Sequential Separation of Essential Oil Components during Hydrodistillation of Fresh Foliage from Azorean Cryptomeria japonica (Cupressaceae): Effects on Antibacterial, Antifungal, and Free Radical Scavenging Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. EO Isolation and Fractionation by HD
2.4. EO Composition Analysis
2.5. In Vitro Antimicrobial Activity Determination
2.5.1. Microorganisms, Growth Conditions, and Inocula Preparation
2.5.2. Disc Diffusion Method (DDM)
2.6. In Vitro Antioxidant Activity Evaluation by Free Radical Scavenging Activity (FRSA) Assays
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition and Yield of the Az–CJF EO and Its Fractions
3.2. In Vitro Biological Activities of the Az–CJF EO and Its Fractions
3.2.1. Antibacterial Activity
3.2.2. Antifungal Activity
3.2.3. Antioxidant Activities Evaluated by DPPH and ABTS Assays
3.2.4. Dual Antimicrobial–Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Abebe, E.; Gugsa, G.; Ahmed, M. Review on major food-borne zoonotic bacterial pathogens. J. Trop. Med. 2020, 29, 4674235. [Google Scholar] [CrossRef]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 293, 529–563. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, K.; Mathioudakis, M.M.; Hasperué, J.H.; Ziogas, V. Non-chemical treatments for preventing the postharvest fungal rotting of citrus caused by Penicillium digitatum (green mold) and Penicillium italicum (blue mold). Trends Food Sci. Technol. 2019, 86, 479–491. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, R.; Kumar, A.; Bhadouria, R. Current status of plant diseases and food security. In Food Security and Plant Disease Management; Kumar, A., Droby, S., Eds.; Woodhead Publishing: Cambridge, UK, 2021; pp. 19–35. [Google Scholar]
- Camele, I.; Gruľová, D.; Elshafie, H.S. Chemical composition and antimicrobial properties of Mentha × piperita cv. ‘Kristinka’ essential oil. Plants 2021, 10, 1567. [Google Scholar] [CrossRef]
- Olszowy, M.; Dawidowicz, A.L. Essential oils as antioxidants: Their evaluation by DPPH, ABTS, FRAP, CUPRAC, and β-carotene bleaching methods. Monatsh. Chem. 2016, 147, 2083–2091. [Google Scholar] [CrossRef]
- Avilés-Palacios, C.; Rodríguez-Olalla, A. The sustainability of waste management models in circular economies. Sustainability 2021, 13, 7105. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents—Myth or real alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.; Yiap, B.C.; Ping, H.C.; Lim, S.H. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef]
- Zielińska-Błajet, M.; Feder-Kubis, J. Monoterpenes and their derivatives: Recent development in biological and medical applications. Int. J. Mol. Sci. 2020, 21, 7078. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Variations in essential oil chemical composition and biological activities of Cryptomeria japonica (Thunb. ex L.f.) D. Don from different geographical origins—A critical review. Appl. Sci. 2021, 11, 11097. [Google Scholar] [CrossRef]
- Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential oils: Chemistry and pharmacological activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.S.; Chua, M.T.; Chang, E.H.; Huang, C.G.; Chen, W.J.; Chang, S.T. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour. Technol. 2009, 100, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Semerdjieva, I.B.; Radoukova, T.; Cantrell, C.L.; Astatkie, T.; Kacaniova, M.; Borisova, D.; Zheljazkov, V.D. Essential oil composition of Pinus heldreichii Christ., P. peuce Griseb., and P. mugo Turra as a function of hydrodistillation time and evaluation of its antimicrobial activity. Ind. Crops Prod. 2022, 187, 115484. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Semerdjieva, I.B.; Dincheva, I.; Kacaniova, M.; Astatkie, T.; Radoukova, T.; Schlegel, V. Antimicrobial and antioxidant activity of Juniper galbuli essential oil constituents eluted at different times. Ind. Crops Prod. 2017, 109, 529–537. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Figueiredo, A.C.; Lima, E. Essential oils from different parts of Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae): Comparison of the yields, chemical compositions, and biological properties. Appl. Sci. 2023, 13, 8375. [Google Scholar] [CrossRef]
- Vázquez-González, C.; Zas, R.; Erbilgin, N.; Ferrenberg, S.; Rozas, V.; Sampedro, L. Resin ducts as resistance traits in conifers: Linking dendrochronology and resin-based defences. Tree Physiol. 2020, 40, 1313–1326. [Google Scholar] [CrossRef]
- Arruda, F.; Lima, A.; Oliveira, L.; Rodrigues, T.; Janeiro, A.; Rosa, J.S.; Lima, E. Essential oil variability of Azorean Cryptomeria japonica leaves under different distillation methods, Part 2: Molluscicidal activity and brine shrimp lethality. Separations 2023, 10, 241. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Janeiro, A.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Biological activities of organic extracts and specialized metabolites from different parts of Cryptomeria japonica (Cupressaceae)—A critical review. Phytochemistry 2023, 206, 113520. [Google Scholar] [CrossRef] [PubMed]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef]
- Arruda, F.; Lima, A.; Wortham, T.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Rosa, J.S.; Lima, E. Sequential separation of essential oil components during hydrodistillation of Azorean Cryptomeria japonica foliage: Effects on yield, physical properties, and chemical composition. Separations 2023, 10, 483. [Google Scholar] [CrossRef]
- Semerdjieva, I.B.; Shiwakoti, S.; Cantrell, C.L.; Zheljazkov, V.D.; Astatkie, T.; Schlegel, V.; Radoukova, T. Hydrodistillation extraction kinetics regression models for essential oil yield and composition in Juniperus virginiana, J. excelsa, and J. sabina. Molecules 2019, 24, 986. [Google Scholar] [CrossRef] [PubMed]
- ISO 7609; Essential Oils—Analysis by Gas Chromatography on Capillary Columns—General Method. ISO: Geneva, Switzerland, 1985.
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Samson, R.A.; Hoekstra, E.S.; Frisvad, J.C.; Filtenborg, O. Introduction to Food- and Airborne Fungi, 6th ed.; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2002; 389p. [Google Scholar]
- Samson, R.A.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Andersen, B. Food and Indoor Fungi, 2nd ed.; CBS–KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2010; 390p. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Blois, M. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pichette, A.; Larouche, P.L.; Lebrun, M.; Legault, J. Composition and antibacterial activity of Abies balsamea essential oil. Phytother. Res. 2006, 20, 371–373. [Google Scholar] [CrossRef]
- Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef] [PubMed]
- Salkinoja-Salonen, M.S.; Vuorio, R.; Andersson, M.A.; Kämpfer, P.; Andersson, M.C.; Honkanen-Buzalski, T.; Scoging, A.C. Toxigenic strains of Bacillus licheniformis related to food poisoning. Appl. Environ. Microbiol. 1999, 65, 4637–4645. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, T.; Rintaluoma, N.; Andersson, M.; Taimisto, A.-M.; Ali-Vehmas, T.; Seppälä, A.; Priha, O.; Salkinoja-Salonen, M. Toxigenic Bacillus pumilus and Bacillus licheniformis from mastitic milk. Vet. Microbiol. 2007, 124, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Allenspach, M.D.; Valder, C.; Steuer, C. Absolute quantification of terpenes in conifer-derived essential oils and their antibacterial activity. J. Anal. Sci. Technol. 2020, 11, 12. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Sun, Y.L.; Ruan, X.F. Bornyl acetate: A promising agent in phytomedicine for inflammation and immune modulation. Phytomedicine 2023, 114, 154781. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.J.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Cho, W.I.; Cheigh, C.I.; Hwang, H.J.; Chung, M.S. Sporicidal activities of various surfactant components against Bacillus subtilis spores. J. Food Prot. 2015, 78, 1221–1225. [Google Scholar] [CrossRef] [PubMed]
- Ložienė, K.; Švedienė, J.; Paškevičius, A.; Raudonienė, V.; Sytar, O.; Kosyan, A. Influence of plant origin natural α-pinene with different enantiomeric composition on bacteria, yeasts and fungi. Fitoterapia 2018, 127, 20–24. [Google Scholar] [CrossRef]
- Janeiro, A.; Lima, A.; Arruda, F.; Wortham, T.; Rodrigues, T.; Baptista, J.; Lima, E. Variations in essential oil biological activities of female cones at different developmental stages from Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae). Separations 2024, 11, 102. [Google Scholar] [CrossRef]
- Scora, K.M.; Scora, R.W. Effect of volatiles on mycelium growth of Penicillium digitatum, P. italicum, and P. ulaiense. J. Basic Microb. 1998, 38, 405–413. [Google Scholar] [CrossRef]
- Tao, N.; Jia, L.; Zhou, H. Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum. Food Chem. 2014, 153, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Seon-Hong, K.; Su-Yeon, L.; Chang-Young, H.; Seongmin, C.; Mijin, P.; InGyu, C. Antifungal effect of elemol and eudesmol from Cryptomeria japonica essential oil against Trichophyton rubrum. Acad. J. Agric. Res. 2016, 4, 511–517. [Google Scholar]
- Bruna, F.A.; Fernández, K.; Urrejola, F.; Touma, J.; Navarro, M.; Sepúlveda, B.; Larrazabal-Fuentes, M.J.; Paredes, A.; Neira, I.; Ferrando, M.; et al. The essential oil from Drimys winteri possess activity: Antioxidant, theoretical chemistry reactivity, antimicrobial, antiproliferative and chemical composition. Front. Nat. Prod. 2022, 1, 958425. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, S.Y.; Hong, C.Y.; Gwak, K.S.; Park, M.J.; Smith, D.; Choi, I.G. Whitening and antioxidant activities of bornyl acetate and nezukol fractionated from Cryptomeria japonica essential oil. Int. J. Cosmet. Sci. 2013, 35, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Pelot, K.A.; Hagelthorn, D.M.; Addison, J.B.; Zerbe, P. Biosynthesis of the oxygenated diterpene nezukol in the medicinal plant Isodon rubescens is catalyzed by a pair of diterpene synthases. PLoS ONE 2017, 12, e0176507. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- André, S.; Vallaeys, T.; Planchon, S. Spore-forming bacteria responsible for food spoilage. Res. Microbiol. 2017, 168, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhu, Q.; Yang, Z.; Liang, Z. Clinical characteristics of patients with Micrococcus luteus bloodstream infection in a chinese tertiary-care hospital. Pol. J. Microbiol. 2021, 70, 321–326. [Google Scholar] [CrossRef]
- Kwiecinski, J.M.; Horswill, A.R. Staphylococcus aureus bloodstream infections: Pathogenesis and regulatory mechanisms. Curr. Opin. Microbiol. 2020, 53, 51–60. [Google Scholar] [CrossRef]
- Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular mechanisms of drug resistance in Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 8088. [Google Scholar] [CrossRef]
- Kanashiro, A.M.; Akiyama, D.Y.; Kupper, K.C.; Fill, T.P. Penicillium italicum: An underexplored postharvest pathogen. Front. Microbiol. 2020, 11, 606852. [Google Scholar] [CrossRef] [PubMed]
N. | Component | Class | RT | RI | Relative Content (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control | Fr1 | Fr2 | Fr3 | Fr4 | Fr5 | Fr6 | |||||
1 | α-Pinene | MH | 12.6 | 928 | 11.64 cd | 54.18 a | 24.12 b | 12.48 c | 8.48 e | 10.15 de | 6.35 f |
2 | Camphene | MH | 13.5 | 944 | 1.07 d | 4.99 a | 2.60 d | 1.58 c | 1.07 d | 1.17 d | 0.60 e |
3 | Sabinene | MH | 14.8 | 967 | 1.77 c | 10.25 a | 5.16 b | 2.29 c | 1.01 d | 0.79 de | 0.26 e |
4 | Myrcene | MH | 15.7 | 983 | 1.61 c | 7.45 a | 3.88 b | 2.07 c | 1.32 cd | 1.45 cd | 0.78 d |
5 | Limonene | MH | 18.2 | 1024 | 1.74 d | 7.16 a | 4.61 b | 2.52 c | 1.52 d | 1.57 d | 0.82 e |
6 | Terpinen-4-ol | OCM | 28.5 | 1175 | 0.65 c | 0.17 d | 0.97 bc | 1.40 a | 1.16 ab | 0.98 b | 0.64 c |
7 | Bornyl acetate | OCM | 35.5 | 1277 | 1.72 d | 2.32 c | 6.32 a | 3.92 b | 2.11 c | 1.48 d | 0.86 e |
8 | δ-Cadinene | SH | 50.2 | 1510 | 1.07 c | 0.23 e | 1.98 b | 2.62 a | 1.71 b | 0.86 c | 0.54 d |
9 | Elemol | OCS | 52.3 | 1541 | 27.47 abc | 2.11 e | 18.10 d | 28.55 ab | 30.07 a | 25.62 bc | 24.78 c |
10 | Germacrene-D-4-ol | OCS | 54.0 | 1568 | 0.97 c | 0.70 c | 3.61 a | 1.43 b | 0.18 d | 0.03 d | 0.00 d |
11 | γ-Eudesmol | OCS | 57.2 | 1623 | 6.55 b | 0.05 e | 0.76 e | 2.14 d | 4.38 c | 6.73 b | 11.48 a |
12 | α+β-Eudesmol | OCS | 58.5 | 1646 | 13.10 bc | 0.38 f | 3.86 e | 8.05 d | 11.99 c | 15.14 b | 21.64 a |
13 | Rosa-5,15-diene | DH | 73.0 | 1921 | 2.11 b | 0.10 d | 1.43 c | 2.39 ab | 2.73 a | 2.26 b | 1.66 c |
14 | Phyllocladene | DH | 77.3 | 2010 | 14.00 ab | 0.58 d | 7.21 c | 12.94 b | 16.42 a | 16.12 a | 14.20 ab |
15 | Nezukol | OCD | 82.4 | 2119 | 2.59 b | 0.03 f | 0.66 e | 1.39 d | 2.12 c | 2.75 b | 3.47 a |
Total identified components | 97.39 | 99.75 | 98.22 | 97.27 | 97.04 | 97.15 | 97.43 | ||||
Total monoterpene hydrocarbons (MH) | 19.68 d | 91.79 a | 45.23 b | 23.92 c | 15.47 d | 17.48 d | 10.09 e | ||||
Total oxygen-containing monoterpenes (OCM) | 3.01 d | 2.96 d | 8.98 a | 6.55 b | 4.00 c | 2.95 d | 1.86 e | ||||
Total sesquiterpene hydrocarbons (SH) | 2.03 c | 0.93 e | 5.51 a | 4.86 a | 2.83 b | 1.43 d | 1.01 e | ||||
Total oxygen-containing sesquiterpenes (OCS) | 51.12 b | 3.28 e | 27.44 d | 42.17 c | 49.73 b | 50.85 b | 62.39 a | ||||
Total diterpene hydrocarbons (DH) | 18.65 bc | 0.76 e | 10.38 d | 18.33 c | 22.78 a | 21.49 ab | 18.31 bc | ||||
Total oxygen-containing diterpenes (OCD) | 2.90 b | 0.03 f | 0.68 e | 1.44 d | 2.23 c | 2.95 b | 3.77 a | ||||
Total terpenes | 40.36 | 93.48 | 61.12 | 47.11 | 41.08 | 40.4 | 29.41 | ||||
Total terpenoids | 57.03 | 6.27 | 37.1 | 50.16 | 55.96 | 56.75 | 68.02 | ||||
Ratio terpenes/terpenoids | 0.71 | 15.00 | 1.65 | 0.94 | 0.73 | 0.71 | 0.40 | ||||
EO yield (%, w/w, fresh weight) | 0.820 a | 0.139 c | 0.061 e | 0.074 de | 0.090 d | 0.143 c | 0.180 b |
EO (HDTs) and Compounds | Growth Inhibition Zone (mm) | |||||||
---|---|---|---|---|---|---|---|---|
Gram-Positive Bacteria | Gram-Negative Bacteria | |||||||
Bacillus subtilis | Bacillus licheniformis | Staphylococcus aureus | Micrococcus luteus | Escherichia coli | Enterobacter cloacae | Serratia marcescens | ||
Fr1 (0–2 min) | 10.7 ± 0.9 cd | 13.3 ± 2.1 c | 7.0 ± 0.0 e | na | na | na | na | |
Fr2 (2–10 min) | 18.0 ± 2.7 b | 23.3 ± 1.5 a | 15.3 ± 0.4 b | 14.3 ± 0.4 b | na | na | na | |
Fr3 (10–30 min) | 10.0 ± 0.7 cde | 13.3 ± 1.2 c | 10.3 ± 0.4 c | 9.0 ± 1.3 cd | na | na | na | |
Fr4 (30–60 min) | 9.3 ± 1.8 cde | 11.7 ± 0.6 cd | 8.0 ± 0.0 d | 9.0 ± 1.3 cd | na | na | na | |
Fr5 (60–120 min) | 7.7 ± 0.4 e | 10.7 ± 1.2 cd | 8.0 ± 0.0 d | 8.5 ±1.5 cd | na | na | na | |
Fr6 (120–240 min) | 7.7 ± 0.4 e | 10.0 ± 2.0 d | 8.7 ± 0.4 d | 9.0 ± 1.3 cd | na | na | na | |
C (0–240 min) | 8.3 ± 0.9 de | 11.7 ± 2.1 cd | 10.7 ± 0.4 c | 10.0 ± 1.0 c | na | na | na | |
(–)-α-Pinene | 9.0 ± 1.0 cde | 12.8 ± 1.0 c | 17.0 ± 1.0 a | 15.7 ± 3.2 a | 9.0 ± 1.0 b | 10.0 ± 1.0 b | 8.0 ± 1.0 b | |
(–)-Terpinen-4-ol | 12.3 ± 0.5 c | 22.0 ± 1.0 a | 10.3 ± 0.6 c | 7.3 ± 0.6 d | 17.7 ± 0.6 a | 30.7 ± 3.0 a | 21.1 ± 1.7 a | |
(–)-Bornyl acetate | 21.0 ± 1.0 a | 17.0 ± 3.0 b | 8.0 ± 0.0 d | na | na | na | na | |
Kanamycin | 39.0 ± 2.0 | 34.0 ± 2.0 | 29.3 ± 2.2 | 27.3 ± 4.0 | 26.5 ± 3.0 | 28.0 ± 7.0 | 24.0 ± 2.0 |
EO (HDTs) and Compounds | GIZ (mm) on Penicillium spp. | |
---|---|---|
P. digitatum | P. italicum | |
Fr1 (0–2 min) | na | 8.7 ± 1.2 b |
Fr2 (2–10 min) | na | 9.3 ± 2.5 b |
Fr3 (10–30 min) | na | 9.0 ± 1.0 b |
Fr4 (30–60 min) | na | 7.3 ± 0.6 b |
Fr5 (60–120 min) | na | na |
Fr6 (120–240 min) | na | na |
C (0–240 min) | na | na |
(–)-α-Pinene | na | na |
(–)-Terpinen-4-ol | 9.3 ± 0.6 | 12.7 ± 1.2 a |
(–)-Bornyl acetate | na | 7.3 ± 0.6 b |
Clotrimazole | 15.0 ± 0.0 | 19.7 ± 1.2 |
Sample | HDTs (min) | FRSA (EC50, mg mL−1) | |
---|---|---|---|
DPPH | ABTS | ||
Fr1 | 0–2 | 49.01 ± 11.00 f | 22.31 ± 1.19 g |
Fr2 | 2–10 | 32.57 ± 0.45 e | 3.49 ± 0.17 f |
Fr3 | 10–30 | 5.10 ± 0.34 d | 2.02 ± 0.09 d |
Fr4 | 30–60 | 2.28 ± 0.14 b | 1.73 ± 0.10 c |
Fr5 | 60–120 | 2.14 ± 0.12 b | 1.42 ± 0.05 b |
Fr6 | 120–240 | 1.48 ± 0.11 a | 1.01 ± 0.03 a |
Control EO | 0–240 | 2.98 ± 0.08 c | 2.25 ± 0.19 e |
Trolox | - | 0.0036 ± 0.0003 | 0.0049 ± 0.0009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arruda, F.; Lima, A.; Wortham, T.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Rosa, J.S.; Lima, E. Sequential Separation of Essential Oil Components during Hydrodistillation of Fresh Foliage from Azorean Cryptomeria japonica (Cupressaceae): Effects on Antibacterial, Antifungal, and Free Radical Scavenging Activities. Plants 2024, 13, 1729. https://doi.org/10.3390/plants13131729
Arruda F, Lima A, Wortham T, Janeiro A, Rodrigues T, Baptista J, Rosa JS, Lima E. Sequential Separation of Essential Oil Components during Hydrodistillation of Fresh Foliage from Azorean Cryptomeria japonica (Cupressaceae): Effects on Antibacterial, Antifungal, and Free Radical Scavenging Activities. Plants. 2024; 13(13):1729. https://doi.org/10.3390/plants13131729
Chicago/Turabian StyleArruda, Filipe, Ana Lima, Tanner Wortham, Alexandre Janeiro, Tânia Rodrigues, José Baptista, José S. Rosa, and Elisabete Lima. 2024. "Sequential Separation of Essential Oil Components during Hydrodistillation of Fresh Foliage from Azorean Cryptomeria japonica (Cupressaceae): Effects on Antibacterial, Antifungal, and Free Radical Scavenging Activities" Plants 13, no. 13: 1729. https://doi.org/10.3390/plants13131729
APA StyleArruda, F., Lima, A., Wortham, T., Janeiro, A., Rodrigues, T., Baptista, J., Rosa, J. S., & Lima, E. (2024). Sequential Separation of Essential Oil Components during Hydrodistillation of Fresh Foliage from Azorean Cryptomeria japonica (Cupressaceae): Effects on Antibacterial, Antifungal, and Free Radical Scavenging Activities. Plants, 13(13), 1729. https://doi.org/10.3390/plants13131729