Strawberry Yield Improvement by Hydrogen-Based Irrigation Is Functionally Linked to Altered Rhizosphere Microbial Communities
Abstract
:1. Introduction
2. Results
2.1. Strawberry Yield Promotion Achieved by H2-Based Irrigation
2.2. Altered Rhizosphere Microbial Community Structure by H2
2.3. Function Potentials of Rhizosphere Microbial Community in Response to H2
2.4. H2 Response Is Functionally Linked to Rhizosphere Microbial Communities
3. Discussion
3.1. H2-Based Irrigation Represents a Sustainable Approach for Strawberry Yield Improvement
3.2. Promotional Effect of H2 Might Be Linked with the Alterations in Rhizosphere Microbial Community Composition
3.3. H2 Supply Displays the Positive Effects on Microbial-Mediated Soil C, N, and P Cycles
3.4. Plant Nutrient Uptake Capacity Might Be Activated by H2-Based Irrigation
4. Materials and Methods
4.1. Plant Material and Experimental Design
4.2. Soil Sample Collection and Analysis of Soil Physicochemical Properties
4.3. Soil Metagenomic Sequencing and Analysis
4.4. Strawberry Yield
4.5. Quantitative Real-Time PCR
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, Z.F.; Greening, C.; Hu, H.W. Microbial hydrogen cycling in agricultural systems-plant beneficial or detrimental? Microb. Biotechnol. 2023, 16, 1623–1628. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.T.; Russell, G. Downstream signalling from molecular hydrogen. Plants 2021, 10, 367. [Google Scholar] [CrossRef]
- Maimaiti, J.; Zhang, Y.; Yang, J.; Cen, Y.; Layzell, D.B.; Peoples, M.; Dong, Z. Isolation and characterization of hydrogen-oxidizing bacteria induced following exposure of soil to hydrogen gas and their impact on plant growth. Environ. Microbiol. 2007, 9, 435–444. [Google Scholar] [CrossRef]
- Stein, S.; Selesi, D.; Schilling, R.; Pattis, I.; Schmid, M.; Hartmann, A. Microbial activity and bacterial composition of H2-treated soils with net CO2 fixation. Soil Biol. Biochem. 2005, 37, 1938–1945. [Google Scholar] [CrossRef]
- Zhang, Y.; He, X.; Dong, Z. Effect of hydrogen on soil bacterial community structure in two soils as determined by terminal restriction fragment length polymorphism. Plant Soil 2009, 320, 295–305. [Google Scholar] [CrossRef]
- Dong, Z.; Wu, L.; Kettlewell, B.; Caldwell, C.D.; Layzell, D.B. Hydrogen fertilization of soils-is this a benefit of legumes in rotation? Plant Cell Environ. 2003, 26, 1875–1879. [Google Scholar] [CrossRef]
- Giguere, A.T.; Eichorst, S.A.; Meier, D.V.; Herbold, C.W.; Richter, A.; Greening, C.; Woebken, D. Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils. ISME J. 2021, 15, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Greening, C.; Carere, C.R.; Rushton-Green, R.; Harold, L.K.; Hards, K.; Taylor, M.C.; Morales, S.E.; Stott, M.B.; Cook, G.M. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc. Natl. Acad. Sci. USA 2015, 112, 10497–10502. [Google Scholar] [CrossRef]
- Islam, Z.F.; Cordero, P.R.F.; Feng, J.; Chen, Y.J.; Bay, S.K.; Jirapanjawat, T.; Gleadow, R.M.; Carere, C.R.; Stott, M.B.; Chiri, E.; et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J. 2019, 13, 1801–1813. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, X.; Zhao, G.; Zhang, X.; Dong, L.; Chen, Y. Aerobic hydrogen-oxidizing bacteria in soil: From cells to ecosystems. Rev. Environ. Sci. Biotechnol. 2022, 21, 877–904. [Google Scholar] [CrossRef]
- Greening, C.; Berney, M.; Hards, K.; Cook, G.M.; Conrad, R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc. Natl. Acad. Sci. USA 2014, 111, 4257–4261. [Google Scholar] [CrossRef]
- Islam, Z.F.; Welsh, C.; Bayly, K.; Grinter, R.; Southam, G.; Gagen, E.J.; Greening, C. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 2020, 14, 2649–2658. [Google Scholar] [CrossRef] [PubMed]
- Khdhiri, M.; Piché-Choquette, S.; Tremblay, J.; Tringe, S.G.; Constant, P. The tale of a neglected energy source: Elevated hydrogen exposure affects both microbial diversity and function in soil. Appl. Environ. Microbiol. 2017, 83, e00275-17. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Zhu, K.; Cui, W.; Li, L.; Shen, W. Hydrogen-modulated stomatal sensitivity to abscisic acid and drought tolerance via the regulation of apoplastic pH in Medicago sativa. J. Plant Growth. Regul. 2016, 35, 565–573. [Google Scholar] [CrossRef]
- Xu, S.; Zhu, S.; Jiang, Y.; Wang, N.; Wang, R.; Shen, W.; Yang, J. Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant Soil 2013, 370, 47–57. [Google Scholar] [CrossRef]
- Xu, S.; Jiang, Y.; Cui, W.; Jin, Q.; Zhang, Y.; Bu, D.; Fu, J.; Wang, R.; Zhou, F.; Shen, W. Hydrogen enhances adaptation of rice seedlings to cold stress via the reestablishment of redox homeostasis mediated by miRNA expression. Plant Soil 2017, 414, 53–67. [Google Scholar] [CrossRef]
- Jin, Q.; Zhu, K.; Cui, W.; Xie, Y.; Han, B.; Shen, W. Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ. 2013, 36, 956–969. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Lin, F.; Wang, Y.; Cheng, P.; Lou, W.; Wang, Z.; Liu, Z.; Chen, D.; Guo, W.; Lan, Y.; et al. Molecular hydrogen confers resistance to rice stripe virus. Microbiol. Spectr. 2023, 11, e0441722. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zeng, Y.; Cheng, X.; Shen, W. The applications of molecular hydrogen in horticulture. Horticulturae 2021, 7, 513. [Google Scholar] [CrossRef]
- Su, J.; Yang, X.; Shao, Y.; Chen, Z.; Shen, W. Molecular hydrogen-induced salinity tolerance requires melatonin signalling in Arabidopsis thaliana. Plant Cell Environ. 2021, 44, 476–490. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, P.; Wang, Y.; Li, Y.; Su, J.; Chen, Z.; Yu, X.; Shen, W. Genetic elucidation of hydrogen signaling in plant osmotic tolerance and stomatal closure via hydrogen sulfide. Free Radic. Biol. Med. 2020, 161, 1–14. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, J.; Cai, C.; Li, L.; Zeng, Y.; Cheng, X.; Shen, W. Molecular hydrogen positively regulates nitrate uptake and seed size by targeting nitrate reductase. Plant Physiol. 2023, 193, 2734–2749. [Google Scholar] [CrossRef]
- Hancock, J.T.; LeBaron, T.W.; May, J.; Thomas, A.; Russell, G. Molecular hydrogen: Is this a viable new treatment for plants in the UK? Plants 2021, 10, 2270. [Google Scholar] [CrossRef]
- Wang, X.B.; Schmidt, R.; Yergeau, É.; Constant, P. Field H2 infusion alters bacterial and archaeal communities but not fungal communities nor nitrogen cycle gene abundance. Soil Biol. Biochem. 2020, 151, 108018. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Jiang, K.; Kuang, Y.; Zeng, Y.; Cheng, X.; Liu, Y.; Wang, S.; Shen, W. Preharvest application of hydrogen nanobubble water enhances strawberry flavor and consumer preferences. Food Chem. 2022, 377, 131953. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, J.; Zhao, Z.; Kong, L.; Lou, W.; Zhang, T.; Jing, D.; Yu, J.; Shu, Z.; Huang, L.; et al. Molecular hydrogen increases quantitative and qualitative traits of rice grain in field trials. Plants 2021, 10, 2331. [Google Scholar] [CrossRef]
- Hu, H.; Li, P.; Shen, W. Preharvest application of hydrogen-rich water not only affects daylily bud yield but also contributes to the alleviation of bud browning. Sci. Hortic. 2021, 287, 110267. [Google Scholar] [CrossRef]
- Briat, J.F.; Gojon, A.; Plassard, C.; Rouached, H.; Lemaire, G. Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels. Eur. J. Agron. 2020, 116, 126069. [Google Scholar] [CrossRef]
- Osborne, C.A.; Peoples, M.B.; Janssen, P.H. Detection of a reproducible, single-member shift in soil bacterial communities exposed to low levels of hydrogen. Appl. Environ. Microbiol. 2010, 76, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Piché-Choquette, S.; Tremblay, J.; Tringe, S.G.; Constant, P. H2-saturation of high affinity H2-oxidizing bacteria alters the ecological niche of soil microorganisms unevenly among taxonomic groups. PeerJ 2016, 4, e1782. [Google Scholar] [CrossRef]
- Xu, Y.; Teng, Y.; Dong, X.; Wang, X.; Zhang, C.; Ren, W.; Zhao, L.; Luo, Y.; Greening, C. Genome-resolved metagenomics reveals how soil bacterial communities respond to elevated H2 availability. Soil Biol. Biochem. 2021, 163, 108464. [Google Scholar] [CrossRef]
- Minaxi; Saxena, J.; Chandra, S.; Nain, L. Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. J. Soil Sci. Plant Nutr. 2013, 13, 511–525. [Google Scholar]
- Punjee, P.; Siripornadulsil, W.; Siripornadulsil, S. Reduction of cadmium uptake in rice endophytically colonized with the cadmium-tolerant bacterium Cupriavidus taiwanensis KKU2500-3. Can. J. Microbiol. 2018, 64, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Tedersoo, L.; Crowther, T.W.; Dumbrell, A.J.; Dini-Andreote, F.; Bahram, M.; Kuang, L.; Li, T.; Wu, M.; Jiang, Y.; et al. Fossil-fuel-dependent scenarios could lead to a significant decline of global plant-beneficial bacteria abundance in soils by 2100. Nat. Food. 2023, 4, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Chialva, M.; Lanfranco, L.; Bonfante, P. The plant microbiota: Composition, functions, and engineering. Curr. Opin. Biotechnol. 2022, 73, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Peng, F.; Jiang, Y.; Peng, Y.; Zhou, P. Absorption and partition of different nitrogen forms in strawberry. Acta Hortic. Sin. 2005, 32, 1070–1072. [Google Scholar]
- Zhu, G.; Wang, S.; Li, Y.; Zhuang, L.; Zhao, S.; Wang, C.; Kuypers, M.M.M.; Jetten, M.S.M.; Zhu, Y. Microbial pathways for nitrogen loss in an upland soil. Environ. Microbiol. 2018, 20, 1723–1738. [Google Scholar] [CrossRef]
- Flynn, B.; Graham, A.; Scott, N.; Layzell, D.B.; Dong, Z. Nitrogen fixation, hydrogen production and N2O emissions. Can. J. Plant Sci. 2014, 94, 1037–1041. [Google Scholar] [CrossRef]
- Wu, X.; Rensing, C.; Han, D.; Xiao, K.Q.; Dai, Y.; Tang, Z.; Tang, Z.; Liesack, W.; Peng, J.; Cui, Z.; et al. Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes. mSystems 2022, 7, e0110721. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.E.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A.; Smith, S.E.; Harvey, P.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H.; et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 2011, 349, 121–156. [Google Scholar] [CrossRef]
- Taghavi, T.; Folta, K.M. A comparison of wild and cultivated strawberries for nitrogen uptake and reduction. Hortic. Environ. Biote 2014, 55, 196–206. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, W.; Li, L.; Li, D.M.; Gao, D.S.; Zhu, C.Y.; Fu, X.L. Effect of exogenously applied molybdenum on its absorption and nitrate metabolism in strawberry seedlings. Plant Physiol. Bioch. 2017, 115, 200–211. [Google Scholar] [CrossRef]
- Cao, Q.; Deng, J.; Zhu, J.; Bai, J.; Zhao, T.; Zhu, X.; Jiang, Y.; Xing, Y.; Qin, L. The cloning and quantitative expression analysis of mycorrhizal phosphate transporter gene in Fragaria × ananassa. Acta Hortic. Sin. 2013, 40, 641–650. [Google Scholar]
- Gao, Y.; Yu, C.; Zhang, K.; Zhang, H.; Zhang, S.; Song, Z. Identification and characterization of the strawberry KT/HAK/KUP transporter gene family in response to K+ deficiency. Acta Physiol. Plant. 2021, 43, 1. [Google Scholar] [CrossRef]
- Trinh, C.S.; Lee, H.; Lee, W.J.; Lee, S.J.; Chung, N.; Han, J.; Kim, J.; Hong, S.W.; Lee, H. Evaluation of the plant growth-promoting activity of Pseudomonas nitroreducens in Arabidopsis thaliana and Lactuca sativa. Plant Cell Rep. 2018, 37, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jiang, X.; He, X.; Zhao, W.; Cao, Y.; Guo, T.; Li, T.; Ni, H.; Tang, X. Phosphate-solubilizing Pseudomonas sp. strain P34-L promotes wheat growth by colonizing the wheat rhizosphere and improving the wheat root system and soil phosphorus nutritional status. J. Plant Growth. Regul. 2019, 38, 1314–1324. [Google Scholar] [CrossRef]
- Zhan, J.; Li, T.; Zhang, X.; Yu, H.; Zhao, L. Rhizosphere characteristics of phytostabilizer Athyrium wardii (Hook.) involved in Cd and Pb accumulation. Ecotoxicol. Environ. Saf. 2018, 148, 892–900. [Google Scholar] [CrossRef]
- Mulvaney, R.L.; Khan, S.A. Diffusion methods to determine different forms of nitrogen in soil hydrolysates. Soil Sci. Soc. Am. J. 2001, 65, 1284–1292. [Google Scholar] [CrossRef]
- Yang, J.; Bai, J.; Liu, M.; Chen, Y.; Wang, S.; Yang, Q. Determination of phosphorus in soil by ICP-OES using an improved standard addition method. J. Anal. Methods Chem. 2018, 2018, 1324751. [Google Scholar] [CrossRef]
- Sun, W.; Liu, S.; Zhang, X.; Li, Y. Estimation of soil organic matter content using selected spectral subset of hyperspectral data. Geoderma 2022, 409, 115653. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2018, 7, gix120. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. Megahit: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef]
- Zhu, W.; Lomsadze, A.; Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 2010, 38, e132. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Huson, D.H.; Auch, A.F.; Qi, J.; Schuster, S.C. MEGAN analysis of metagenomic data. Genome. Res. 2007, 17, 377–386. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Huang, H.; Jin, Z.; Jiang, K.; Zeng, Y.; Pathier, D.; Cheng, X.; Shen, W. Strawberry Yield Improvement by Hydrogen-Based Irrigation Is Functionally Linked to Altered Rhizosphere Microbial Communities. Plants 2024, 13, 1723. https://doi.org/10.3390/plants13131723
Li L, Huang H, Jin Z, Jiang K, Zeng Y, Pathier D, Cheng X, Shen W. Strawberry Yield Improvement by Hydrogen-Based Irrigation Is Functionally Linked to Altered Rhizosphere Microbial Communities. Plants. 2024; 13(13):1723. https://doi.org/10.3390/plants13131723
Chicago/Turabian StyleLi, Longna, Huize Huang, Zhiwei Jin, Ke Jiang, Yan Zeng, Didier Pathier, Xu Cheng, and Wenbiao Shen. 2024. "Strawberry Yield Improvement by Hydrogen-Based Irrigation Is Functionally Linked to Altered Rhizosphere Microbial Communities" Plants 13, no. 13: 1723. https://doi.org/10.3390/plants13131723
APA StyleLi, L., Huang, H., Jin, Z., Jiang, K., Zeng, Y., Pathier, D., Cheng, X., & Shen, W. (2024). Strawberry Yield Improvement by Hydrogen-Based Irrigation Is Functionally Linked to Altered Rhizosphere Microbial Communities. Plants, 13(13), 1723. https://doi.org/10.3390/plants13131723