro, V.; Schiavon, M.; Celi, L. Role of soil abiotic processes on phosphorus availability and plant responses with a focus on strigolactones in tomato plants. Plant Soil 2023, 494, 1–49. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, W.; Ji, Y.; Fan, M.; Oenema, O.; Zhang, F. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr. Cycl. Agroecosyst. 2008, 80, 131–144. [Google Scholar] [CrossRef]
- Fageria, N.K. The Use of Nutrients in Crop Plants; CRC Press Taylor & Francis Group: New York, NY, USA, 2009; pp. 91–95. [Google Scholar]
- International Fertilizer Association (IFA). Nutrient Management Handbook, 1st ed.; World Farmer’s Association and International Fertilizer Association: Paris, France, 2016; pp. 1–44. [Google Scholar]
- Heffer, P.; Gruère, A.; Roberts, T. Assessment of Fertilizer Use by Crop at the Global Level; International Fertilizer Industry Association: Paris, France, 2017; pp. 1–18. [Google Scholar]
- Solaimalai, A.; Anantharaju, P.; Irulandi, S.; Theradimani, M. Maize Crop, Improvement, Production, Protection and Post Harvest Technology; CRC Press: New York, NY, USA, 2020; pp. 165–189. [Google Scholar]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Müller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Szulc, P.; Wilczewska, W.; Ambroży-Deręgowska, K.; Mejza, I.; Szymanowska, D.; Kobus-Cisowska, J. Influence of the depth of nitrogen-phosphorus fertiliser placement in soil on maize yielding. Plant Soil Environ. 2020, 66, 14–21. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Jones, C.A. Growth and Mineral Nutrition of Field Crops, 3rd ed.; CRC Press Taylor & Francis Group: New York, NY, USA, 2011; pp. 313–343. [Google Scholar]
- Zhang, W.; Chen, X.X.; Liu, Y.M.; Liu, D.Y.; Du, Y.F.; Chen, X.P.; Zou, C.Q. The role of phosphorus supply in maximizing the leaf area, photosynthetic rate, coordinated to grain yield of summer maize. Field Crops Res. 2018, 219, 113–119. [Google Scholar] [CrossRef]
- Sanchez, C.A. Phosphorus. In Handbook of Plant Nutrition; Barker, A.V., Pilbeam, D.J., Eds.; CRC Taylor and Francis: New York, NY, USA, 2007; pp. 51–82. [Google Scholar]
- Ziadi, N.; Whalen, J.K.; Messiga, A.J.; Morel, C. Assessment and Modeling of Soil Available Phosphorus in Sustainable Cropping Systems. In Advance in Agronomy; Donald, L., Ed.; Academic Press: Burlington, VT, USA, 2013; Volume 122, pp. 85–126. [Google Scholar]
- Hopkins, B.G. Phosphorus. In Handbook of Plant Nutrition, 2nd ed.; Barker, A.V., Pilbeam, D.J., Eds.; CRC Press: New York, NY, USA, 2015; pp. 66–111. [Google Scholar]
- FAOSTAT. Production—Crops and Livestock Products (Afghanistan, Production or Area Harvested, Maize (Corn)). Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 9 December 2023).
- FAOSTAT. Land, Inputs and Sustainability—Fertilizers by Nutrient (Afghanistan or World Agriculture Use, Nutrient Nitrogen N, Total). Available online: https://www.fao.org/faostat/en/#data (accessed on 6 August 2023).
- Obaid, H.; Shivay, Y.S.; Jat, S.L.; Sharifi, S. Optimization of nitrogen and phosphorus fertilizers doses in hybrid maize (Zea mays) in Kandahar province of Afghanistan. Indian J. Agron. 2018, 63, 521–523. [Google Scholar]
- Elham, H.; Zhou, J.; Diallo, M.F.; Ahmad, S.; Zhou, D. Economic Analysis of Smallholder Maize Producers: Empirical Evidence From Helmand, Afghanistan. J. Agric. Sci. 2020, 12, 153–164. [Google Scholar] [CrossRef]
- Sharma, R. Sustainable Wheat and Maize Production in Afghanistan-Final Report; Australian Centre for International Agricultural Research (ACIAR): Brisbane, Australia, 2019; pp. 1–61. [Google Scholar]
- Smith, D.R.; Harmel, R.D.; Williams, M.; Haney, R.; King, K.W. Managing Acute Phosphorus Loss with Fertilizer Source and Placement: Proof of Concept. Agric. Environ. Lett. 2016, 1, 150015. [Google Scholar] [CrossRef]
- Kraska, P.; Andruszczak, S.; Gierasimiuk, P.; Rusecki, H. The Effect of Subsurface Placement of Mineral Fertilizer on Some Soil Properties under Reduced Tillage Soybean Cultivation. Agronomy 2021, 11, 859. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S.; Majumdar, K.; Prasad, S. Phosphorus Management. In Soil Phosphorus; Lal, R.N., Stewart, B.A., Eds.; CRC Press: New York, NY, USA, 2017; pp. 82–102. [Google Scholar]
- Freiling, M.; Tucher, S.V.; Schmidhalter, U. Factors influencing phosphorus placement and effects on yield and yield parameters: A meta-analysis. Soil Tillage Res. 2022, 216, 105257. [Google Scholar] [CrossRef]
- Hou, K.; Zhang, L.; Liu, P.; He, S.; Rong, X.; Peng, J.; Zhang, Y.; Tian, C.; Han, Y. Side-Deep Fertilization Stabilizes Double-Cropping Rice Yield, Increases N and P Utilization, and Reduces N and P Losses. Land 2023, 12, 724. [Google Scholar] [CrossRef]
- Li, H.; Huang, G.; Meng, Q.; Ma, L.; Yuan, L.; Wang, F.; Zhang, W.; Cui, Z.; Shen, J.; Chen, X.; et al. Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant Soil 2011, 349, 157–167. [Google Scholar] [CrossRef]
- Barbieri, P.A.; Rozas, H.R.S.; Covacevich, F.; Echeverría, H.E. Phosphorus Placement Effects on Phosphorous Recovery Efficiency and Grain Yield of Wheat under No-Tillage in the Humid Pampas of Argentina. Int. J. Agron. 2014, 2014, 12. [Google Scholar] [CrossRef]
- Preston, C.L.; Diaz, D.A.R.; Mengel, D.B. Corn response to long-term phosphorus fertilizer application rate and placement with strip-tillage. Agron. J. 2019, 111, 841–850. [Google Scholar] [CrossRef]
- Jing, J.; Ruia, Y.; Zhanga, F.; Rengelb, Z.; Shena, J. Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crops Res. 2010, 119, 355–364. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Grosso, S.J.D. Nitrogen Placement and Source Eff ects on Nitrous Oxide Emissions and Yields of Irrigated Corn. J. Environ. Qual. 2013, 42, 312–322. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, F.; Rengel, Z.; Shen, J. Localized application of NH4 +-N plus P at the seedling and later growth stages enhances nutrient uptake and maize yield by inducing lateral root proliferation. Plant Soil 2013, 372, 65–80. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Barraco, M.; Dignani, D.; Sanchez, H.; Bono, A.; Vallone, P.; Gerster, G.; Galarza, C.; Montoya, J.; Gudelj, V.J. Plant stand, nodulation and seed yield in soybean as affected by phosphate fertilizer placement, source and application method. Eur. J. Agron. 2013, 51, 25–33. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, X.; Li, H.; Li, H.; Zhang, F.; Rengel, Z.; Shena, J. Comparing localized application of different N fertilizer species on maize grain yield and agronomic N-use efficiency on a calcareous soil. Field Crops Res. 2015, 180, 72–79. [Google Scholar] [CrossRef]
- Shapiro, C.; Attia, A.; Ulloa, S.; Mainz, M. Use of Five Nitrogen Source and Placement Systems for Improved Nitrogen Management of Irrigated Corn. Soil Sci. Soc. Am. J. 2016, 80, 1663–1674. [Google Scholar] [CrossRef]
- Santos, V.R.d.; Soltangheisi, A.; Franco, H.C.J.; Kolln, O.; Vitti, A.C.; Dias, C.T.d.S.; Pavinato, P.S. Phosphate sources and their placement affecting soil phosphorus pools in sugarcane. Agronomy 2018, 8, 283. [Google Scholar] [CrossRef]
- Grant, C.A.; Flaten, D.N. 4R Management of Phosphorus Fertilizer in the Northern Great Plains. J. Environ. Qual. 2019, 48, 1356–1369. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, M.J.; McBeath, T.M.; Smernik, R.; Stacey, S.P.; Ajiboye, B.; Guppy, C. The chemical nature of P accumulation in agricultural soils—Implications for fertiliser management and design: An Australian perspective. Plant Soil 2011, 349, 69–87. [Google Scholar] [CrossRef]
- Singh, D.K.; Sale, P.W.G.; Routley, R.R. Increasing phosphorus supply in subsurface soil in northern Australia: Rationale for deep placement and the effects with various crops. Plant Soil 2005, 269, 35–44. [Google Scholar] [CrossRef]
- Rose, T.J.; Rengel, Z.; Ma, Q.; Bowden, J.W. Phosphorus accumulation by field-grown canola crops and the potential for deep phosphorus placement in a Mediterranean-type climate. Crop Pasture Sci. 2009, 60, 987–994. [Google Scholar] [CrossRef]
- Johnston, A.M.; Bruulsema, T.W. 4R Nutrient Stewardship for Improved Nutrient Use Efficiency. Procedia Eng. 2014, 83, 365–370. [Google Scholar] [CrossRef]
- Liu, P.; Yan, H.; Xu, S.; Lin, X.; Wang, W.; Wang, D. Moderately deep banding of phosphorus enhanced winter wheat yield by improving phosphorus availability, root spatial distribution, and growth. Soil Tillage Res. 2022, 220, 105388. [Google Scholar] [CrossRef]
- Sharifi, S.; Shi, S.; Dong, X.; Obaid, H.; He, X.; Gu, X. Variations in Nitrogen Accumulation and Use Efficiency in Maize Differentiate with Nitrogen and Phosphorus Rates and Contrasting Fertilizer Placement Methodologies. Plants 2023, 12, 3870. [Google Scholar] [CrossRef]
- Weligama, C.; Tang, C.; Sale, P.W.G.; Conyers, M.K.; Liu, D.L. Localised nitrate and phosphate application enhances root proliferation by wheat and maximises rhizosphere alkalisation in acid subsoil. Plant Soil 2008, 312, 101–115. [Google Scholar] [CrossRef]
- Jing, J.; Zhanga, F.; Rengelb, Z.; Shena, J. Localized fertilization with P plus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake. Field Crops Res. 2012, 133, 176–185. [Google Scholar] [CrossRef]
- Fageria, N.K.; He, Z.L.; Baligar, V.C. Phosphorus and the Environment. In Phosphorus Management in Crop Production; CRC Press: New York, NY, USA, 2017; pp. 211–230. [Google Scholar]
- Blandino, M.; Battisti, M.; Vanara, F.; Reyneri, A. The synergistic effect of nitrogen and phosphorus starter fertilization sub-surface banded at sowing on the early vigor, grain yield and quality of maize. Eur. J. Agron. 2022, 137, 126509. [Google Scholar] [CrossRef]
- Nadeem, M.; Mollier, A.; Vives, A.; Prud’Homme, L.; Niollet, S.; Pellerin, S. Effect of phosphorus nutrition and grain position within maize cob on grain phosphorus accumulation. Span. J. Agric. Res. 2014, 12, 486–491. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, I.; Muhammad, D.; Mussarat, M.; Shafi, M.I. Effect of Phosphorus Sources and their Levels on Spring Maize. Pak. J. Sci. Ind. Res. B Biol. Sci. 2019, 62, 8–14. [Google Scholar] [CrossRef]
- Rehim, A.; Farooq, M.; Ahmad, F.; Hussain, M. Band placement of phosphorus improves the phosphorus use efficiency and wheat productivity under different irrigation regimes. Int. J. Agric. Biol. 2012, 14, 27–733. [Google Scholar]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers, 8th ed.; Pearson India Education Services: New Delhi, India, 2017; pp. 369–430. [Google Scholar]
- Matar, A.E.; Brown, S.C. Effect of rate and method of phosphate placement on productivity of durum wheat in a Mediterranean climate. Fertil. Res. 1989, 20, 83–88. [Google Scholar] [CrossRef]
- Ortas, I.; Islam, K.R. Phosphorus Fertilization Impacts on Corn Yield and Soil Fertility. Commun. Soil Sci. Plant Anal. 2018, 49, 1684–1694. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.Z.; Mu, H.F.; Dang, T.H. Inorganic phosphorus fractions and phosphorus availability in a calcareous soil Receiving 21-year superphosphate application. Pedosphere 2010, 20, 304–310. [Google Scholar] [CrossRef]
- Malhi, S.S.; Zentner, R.P.; Heier, K. Banding increases effectiveness of fertilizer P for alfalfa production. Nutr. Cycl. Agroecosyst. 2001, 59, 1–11. [Google Scholar] [CrossRef]
- Edwards, C.L. Evaluation of Long-Term Phosphorus Fertilizer Placement, Rate, and Source, and Research in the U.S. Midwest. Ph.D. Thesis, Kansas State University Manhattan, Manhattan, KS, USA, 2017. [Google Scholar]
- Rafiullah; Khan, M.J.; Muhammad, D.; Fahad, S.; Adnan, M.; Wahid, F.; Alamri, S.; Khan, F.; Dawar, K.M.; Irshad, I.; et al. Phosphorus Nutrient Management through Synchronization of Application Methods and Rates in Wheat and Maize Crops. Plant 2020, 9, 1389. [Google Scholar] [CrossRef]
- Dhillon, J.; Torres, G.; Driver, E.; Figueiredo, B.; Raun, W.R. World Phosphorus Use Efficiency in Cereal Crops. Agron. J. 2017, 109, 1670–1677. [Google Scholar] [CrossRef]
- Hajabbasi, M.A.; Schumacher, T.E. Phosphorus effects on root growth and development in two maize genotypes. Plant Soil 1994, 158, 39–46. [Google Scholar] [CrossRef]
- Alam, M.K.; Bell, R.W.; Salahin, N.; Pathan, S.; Mondol, A.T.M.A.I.; Alam, M.J.; Rashid, M.H.; Paul, P.L.C.; Hossain, M.I.; Shil, N.C. Banding of fertilizer improves phosphorus acquisition and yield of zero tillage maize by concentrating phosphorus in surface soil. Sustainability 2018, 10, 3234. [Google Scholar] [CrossRef]
- Chen, X.; Liu, P.; Zhao, B.; Zhang, J.; Ren, B.; Li, Z.; Wang, Z. Root physiological adaptations that enhance the grain yield and nutrient use efficiency of maize (Zea mays L.) and their dependency on phosphorus placement depth. Field Crops Res. 2022, 276, 108378. [Google Scholar] [CrossRef]
- Jing, D.; Yan, Y.; Ren, T.; Lu, J.; Wang, X.; Chen, J.; Tan, W.; Liu, F.; Jaisi, D.P.; Feng, X. Effects of nitrogen application rate on phosphorus transformation in an Alfisol: Results from phosphate-oxygen isotope ratios. Appl. Geochem. 2021, 134, 105094. [Google Scholar] [CrossRef]
- Fan, Y.; Zhong, X.; Lin, F.; Liu, C.; Yang, L.; Wang, M.; Chen, G.; Chen, Y.; Yang, Y. Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots. Geoderma 2019, 337, 246–255. [Google Scholar] [CrossRef]
- Pasley, H.R.; Cairns, J.E.; Camberato, J.J.; Vyn, T.J. Nitrogen fertilizer rate increases plant uptake and soil availability of essential nutrients in continuous maize production in Kenya and Zimbabwe. Nutr. Cycl. Agroecosyst. 2019, 115, 373–389. [Google Scholar] [CrossRef]
- Roberts, T.L.; Johnston, A.E. Resources, Conservation and Recycling. Resour. Conserv. Recycl. 2015, 105, 275–281. [Google Scholar] [CrossRef]
- Hopkins, B.G.; Hansen, N.C. Phosphorus Management in High-Yield Systems. J. Environ. Qual. 2019, 48, 1265–1280. [Google Scholar] [CrossRef]
- Ejraei, A.; Ghehsareh, A.M.; Hodaji, M.; Besalatpor, A.A. Regression-based phosphorus recommendation model for Washington Navel. J. Plant Nutr. 2019, 42, 2189–2198. [Google Scholar] [CrossRef]
- Jarvis, R.J.; Bolland, M.D.A. Placing superphosphate at different depths in the soil changes its effectiveness for wheat and lupin production. Fertil. Res. 1990, 22, 97–107. [Google Scholar] [CrossRef]
- Ma, Q.; Sun, L.; Tian, H.; Rengel, Z.; Shen, J. Deep banding of phosphorus and nitrogen enhances Rosa multiflora growth and nutrient accumulation by improving root spatial distribution. Sci. Hortic. 2021, 2777, 109800. [Google Scholar] [CrossRef]
- FAO/UNESCO. Soil Map of The World, Revised Legend; World Soil Resources Report 60; FAO: Rome, Italy, 1990. [Google Scholar]
- Bao, S. Agricultural Chemical Analysis of Soil; China Agriculture Press: Beijing, China, 2005. [Google Scholar]
- Smith, B.F.L.; Bain, D.C. A sodium hydroxide fusion method for the determination of total phosphate in soils. Commun. Soil Sci. Plant Anal. 1982, 13, 185–190. [Google Scholar] [CrossRef]
- Olsen, S.R.; Coles, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circ 1954. No. 939; US Department of Agriculture: Madison, WI, USA, 1954. [Google Scholar]
NP Rate | Placement | PAE (kg kg−1) | PUE (%) | PFPP (kg kg−1 P) |
---|---|---|---|---|
N112P45 | Broadcast | 35.4 ± 9.2 (a,x,e) | 7.7 ± 1.3 (b,x,e) | 76.4 ± 5.4 (a,x,e) |
Side band | 34.3 ± 5.7 (a,x,e) | 8.0 ± 0.6 (a,x,e) | 63.9 ± 3.0 (a,y,e) | |
Deep band | 23.3 ± 6.0 (a,x,e) | 6.2 ± 1.0 (a,x,e) | 48.9 ± 2.8 (a,z,e) | |
N150P45 | Broadcast | 37.3 ± 4.8 (a,x,e) | 8.9 ± 1.1 (a,x,e) | 78.0 ± 4.4 (a,x,e) |
Side band | 38.5 ± 7.5 (a,x,e) | 11.3 ± 1.7 (a,x,e) | 81.3 ± 3.0 (a,x,e) | |
Deep band | 43.5 ± 9.1 (a,x,e) | 13.6 ± 1.9 (a,x,e) | 84.1 ± 5.9 (a,x,e) | |
N187P45 | Broadcast | 39.3 ± 8.2 (a,x,e) | 11.5 ± 1.7 (a,x,e) | 79.8 ± 4.6 (a,x,e) |
Side band | 42.3 ± 7.7 (a,x,e) | 13.6 ± 1.6 (a,x,e) | 84.5 ± 6.6 (a,x,e) | |
Deep band | 45.9 ± 7.5 (a,x,e) | 15.6 ± 1.4 (a,x,e) | 86.1 ± 3.2 (a,x,e) | |
N112P60 | Broadcast | 37.1 ± 7.2 (a,x,e) | 10.0 ± 1.4 (ab,x,f) | 80.1 ± 3.0 (a,x,e) |
Side band | 34.4 ± 7.8 (a,x,e) | 9.0 ± 1.4 (a,x,e) | 65.6 ± 3.4 (a,y,e) | |
Deep band | 25.9 ± 6.0 (a,x,f) | 7.8 ± 1.1 (a,x,f) | 51.0 ± 3.6 (a,z,f) | |
N150P60 | Broadcast | 36.2 ± 4.4 (a,x,e) | 9.1 ± 0.9 (a,y,ef) | 65.5 ± 3.9 (b,y,e) |
Side band | 38.3 ± 4.4 (a,x,e) | 10.7 ± 1.0 (a,y,e) | 69.0 ± 4.2 (b,xy,e) | |
Deep band | 49.5 ± 4.5 (a,x,ef) | 15.2 ± 1.2 (a,x,e) | 77.6 ± 3.2 (a,x,e) | |
N187P60 | Broadcast | 37.3 ± 3.5 (a,y,e) | 10.3 ± 0.5 (a,y,e) | 66.5 ± 3.2 (b,y,e) |
Side band | 40.5 ± 5.4 (a,xy,e) | 12.5 ± 1.0 (a,y,e) | 70.9 ± 4.5 (a,xy,e) | |
Deep band | 51.5 ± 3.5 (a,x,e) | 17.0 ± 0.9 (a,x,e) | 79.2 ± 3.4 (a,x,e) | |
N112P75 | Broadcast | 41.7 ± 8.0 (a,x,e) | 11.7 ± 1.2 (a,x,e) | 82.5 ± 4.4 (a,x,e) |
Side band | 36.9 ± 5.6 (a,x,e) | 10.2 ± 1.2 (a,x,f) | 66.7 ± 3.1 (a,y,e) | |
Deep band | 31.4 ± 6.6 (a,x,e) | 9.1 ± 0.8 (a,x,f) | 53.5 ± 3.2 (a,z,f) | |
N150P75 | Broadcast | 25.2 ± 6.0 (a,y,e) | 7.6 ± 0.9 (a,z,e) | 50.5 ± 3.5 (c,y,e) |
Side band | 27.4 ± 2.5 (a,y,e) | 9.5 ± 0.4 (a,y,ef) | 52.3 ± 3.2 (c,y,e) | |
Deep band | 44.0 ± 3.0 (a,x,e) | 14.5 ± 0.5 (a,x,e) | 64.4 ± 3.2 (b,x,e) | |
N187P75 | Broadcast | 25.9 ± 4.1 (a,y,e) | 8.5 ± 1.0 (a,z,e) | 51.1 ± 2.8 (c,y,e) |
Side band | 31.0 ± 2.2 (a,y,e) | 10.8 ± 0.4 (a,y,e) | 55.4 ± 3.5 (b,y,e) | |
Deep band | 46.3 ± 4.6 (a,x,e) | 15.9 ± 0.4 (a,x,e) | 66.4 ± 3.9 (b,x,e) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharifi, S.; Shi, S.; Obaid, H.; Dong, X.; He, X. Differential Effects of Nitrogen and Phosphorus Fertilization Rates and Fertilizer Placement Methods on P Accumulations in Maize. Plants 2024, 13, 1778. https://doi.org/10.3390/plants13131778
Sharifi S, Shi S, Obaid H, Dong X, He X. Differential Effects of Nitrogen and Phosphorus Fertilization Rates and Fertilizer Placement Methods on P Accumulations in Maize. Plants. 2024; 13(13):1778. https://doi.org/10.3390/plants13131778
Chicago/Turabian StyleSharifi, Sharifullah, Songmei Shi, Hikmatullah Obaid, Xingshui Dong, and Xinhua He. 2024. "Differential Effects of Nitrogen and Phosphorus Fertilization Rates and Fertilizer Placement Methods on P Accumulations in Maize" Plants 13, no. 13: 1778. https://doi.org/10.3390/plants13131778
APA StyleSharifi, S., Shi, S., Obaid, H., Dong, X., & He, X. (2024). Differential Effects of Nitrogen and Phosphorus Fertilization Rates and Fertilizer Placement Methods on P Accumulations in Maize. Plants, 13(13), 1778. https://doi.org/10.3390/plants13131778