Rapid Grapevine Health Diagnosis Based on Digital Imaging and Deep Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Image Database
2.2. Image Preprocessing Techniques
2.3. Texture Characteristics Derived from the Gray Level Co-Occurrence Matrix
2.4. Overview of the Suggested Approach
2.5. Deep Networks
2.5.1. Deep Neural Network (DNN)
2.5.2. Convolutional Neural Network (CNN)
2.5.3. Long Short-Term Memory (LSTM)
2.6. Dataset and Model Training
2.7. AI GrapeCare Software
2.8. Performance Evaluation
3. Results and Discussion
3.1. Pretrained Network-Based DNN Model
3.2. Pretrained Network-Based CNN Model
3.3. Fusion of DNN-LSTM Model with Pretrained Networks
3.4. Top-Level Deep Network: CNN-LSTM with Pretrained Networks
3.5. Learning Curves for Hybrid Deep Network Analysis
3.6. Analyzing Deep Network Performance via the Confusion Matrix
3.7. AI GrapeCare: Software for Grape Health Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aravind, K.R.; Raja, P.; Aniirudh, R.; Mukesh, K.V.; Ashiwin, R.; Vikas, G. Grape crop disease classification using transfer learning approach. In Proceedings of the International conference on ISMAC in Computational Vision and Bio-Engineering 2018 (ISMAC-CVB), Palladam, India, 16–17 May 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 1623–1633. [Google Scholar]
- Savary, S.; Ficke, A.; Aubertot, J.N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 2012, 4, 519–537. [Google Scholar] [CrossRef]
- Da Silva, C.M.; Schwan-Estrada, K.R.F.; Rios, C.M.F.D.; Batista, B.N.; Pascholati, S.F. Effect of culture filtrate of Curvularia inaequalis on disease control and productivity of grape cv. Isabel. Afr. J. Agric. Res. 2014, 9, 3001–3010. [Google Scholar]
- Gavhale, K.R.; Gawande, U. An overview of the research on plant leaves disease detection using image processing techniques. IOSR-JCE 2014, 16, 10–16. [Google Scholar] [CrossRef]
- James, A.; Mahinda, A.; Mwamahonje, A.; Rweyemamu, E.W.; Mrema, E.; Aloys, K.; Swai, E.; Mpore, F.J.; Massawe, C. A review on the influence of fertilizers application on grape yield and quality in the tropics. J. Plant Nutr. 2023, 46, 2936–2957. [Google Scholar] [CrossRef]
- Zebec, V.; Lisjak, M.; Jović, J.; Kujundžić, T.; Rastija, D.; Lončarić, Z. Vineyard Fertilization Management for Iron Deficiency and Chlorosis Prevention on Carbonate Soil. Horticulturae 2021, 7, 285. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Elsherbiny, O.; Zhou, L.; He, Y.; Qiu, Z. A novel hybrid deep network for diagnosing water status in wheat crop using IoT-based multimodal data. Comput. Electron. Agric. 2022, 203, 107453. [Google Scholar] [CrossRef]
- Bengio, Y. Deep learning of representations for unsupervised and transfer learning. In Proceedings of the ICML Workshop on Unsupervised and Transfer Learning, JMLR Workshop and Conference Proceedings, Washington, DC, USA, 2 July 2011; pp. 17–36. [Google Scholar]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Wang, G.; Sun, Y.; Wang, J. Automatic image-based plant disease severity estimation using deep learning. Comput. Intell. Neurosci. 2017, 2017, 2917536. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 1, 311–318. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Comput Electron Agric 2018, 153, 46–53. [Google Scholar] [CrossRef]
- Jaisakthi, S.M.; Mirunalini, P.; Thenmozhi, D. Grape leaf disease identification using machine learning techniques. In Proceedings of the 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), Chennai, India, 21–23 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and flexible image augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Xiao, J.R.; Chung, P.C.; Wu, H.Y.; Phan, Q.H.; Yeh, J.L.A.; Hou, M.T.K. Detection of strawberry diseases using a convolutional neural network. Plants 2020, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Koklu, M.; Unlersen, M.F.; Ozkan, I.A.; Aslan, M.F.; Sabanci, K. A CNN-SVM study based on selected deep features for grapevine leaves classification. Measurement 2022, 188, 110425. [Google Scholar] [CrossRef]
- Uzhinskiy, A.; Ososkov, G.; Goncharov, P.; Nechaevskiy, A. Multifunctional platform and mobile application for plant disease detection. In Proceedings of the CEUR Workshop Proc, Budva, Montenegro, 30 September–4 October 2019; pp. 110–114. [Google Scholar]
- Yossy, E.H.; Pranata, J.; Wijaya, T.; Hermawan, H.; Budiharto, W. Mango fruit sortation system using neural network and computer vision. Procedia Comput. Sci. 2017, 116, 596–603. [Google Scholar] [CrossRef]
- Yogeshwari, M.; Thailambal, G. Automatic feature extraction and detection of plant leaf disease using GLCM features and convolutional neural networks. Mater. Today Proc. 2023, 81, 530–536. [Google Scholar] [CrossRef]
- Sari, Y.; Baskara, A.R.; Wahyuni, R. Classification of Chili Leaf Disease Using the Gray Level Co-occurrence Matrix (GLCM) and the Support Vector Machine (SVM) Methods. In Proceedings of the 2021 Sixth International Conference on Informatics and Computing (ICIC), Jakarta, Indonesia, 3–4 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Athanasiou, L.S.; Fotiadis, D.I.; Michalis, L.K.; Michalis, C.I. Plaque characterization methods using intravascular ultrasound imaging. In Atherosclerotic Plaque Characterization Methods Based on Coronary Imaging, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 71–94. [Google Scholar]
- Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Achieng, K.O. Modelling of soil moisture retention curve using machine learning techniques: Artificial and deep neural networks vs support vector regression models. Comput. Geosci. 2019, 133, 104320. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. Plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 2019, 180, 96–107. [Google Scholar] [CrossRef]
- Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM fully convolutional networks for time series classification. IEEE Access 2017, 6, 1662–1669. [Google Scholar] [CrossRef]
- Minichino, J.; Howse, J. Learning OpenCV 3 Computer Vision with Python; Packt Publishing Ltd.: Birmingham, UK, 2015. [Google Scholar]
- Van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- PySimpleGUI.org. PySimpleGUI. GitHub. Available online: https://github.com/PySimpleGUI/PySimpleGUI (accessed on 10 June 2020).
- Cortesi, D. PyInstaller Manual. 23 March 2023. Available online: https://pyinstaller.org/en/stable/ (accessed on 10 December 2023).
- Elsayed, S.; El-Hendawy, S.; Dewir, Y.H.; Schmidhalter, U.; Ibrahim, H.H.; Ibrahim, M.M.; Elsherbiny, O.; Farouk, M. Estimating the leaf water status and grain yield of wheat under different irrigation regimes using optimized two-and three-band hyperspectral indices and multivariate regression models. Water 2021, 13, 2666. [Google Scholar] [CrossRef]
- Gaagai, A.; Aouissi, H.A.; Bencedira, S.; Hinge, G.; Athamena, A.; Heddam, S.; Gad, M.; Elsherbiny, O.; Elsayed, S.; Eid, M.H.; et al. Application of water quality indices, machine learning approaches, and GIS to identify groundwater quality for irrigation purposes: A case study of Sahara Aquifer, Doucen Plain, Algeria. Water 2023, 15, 289. [Google Scholar] [CrossRef]
- Nagi, R.; Tripathy, S.S. Deep convolutional neural network based disease identification in grapevine leaf images. Multimed. Tools Appl. 2022, 81, 24995–25006. [Google Scholar] [CrossRef]
- Iwana, B.K.; Uchida, S. An empirical survey of data augmentation for time series classification with neural networks. PLoS ONE 2021, 16, e0254841. [Google Scholar] [CrossRef]
- Elmetwalli, A.H.; Mazrou, Y.S.; Tyler, A.N.; Hunter, P.D.; Elsherbiny, O.; Yaseen, Z.M.; Elsayed, S. Assessing the efficiency of remote sensing and machine learning algorithms to quantify wheat characteristics in the Nile Delta Region of Egypt. Agriculture 2022, 12, 332. [Google Scholar] [CrossRef]
- Goncharov, P.G.; Ososkov, A.; Nechaevskiy, A.; Uzhinskiy, A.; Nestsiarenia, I. Disease detection on the plant leaves by deep learning. In Proceedings of the Advances in Neural Computation, Machine Learning, and Cognitive Research II: Selected Papers from the XX International Conference on Neuroinformatics, Moscow, Russia, 8–12 October 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 151–159. [Google Scholar]
- Ghoury, S.; Sungur, C.; Durdu, A. Real-time diseases detection of grape and grape leaves using faster R-CNN and SSD MobileNet architectures. In Proceedings of the International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES 2019), Alanya, Turkey, 26–28 April 2019; pp. 39–44. [Google Scholar]
- Hasan, M.A.; Riana, D.; Swasono, S.; Priyatna, A.; Pudjiarti, E.; Prahartiwi, L.I. Identification of grape leaf diseases using convolutional neural network. J. Phys. Conf. Ser. 2020, 1641, 012007. [Google Scholar] [CrossRef]
Layer | Type | Input Size | Layer | Type | Input Size |
---|---|---|---|---|---|
0 | Input data | (50 × 50 × 3) | 11 | Conv2D | (6 × 6 × 512) |
1 | Conv2D | (50 × 50 × 3) | 12 | LeakyReLU | (6 × 6 × 64) |
2 | LeakyReLU | (50 × 50 × 1024) | 13 | MaxPooling2D | (6 × 6 × 64) |
3 | MaxPooling2D | (50 × 50 × 1024) | 14 | Batch Normalization | (2 × 2 × 64) |
4 | Batch Normalization | (17 × 17 × 1024) | 15 | Dropout | (2 × 2 × 64) |
5 | Dropout | (17 × 17 × 1024) | 16 | Conv2D | (2 × 2 × 64) |
6 | Conv2D | (17 × 17 × 1024) | 17 | LeakyReLU | (2 × 2 × 64) |
7 | LeakyReLU | (17 × 17 × 512) | 18 | MaxPooling2D | (2 × 2 × 64) |
8 | MaxPooling2D | (17 × 17 × 512) | 19 | Dropout | (1 × 1 × 64) |
9 | Batch Normalization | (6 × 6 × 512) | 20 | Flatten | (1 × 1 × 64) |
10 | Dropout | (6 × 6 × 512) | - | - | - |
Layer | Input Data | Transfer Learning | Dense | Flatten |
---|---|---|---|---|
Input size | (50 × 50 × 3) | (50 × 50 × 3) | (1 × 1 × 512) | (1 × 1 × 256) |
Model | Features | Augmented | Training | Validation | Performance | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Acc | Ls | Tt | Acc | Ls | Pr | Re | Fm | IoU | |||
DNNimg | VGG16 | Yes | 0.982 | 0.126 | 13.172 | 0.927 | 0.258 | 0.929 | 0.927 | 0.925 | 0.863 |
No | 0.792 | 0.712 | 4.192 | 0.695 | 0.925 | 0.559 | 0.695 | 0.601 | 0.532 | ||
VGG19 | Yes | 0.981 | 0.125 | 14.412 | 0.915 | 0.297 | 0.916 | 0.915 | 0.915 | 0.844 | |
No | 0.835 | 0.645 | 6.526 | 0.678 | 0.853 | 0.543 | 0.678 | 0.579 | 0.513 | ||
ResNet50 | Yes | 0.876 | 0.406 | 24.446 | 0.788 | 0.558 | 0.788 | 0.788 | 0.777 | 0.650 | |
No | 0.682 | 0.990 | 7.642 | 0.627 | 1.191 | 0.546 | 0.627 | 0.517 | 0.457 | ||
ResNet101V2 | Yes | 0.754 | 0.629 | 37.695 | 0.709 | 0.729 | 0.695 | 0.709 | 0.688 | 0.549 | |
No | 0.631 | 1.121 | 8.650 | 0.610 | 1.291 | 0.382 | 0.610 | 0.467 | 0.439 |
Model | Features | Augmented | Training | Validation | Performance | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Acc | Ls | Tt | Acc | Ls | Pr | Re | Fm | IoU | |||
CNNimg | VGG16 | Yes | 1.0 | 0.001 | 23.419 | 0.955 | 0.151 | 0.955 | 0.955 | 0.955 | 0.914 |
No | 0.987 | 0.095 | 5.403 | 0.746 | 0.588 | 0.744 | 0.746 | 0.731 | 0.595 | ||
VGG19 | Yes | 1.0 | 0.005 | 23.481 | 0.932 | 0.224 | 0.932 | 0.932 | 0.931 | 0.873 | |
No | 0.987 | 0.128 | 6.468 | 0.780 | 0.547 | 0.783 | 0.780 | 0.766 | 0.639 | ||
ResNet50 | Yes | 0.851 | 0.454 | 30.968 | 0.701 | 0.787 | 0.689 | 0.701 | 0.689 | 0.539 | |
No | 0.665 | 0.965 | 6.610 | 0.576 | 1.336 | 0.476 | 0.576 | 0.517 | 0.405 | ||
ResNet101V2 | Yes | 0.645 | 0.961 | 47.838 | 0.559 | 1.154 | 0.547 | 0.559 | 0.544 | 0.388 | |
No | 0.419 | 1.435 | 7.986 | 0.424 | 1.449 | 0.478 | 0.424 | 0.405 | 0.269 |
Model | Features | Augmented | Training | Validation | Performance | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Acc | Ls | Tt | Acc | Ls | Pr | Re | Fm | IoU | |||
DNNimg-LSTMGLCM | VGG16 | Yes | 0.982 | 0.127 | 14.443 | 0.924 | 0.265 | 0.924 | 0.924 | 0.923 | 0.858 |
No | 0.801 | 0.684 | 4.860 | 0.712 | 0.884 | 0.571 | 0.712 | 0.620 | 0.553 | ||
VGG19 | Yes | 0.984 | 0.129 | 16.522 | 0.924 | 0.266 | 0.923 | 0.924 | 0.923 | 0.858 | |
No | 0.818 | 0.669 | 7.207 | 0.712 | 0.883 | 0.723 | 0.712 | 0.638 | 0.553 | ||
ResNet50 | Yes | 0.884 | 0.409 | 27.493 | 0.785 | 0.578 | 0.782 | 0.785 | 0.774 | 0.647 | |
No | 0.665 | 1.009 | 7.255 | 0.593 | 1.201 | 0.363 | 0.593 | 0.450 | 0.422 | ||
ResNet101V2 | Yes | 0.777 | 0.609 | 39.401 | 0.720 | 0.725 | 0.705 | 0.720 | 0.701 | 0.563 | |
No | 0.627 | 1.126 | 9.695 | 0.593 | 1.268 | 0.365 | 0.593 | 0.451 | 0.422 |
Model | Features | Augmented | Training | Validation | Performance | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Acc | Ls | Tt | Acc | Ls | Pr | Re | Fm | IoU | |||
CNNimg-LSTMGLCM | VGG16 | Yes | 1.0 | 0.002 | 23.446 | 0.966 | 0.123 | 0.966 | 0.966 | 0.966 | 0.934 |
No | 0.992 | 0.102 | 5.509 | 0.712 | 0.658 | 0.678 | 0.712 | 0.678 | 0.553 | ||
VGG19 | Yes | 1.0 | 0.004 | 28.189 | 0.929 | 0.226 | 0.930 | 0.929 | 0.929 | 0.868 | |
No | 0.983 | 0.127 | 6.223 | 0.763 | 0.597 | 0.759 | 0.763 | 0.750 | 0.616 | ||
ResNet50 | Yes | 0.852 | 0.469 | 34.549 | 0.732 | 0.727 | 0.726 | 0.732 | 0.718 | 0.577 | |
No | 0.686 | 0.908 | 7.728 | 0.458 | 1.367 | 0.405 | 0.458 | 0.418 | 0.297 | ||
ResNet101V2 | Yes | 0.655 | 0.946 | 45.575 | 0.579 | 1.060 | 0.567 | 0.579 | 0.552 | 0.408 | |
No | 0.419 | 1.475 | 8.715 | 0.339 | 1.545 | 0.287 | 0.339 | 0.300 | 0.204 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsherbiny, O.; Elaraby, A.; Alahmadi, M.; Hamdan, M.; Gao, J. Rapid Grapevine Health Diagnosis Based on Digital Imaging and Deep Learning. Plants 2024, 13, 135. https://doi.org/10.3390/plants13010135
Elsherbiny O, Elaraby A, Alahmadi M, Hamdan M, Gao J. Rapid Grapevine Health Diagnosis Based on Digital Imaging and Deep Learning. Plants. 2024; 13(1):135. https://doi.org/10.3390/plants13010135
Chicago/Turabian StyleElsherbiny, Osama, Ahmed Elaraby, Mohammad Alahmadi, Mosab Hamdan, and Jianmin Gao. 2024. "Rapid Grapevine Health Diagnosis Based on Digital Imaging and Deep Learning" Plants 13, no. 1: 135. https://doi.org/10.3390/plants13010135
APA StyleElsherbiny, O., Elaraby, A., Alahmadi, M., Hamdan, M., & Gao, J. (2024). Rapid Grapevine Health Diagnosis Based on Digital Imaging and Deep Learning. Plants, 13(1), 135. https://doi.org/10.3390/plants13010135