Growth Characteristics of Ramet System in Phyllostachys praecox Forest under Mulch Management
Abstract
:1. Introduction
2. Results
2.1. Underground Rhizome Morphology of Bamboo Ramet System
2.2. Underground Bud Bank of Bamboo Ramet System
2.3. Branching of Bamboo Ramet System
2.4. Branch Distribution of Ramet System
3. Discussion
3.1. Existence Form of Bamboo Ramet System
3.2. Reduction and Expansion of Bamboo Ramet System
3.3. Renewing and Moving of Bamboo Ramet System
4. Materials and Methods
4.1. Investigation Location
4.2. Data Investigation and Analysis
4.2.1. Method of Tracking Bamboo Rhizomes through Bamboo Standings
4.2.2. Investigation of Bamboo Rhizome Morphology and Bud Bank
4.2.3. Branching Investigation of the Ramet System
4.2.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dlamini, L.C.; Fakudze, S.; Makombe, G.G.; Muse, S.; Zhu, J. Bamboo as a valuable resource and its utilization in historical and modern-day China. BioResources 2022, 1, 1926. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.; Li, Y.; Yang, J.; Yang, H.; Zhao, Y.; Chen, G. Bamboo shoot and its food applications in last decade: An undervalued edible resource from forest to feed future people. Trends Food Sci. Technol. 2024, 146, 104399. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, X.; Cai, Y.; Shao, Q.; Zhu, W.; Lin, X. Combined intensive management of fertilization, tillage, and organic material mulching regulate soil bacterial communities and functional capacities by altering soil potassium and pH in a Moso bamboo forest. Front. Microbiol. 2022, 13, 944874. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, S.; Jiang, H.; Peng, C.; Zhang, J.; Zhou, G. The impact of intensive management on net ecosystem productivity and net primary productivity of a Lei bamboo forest. Ecol. Model. 2020, 435, 109248. [Google Scholar] [CrossRef]
- Mbukwa, D.; Gui, R.; Deng, S. Effect of soil organic mulching combined with aeration treatment on soil quality, nutrients content, and Lei bamboo shoot production. Agriculture 2023, 3, 536. [Google Scholar] [CrossRef]
- Qian, Z.; Zhuang, S.; Gui, R.; Tang, L. Effect of soil aeration treatment on the physiological and biochemical characteristics of Phyllostachys praecox under the organic material mulching. Plant Soil 2021, 459, 357–369. [Google Scholar] [CrossRef]
- Klimešová, J.; Ottaviani, G.; Charles-Dominique, T.; Campetella, G.; Canullo, R.; Chelli, S.; Janovský, Z.; Lubbe, F.C.; Martínková, J.; Herben, T. Incorporating clonality into the plant ecology research agenda. Trends Plant Sci. 2021, 12, 1236–1247. [Google Scholar] [CrossRef]
- Zuo, K.; Fan, L.; Guo, Z.; Zhang, J.; Duan, Y.; Zhang, L.; Chen, S.; Lin, H.; Hu, R. Aboveground Biomass Component Plasticity and Allocation Variations of Bamboo (Pleioblastus amarus) of Different Regions. Forests 2023, 1, 43. [Google Scholar] [CrossRef]
- Wu, K.S.; Kao, W.Y. Phenotypic plasticity and genetic variation in leaf traits of Yushania niitakayamensis (Bambusoideae; Poaceae) in contrasting light environments. J. Plant Res. 2021, 5, 1021–1035. [Google Scholar] [CrossRef]
- Qian, Z.; Zhuang, S.; Gao, J.; Tang, L. Can aeration improve bamboo soil fertility of soil below bamboo and fungal diversity under mulching conditions? Land Degrad. Dev. 2022, 13, 2353–2365. [Google Scholar] [CrossRef]
- Xu, M.; Zhuang, S.; Gui, R. Soil hypoxia induced by an organic-material mulching technique stimulates the bamboo rhizome up-floating of Phyllostachys praecox. Sci. Rep. 2017, 1, 14353. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, S.; Yang, Q.; Li, Y.; Zhuang, M. Effects of mulching management on soil and foliar C, N and P stoichiometry in bamboo”(Phyllostachys violascens)” plantations. J. Trop. For. Sci. 2014, 26, 572–580. [Google Scholar]
- Roiloa, S.R.; Xue, W.; Dong, B.C.; Yu, F.H. Ecological implications of plant clonality. Flora 2023, 309, 152420. [Google Scholar] [CrossRef]
- Bittebiere, A.K.; Benot, M.L.; Mony, C. Clonality as a key but overlooked driver of biotic interactions in plants. Perspect. Plant Ecol. 2020, 43, 125510. [Google Scholar] [CrossRef]
- Wang, P.; Alpert, P.; Yu, F.H. Physiological integration can increase competitive ability in clonal plants if competition is patchy. Oecologia 2021, 1, 199–212. [Google Scholar] [CrossRef]
- Ma, Q.; Qian, J.; Tian, L.; Liu, Z. Responses of belowground bud bank to disturbance and stress in the sand dune ecosystem. Ecol. Indic. 2019, 106, 105521. [Google Scholar] [CrossRef]
- Gao, G.; Wu, Z.; Wen, X.; Zhang, X.; Zhong, H.; Pan, Y. Bud population characteristics of Phyllostachys praecox ‘Prevernalis’ under different mulching cultivation periods. Bangladesh J. Bot. 2018, 4, 969–974. [Google Scholar] [CrossRef]
- Gao, G.; Wen, X.; Wu, Z.; Zhong, H.; Zhang, X. Deciphering the ramet system of a bamboo plant in response to intensive management. Forests 2022, 11, 1968. [Google Scholar] [CrossRef]
- Zou, Z.; Li, Y.; Song, H. Influence of the size of clonal fragment on the nitrogen turnover processes in a bamboo ecosystem. Front. Plant Sci. 2023, 14, 1308072. [Google Scholar] [CrossRef]
- Ma, X.; Yu, W.; Tao, M.; Zhang, C.; Zhang, Z.; Yu, D.; Liu, C. Clonal integration in Vallisneria natans alters growth and the rhizosphere microbial community of neighboring plants under heterogeneous conditions. Plant Soil 2023, 1, 297–311. [Google Scholar] [CrossRef]
- Westerband, A.C.; Funk, J.L.; Barton, K.E. Intraspecific trait variation in plants: A renewed focus on its role in ecological processes. Ann. Bot. 2021, 4, 397–410. [Google Scholar] [CrossRef]
- Zhu, C.G.; Li, W.H.; Chen, Y.N.; Chen, Y.P. Characteristics of water physiological integration and its ecological significance for Populus euphratica young ramets in an extremely drought environment. J. Geophys. Res. Atmos. 2018, 10, 5657–5666. [Google Scholar] [CrossRef]
- Zhai, S.; Qian, J.; Ma, Q.; Liu, Z.; Ba, C.; Xin, Z.; Tian, L.; Zong, L.; Liang, W.; Zhu, J. Effect of rhizome severing on survival and growth of rhizomatous herb Phragmites communis is regulated by sand burial depth. Plants 2022, 23, 3191. [Google Scholar] [CrossRef]
- Van Drunen, W.E.; van Kleunen, M.; Dorken, M.E. Consequences of clonality for sexual fitness: Clonal expansion enhances fitness under spatially restricted dispersal. Proc. Natl. Acad. Sci. USA 2015, 29, 8929–8936. [Google Scholar] [CrossRef]
- Qu, L.; Liu, J.; Yang, J.; Bai, L.; Huang, Y.; Lu, N.; Yu, H.; Wang, Z.; Li, Z. Soil saline-alkali heterogeneity is an important factor driving the spatial expansion of clonal plant in grassland. Front. Environ. Sci. 2023, 10, 1106825. [Google Scholar] [CrossRef]
- Adomako, M.O.; Alpert, P.; Du, D.L.; Yu, F.H. Effects of fragmentation of clones compound over vegetative generations in the floating plant Pistia stratiotes. Ann. Bot. 2021, 1, 123–133. [Google Scholar] [CrossRef]
- Dai, Q.; Mo, Y.X.; Chen, Q.; Song, L.; Zhang, L.M.; Dossa, G.G.; Lu, H.Z. Clonal fragmentation drives performance deterioration of epiphytic and lithophytic ferns in a karst forest. Flora 2023, 302, 152258. [Google Scholar] [CrossRef]
- Li, W.; Huang, A.; Zhou, T.; Liu, M.; Ma, S.; Zhao, N.; Wang, X.; Sun, J. Patterns and drivers of the belowground bud bank in alpine grasslands on the Qinghai-Tibet Plateau. Front. Plant Sci. 2023, 13, 1095864. [Google Scholar] [CrossRef]
- Klimešová, J.; Martínková, J. Clonal growth, resprouting, and vegetative propagation of weeds. In Persistence Strategies of Weeds; Upadhyaya, M.K., Clements, D.R., Shrestha, A., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2022; Chapter 11; pp. 200–218. [Google Scholar]
- Wang, J.; Xu, T.; Feng, X.; Zhu, W.; Zhang, L.; Pan, D.; Akram, N.A.; Ma, Q.; Zhong, Z.; Mahroof, S.; et al. Simulated grazing and nitrogen addition facilitate spatial expansion of Leymus chinensis clones into saline-alkali soil patches: Implications for Songnen grassland restoration in northeast China. Land Degrad. Dev. 2022, 5, 710–722. [Google Scholar] [CrossRef]
- Eriksson, O. The power of observation: Eugen Warming (1918) Om Jordudløbere (‘Underground runners’) and the ecology and evolution of clonal plants. Nord. J. Bot. 2023, 7, e04003. [Google Scholar] [CrossRef]
Branching Grade | pH | Organic Matter (g·kg−1) | Hydrolyzable N (mg·kg−1) | Available P (g·kg−1) | Available K (mg·kg−1) |
---|---|---|---|---|---|
Ⅰ | 4.25 ± 0.44 a | 29.09 ± 14.79 a | 158.00 ± 27.22 a | 148.90 ± 76.05 a | 85.13 ± 18.47 a |
Ⅱ | 4.29 ± 0.22 a | 38.67 ± 16.80 a | 161.67 ± 23.54 a | 151.90 ± 48.74 a | 120.67 ± 17.90 a |
Ⅲ | 4.28 ± 0.18 a | 30.10 ± 7.24 a | 142.00± 11.00 a | 114.00 ± 18.19 a | 97.73 ± 20.82 a |
Ⅳ | 4.31 ± 0.28 a | 29.85 ± 9.31 a | 150.33 ± 21.50 a | 105.37 ± 45.88 a | 99.67 ± 15.04 a |
Ⅴ | 4.31 ± 0.24 a | 27.62 ± 3.06 a | 142.67 ± 8.08 a | 126.07 ± 67.45 a | 104.93 ± 22.23 a |
Ⅵ | 4.43 ± 0.24 a | 40.53 ± 23.48 a | 171.67 ± 35.53 a | 124.67 ± 25.48 a | 131.67 ± 24.38 a |
Ⅶ | 4.43 ± 0.20 a | 29.07 ± 12.01 a | 155.33 ± 3.79 a | 136.20 ± 40.99 a | 122.23 ± 34.26 a |
Ⅷ | 4.45 ± 0.29 a | 34.93 ± 21.15 a | 153.00 ± 19.47 a | 126.90 ± 34.52 a | 109.67 ± 19.55 a |
Ⅸ | 4.65 ± 0.16 a | 26.85 ± 12.09 a | 157.50 ± 9.19 a | 146.00 ± 52.33 a | 112.75 ± 22.98 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, G.; Wen, X.; Wu, Z.; Zhong, H.; Pan, Y.; Zhang, X. Growth Characteristics of Ramet System in Phyllostachys praecox Forest under Mulch Management. Plants 2024, 13, 1761. https://doi.org/10.3390/plants13131761
Gao G, Wen X, Wu Z, Zhong H, Pan Y, Zhang X. Growth Characteristics of Ramet System in Phyllostachys praecox Forest under Mulch Management. Plants. 2024; 13(13):1761. https://doi.org/10.3390/plants13131761
Chicago/Turabian StyleGao, Guibin, Xing Wen, Zhizhuang Wu, Hao Zhong, Yanhong Pan, and Xiaoping Zhang. 2024. "Growth Characteristics of Ramet System in Phyllostachys praecox Forest under Mulch Management" Plants 13, no. 13: 1761. https://doi.org/10.3390/plants13131761
APA StyleGao, G., Wen, X., Wu, Z., Zhong, H., Pan, Y., & Zhang, X. (2024). Growth Characteristics of Ramet System in Phyllostachys praecox Forest under Mulch Management. Plants, 13(13), 1761. https://doi.org/10.3390/plants13131761