A Genome-Wide Association Study and Genomic Prediction for Fiber and Sucrose Contents in a Mapping Population of LCP 85-384 Sugarcane
Abstract
1. Introduction
2. Results
2.1. Fiber and Sucrose Contents
2.2. Genetic Relationship and Population Structure
2.3. GWAS Analysis
2.4. Genomic Prediction Analysis
3. Discussion
3.1. Phenotyping
3.2. The Self-Progeny Population of LCP 85-384
3.3. Genetic Diversity, Population Structure and PCA
3.4. Genome-Wide Association Study
3.5. Genomic Prediction
4. Materials and Methods
4.1. Plant Materials
4.2. Phenotyping and Analysis
4.3. Genetic Markers and Genotyping
4.4. Genetic Diversity and Population Structure
4.5. Genome-Wide Association Study and Genomic Prediction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waclawovsky, A.J.; Sato, P.M.; Lembke, C.G.; Moore, P.H.; Souza, G.M. Sugarcane for bioenergy production: An assessment of yield and regulation of sucrose content. Plant Biotechnol. J. 2010, 8, 263–276. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 20 February 2023).
- Tew, T.L.; Cobill, R.M. Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In Genetic Improvement of Bioenergy Crops; Springer: New York, NY, USA, 2008; pp. 273–294. [Google Scholar]
- Landell, M.G.d.A.; Scarpari, M.S.; Xavier, M.A.; Anjos, I.A.d.; Baptista, A.S.; Aguiar, C.L.d.; Silva, D.N.d.; Bidóia, M.A.P.; Brancalião, S.R.; Bressiani, J.A. Residual biomass potential of commercial and pre-commercial sugarcane cultivars. Sci. Agric. 2013, 70, 299–304. [Google Scholar] [CrossRef]
- D’Hont, A.; Ison, D.; Alix, K.; Roux, C.; Glaszmann, J.C. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 1998, 41, 221–225. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Taylor, G.; Henry, R.J. Characterisation of microsatellite markers from sugarcane (Saccharum sp.), a highly polyploid species. Plant Sci. 2000, 155, 161–168. [Google Scholar] [CrossRef]
- Bremer, G. Problems in breeding and cytology of sugar cane. Euphytica 1961, 10, 59–78. [Google Scholar] [CrossRef]
- Ming, R.; Moore, P.H.; Wu, K.K.; D’Hont, A.; Glaszmann, J.C.; Tew, T.L.; Mirkov, T.E.; Da Silva, J.; Jifon, J.; Rai, M. Sugarcane improvement through breeding and biotechnology. Plant Breed. Rev. 2010, 27, 15–118. [Google Scholar]
- D’Hont, A.; Grivet, L.; Feldmann, P.; Glaszmann, J.; Rao, S.; Berding, N. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol. Gen. Genet. 1996, 250, 405–413. [Google Scholar] [CrossRef]
- Piperidis, N.; Piperidis, G.; D’Hont, A. Molecular cytogenetics. In Genetics, Genomics and Breeding of Sugarcane; CRC Press: Boca Raton, FL, USA, 2010; pp. 27–36. [Google Scholar]
- Grivet, L.; Arruda, P. Sugarcane genomics: Depicting the complex genome of an important tropical crop. Curr. Opin. Plant Biol. 2002, 5, 122–127. [Google Scholar] [CrossRef]
- Souza, G.M.; Berges, H.; Bocs, S.; Casu, R.; D’Hont, A.; Ferreira, J.E.; Henry, R.; Ming, R.; Potier, B.; Van Sluys, M.-A. The sugarcane genome challenge: Strategies for sequencing a highly complex genome. Trop. Plant Biol. 2011, 4, 145–156. [Google Scholar] [CrossRef]
- Cheavegatti-Gianotto, A.; de Abreu, H.M.C.; Arruda, P.; Bespalhok Filho, J.C.; Burnquist, W.L.; Creste, S.; di Ciero, L.; Ferro, J.A.; de Oliveira Figueira, A.V.; de Sousa Filgueiras, T. Sugarcane (Saccharum X officinarum): A reference study for the regulation of genetically modified cultivars in Brazil. Trop. Plant Biol. 2011, 4, 62–89. [Google Scholar] [CrossRef]
- Bischoff, K.P.; Gravois, K. The development of new sugarcane varieties at the LSU AgCenter. J. Am. Soc. Sugar Cane Technol. 2004, 24, 142–164. [Google Scholar]
- Banerjee, N.; Khan, M.S.; Swapna, M.; Singh, R.; Kumar, S. Progress and prospects of association mapping in sugarcane (Saccharum species hybrid), a complex polyploid crop. Sugar Tech 2020, 22, 939–953. [Google Scholar] [CrossRef]
- Racedo, J.; Gutiérrez, L.; Perera, M.F.; Ostengo, S.; Pardo, E.M.; Cuenya, M.I.; Welin, B.; Castagnaro, A.P. Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC Plant Biol. 2016, 16, 142. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Roe, B.; Macmil, S.; Yu, Q.; Murray, J.E.; Tang, H.; Chen, C.; Najar, F.; Wiley, G.; Bowers, J. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genom. 2010, 11, 261. [Google Scholar] [CrossRef] [PubMed]
- Alwala, S.; Kimbeng, C.A.; Henry, R.; Kole, C. Molecular genetic linkage mapping in Saccharum: Strategies, resources and achievements. In Genetics, Genomics and Breeding of Sugarcane; CRC Press: Boca Raton, FL, USA, 2010; pp. 69–96. [Google Scholar]
- Barreto, F.Z.; Rosa, J.R.B.F.; Balsalobre, T.W.A.; Pastina, M.M.; Silva, R.R.; Hoffmann, H.P.; de Souza, A.P.; Garcia, A.A.F.; Carneiro, M.S. A genome-wide association study identified loci for yield component traits in sugarcane (Saccharum spp.). PLoS ONE 2019, 14, e0219843. [Google Scholar] [CrossRef] [PubMed]
- Sorkheh, K.; Malysheva-Otto, L.V.; Wirthensohn, M.G.; Tarkesh-Esfahani, S.; Martínez-Gómez, P. Linkage disequilibrium, genetic association mapping and gene localization in crop plants. Genet. Mol. Biol. 2008, 31, 805–814. [Google Scholar] [CrossRef]
- Mackay, I.; Powell, W. Methods for linkage disequilibrium mapping in crops. Trends Plant Sci. 2007, 12, 57–63. [Google Scholar] [CrossRef]
- Raboin, L.-M.; Pauquet, J.; Butterfield, M.; D’Hont, A.; Glaszmann, J.-C. Analysis of genome-wide linkage disequilibrium in the highly polyploid sugarcane. Theor. Appl. Genet. 2008, 116, 701–714. [Google Scholar] [CrossRef]
- Gouy, M.; Rousselle, Y.; Thong Chane, A.; Anglade, A.; Royaert, S.; Nibouche, S.; Costet, L. Genome wide association mapping of agro-morphological and disease resistance traits in sugarcane. Euphytica 2015, 202, 269–284. [Google Scholar] [CrossRef]
- Wei, X.; Jackson, P.A.; McIntyre, C.L.; Aitken, K.S.; Croft, B. Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theor. Appl. Genet. 2006, 114, 155–164. [Google Scholar] [CrossRef]
- Débibakas, S.; Rocher, S.; Garsmeur, O.; Toubi, L.; Roques, D.; D’Hont, A.; Hoarau, J.-Y.; Daugrois, J.-H. Prospecting sugarcane resistance to sugarcane yellow leaf virus by genome-wide association. Theor. Appl. Genet. 2014, 127, 1719–1732. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, N.; Siraree, A.; Yadav, S.; Kumar, S.; Singh, J.; Pandey, D.K.; Singh, R.K. Marker-trait association study for sucrose and yield contributing traits in sugarcane (Saccharum spp. hybrid). Euphytica 2015, 205, 185–201. [Google Scholar] [CrossRef]
- Singh, R.K.; Banerjee, N.; Khan, M.; Yadav, S.; Kumar, S.; Duttamajumder, S.; Lal, R.J.; Patel, J.D.; Guo, H.; Zhang, D. Identification of putative candidate genes for red rot resistance in sugarcane (Saccharum species hybrid) using LD-based association mapping. Mol. Genet. Genom. 2016, 291, 1363–1377. [Google Scholar] [CrossRef] [PubMed]
- Ukoskit, K.; Posudsavang, G.; Pongsiripat, N.; Chatwachirawong, P.; Klomsa-Ard, P.; Poomipant, P.; Tragoonrung, S. Detection and validation of EST-SSR markers associated with sugar-related traits in sugarcane using linkage and association mapping. Genomics 2019, 111, 1–9. [Google Scholar] [CrossRef]
- Gutierrez, A.F.; Hoy, J.W.; Kimbeng, C.A.; Baisakh, N. Identification of genomic regions controlling leaf scald resistance in sugarcane using a bi-parental mapping population and selective genotyping by sequencing. Front. Plant Sci. 2018, 9, 877. [Google Scholar] [CrossRef]
- Ganal, M.W.; Röder, M.S. Microsatellite and SNP Markers in Wheat Breeding. In Genomics-Assisted Crop Improvement: Vol 2: Genomics Applications in Crops; Varshney, R.K., Tuberosa, R., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 1–24. [Google Scholar]
- Slate, J.; Gratten, J.; Beraldi, D.; Stapley, J.; Hale, M.; Pemberton, J.M. Gene mapping in the wild with SNPs: Guidelines and future directions. Genetica 2009, 136, 97–107. [Google Scholar] [CrossRef]
- Mishra, A.; Singh, P.K.; Bhandawat, A.; Sharma, V.; Sharma, V.; Singh, P.; Roy, J.; Sharma, H. Chapter 8—Analysis of SSR and SNP markers. In Bioinformatics; Singh, D.B., Pathak, R.K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 131–144. [Google Scholar]
- Heffner, E.L.; Sorrells, M.E.; Jannink, J.L. Genomic selection for crop improvement. Crop Sci. 2009, 49, 1–12. [Google Scholar] [CrossRef]
- Cabrera-Bosquet, L.; Crossa, J.; von Zitzewitz, J.; Serret, M.D.; Luis Araus, J. High-throughput phenotyping and genomic selection: The frontiers of crop breeding converge F. J. Integr. Plant Biol. 2012, 54, 312–320. [Google Scholar] [CrossRef]
- Olatoye, M.O.; Clark, L.V.; Wang, J.; Yang, X.; Yamada, T.; Sacks, E.J.; Lipka, A.E. Evaluation of genomic selection and marker-assisted selection in Miscanthus and energycane. Mol. Breed. 2019, 39, 171. [Google Scholar] [CrossRef]
- Deomano, E.; Jackson, P.; Wei, X.; Aitken, K.; Kota, R.; Pérez-Rodríguez, P. Genomic prediction of sugar content and cane yield in sugar cane clones in different stages of selection in a breeding program, with and without pedigree information. Mol. Breed. 2020, 40, 38. [Google Scholar] [CrossRef]
- Hayes, B.J.; Wei, X.; Joyce, P.; Atkin, F.; Deomano, E.; Yue, J.; Nguyen, L.; Ross, E.M.; Cavallaro, T.; Aitken, K.S. Accuracy of genomic prediction of complex traits in sugarcane. Theor. Appl. Genet. 2021, 134, 1455–1462. [Google Scholar] [CrossRef]
- Islam, M.S.; McCord, P.H.; Olatoye, M.O.; Qin, L.; Sood, S.; Lipka, A.E.; Todd, J.R. Experimental evaluation of genomic selection prediction for rust resistance in sugarcane. Plant Genome 2021, 14, e20148. [Google Scholar] [CrossRef]
- Andru, S.; Pan, Y.-B.; Thongthawee, S.; Burner, D.M.; Kimbeng, C.A. Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384′. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor. Appl. Genet. 2011, 123, 77–93. [Google Scholar] [CrossRef]
- Matsuoka, S.; Ferro, J.; Arruda, P. The Brazilian experience of sugarcane ethanol industry. Vitr. Cell. Dev. Biol.-Plant 2009, 45, 372–381. [Google Scholar] [CrossRef]
- Jackson, P.A. Breeding for improved sugar content in sugarcane. Field Crops Res. 2005, 92, 277–290. [Google Scholar] [CrossRef]
- Ballesta, P.; Bush, D.; Silva, F.F.; Mora, F.J.P. Genomic predictions using low-density SNP markers, pedigree and GWAS information: A case study with the non-model species Eucalyptus cladocalyx. Plants 2020, 9, 99. [Google Scholar] [CrossRef]
- Thirugnanasambandam, P.P.; Singode, A.; Thalambedu, L.; Shanmugavel, S. Opportunity and Challenges for High-throughput Genotyping in Sugarcane. Genotyping By Seq. Crop Improv. 2022, 306–327. [Google Scholar] [CrossRef]
- Abramson, M.; Shoseyov, O.; Shani, Z. Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Sci. 2010, 178, 61–72. [Google Scholar] [CrossRef]
- Liu, P.; Chandra, A.; Que, Y.; Chen, P.-H.; Grisham, M.P.; White, W.H.; Dalley, C.D.; Tew, T.L.; Pan, Y.-B. Identification of quantitative trait loci controlling sucrose content based on an enriched genetic linkage map of sugarcane (Saccharum spp. hybrids) cultivar ‘LCP 85-384′. Euphytica 2016, 207, 527–549. [Google Scholar] [CrossRef]
- Islam, M.S.; Pan, Y.B.; Lomax, L.; Grisham, M.P. Identification of quantitative trait loci (QTL) controlling fibre content of sugarcane (Saccharum hybrids spp.). Plant Breed. 2021, 140, 360–366. [Google Scholar] [CrossRef]
- Flint-Garcia, S.A.; Thornsberry, J.M.; Buckler IV, E.S. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol 2003, 54, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.; Wheeler, B.; Sampson, J.; Hartge, P.; Chanock, S.J.; Park, J.-H. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nat. Genet. 2013, 45, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D. Methods for investigating gene-environment interactions in candidate pathway and genome-wide association studies. Annu. Rev. Public Health 2010, 31, 21. [Google Scholar] [CrossRef] [PubMed]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef]
- Yadav, S.; Jackson, P.; Wei, X.; Ross, E.M.; Aitken, K.; Deomano, E.; Atkin, F.; Hayes, B.J.; Voss-Fels, K.P. Accelerating genetic gain in sugarcane breeding using genomic selection. Agronomy 2020, 10, 585. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Shiv, A.; Kaur, G.; Meena, M.R.; Raja, A.K.; Vengavasi, K.; Mall, A.K.; Kumar, S.; Singh, P.K.; Singh, J. Integrated Approach in Genomic Selection to Accelerate Genetic Gain in Sugarcane. Plants 2022, 11, 2139. [Google Scholar] [CrossRef]
- Alwala, S.; Kimbeng, C.; Gravois, K.; Bischoff, K. TRAP, a new tool for sugarcane breeding: Comparison with AFLP and coefficient of parentage. J. Am. Soc. Sugar Cane Technol. 2006, 26, 62–86. [Google Scholar]
- Creste, S.; Sansoli, D.; Tardiani, A.; Silva, D.; Gonçalves, F.; Fávero, T.; Medeiros, C.; Festucci, C.; Carlini-Garcia, L.; Landell, M. Comparison of AFLP, TRAP and SSRs in the estimation of genetic relationships in sugarcane. Sugar Tech 2010, 12, 150–154. [Google Scholar] [CrossRef]
- Legendre, B.; Henderson, M. History and development of sugar yield calculations. Proc.-Am. Soc. Sugar Cane Technol. 1973, 2, 10–18. [Google Scholar]
- Aitken, K.; Jackson, P.; McIntyre, C. Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar× Saccharum officinarum population. Theor. Appl. Genet. 2006, 112, 1306–1317. [Google Scholar] [CrossRef]
- Pan, Y.-B.; Burner, D.; Legendre, B. An assessment of the phylogenetic relationship among sugarcane and related taxa based on the nucleotide sequence of 5S rRNA intergenic spacers. Genetica 2000, 108, 285–295. [Google Scholar] [CrossRef]
- Pan, Y.; Scheffler, B.; Richard Jr, E. High-throughput molecular genotyping of commercial sugarcane clones with microsatellite (SSR) markers. Sugar Tech 2007, 9, 176–181. [Google Scholar]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Shi, A.; Qin, J.; Mou, B.; Correll, J.; Weng, Y.; Brenner, D.; Feng, C.; Motes, D.; Yang, W.; Dong, L. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing. PLoS ONE 2017, 12, e0188745. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Jiang, J.; Nguyen, T. Linear and Generalized Linear Mixed Models and Their Applications; Springer: New York, NY, USA, 2007; Volume 1. [Google Scholar]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef]
- Endelman, J.B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 2011, 4, 250–255. [Google Scholar] [CrossRef]
- Heslot, N.; Yang, H.P.; Sorrells, M.E.; Jannink, J.L. Genomic selection in plant breeding: A comparison of models. Crop Sci. 2012, 52, 146–160. [Google Scholar] [CrossRef]
- Shikha, M.; Kanika, A.; Rao, A.R.; Mallikarjuna, M.G.; Gupta, H.S.; Nepolean, T. Genomic selection for drought tolerance using genome-wide SNPs in maize. Front. Plant Sci. 2017, 8, 550. [Google Scholar] [CrossRef] [PubMed]
Traits | Year | Mean (%) | Std Dev | Std Err | Min (%) | Max (%) | Range (%) | Variance | CV (%) | Median (%) | Broad-Sense Heritability (h2) | Correlations (r) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sucrose | Fiber | ||||||||||||
Sucrose | 2006 | 12.98 | 1.02 | 0.07 | 9.84 | 15.54 | 5.70 | 1.04 | 7.87 | 13.07 | 0.65 | 1.00 | −0.40 |
2007 | 11.92 | 1.23 | 0.08 | 6.25 | 14.19 | 7.94 | 1.51 | 10.30 | 12.04 | 0.67 | 1.00 | −0.23 | |
Fiber | 2006 | 19.42 | 1.89 | 0.13 | 14.96 | 24.17 | 9.21 | 3.58 | 9.75 | 19.27 | 0.74 | −0.40 | 1.00 |
2007 | 19.38 | 1.98 | 0.13 | 14.84 | 26.02 | 11.18 | 3.92 | 10.22 | 19.44 | 0.77 | −0.23 | 1.00 |
Marker | LOD [−log(p-Value)] | Trait | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SMR | GLM | MLM | FarmCPU | SMR | GLM | MLM | FarmCPU | SMR | GLM | MLM | FarmCPU | ||
2006 | 2007 | Mean (2006 and 2007) | |||||||||||
E32M49_110 | 3.31 | 3.30 | 3.05 | 3.05 | 3.66 | 3.59 | 3.38 | 3.44 | Sucrose content | ||||
E32M50_290 | 2.33 | 2.59 | 2.42 | 2.44 | 2.89 | 2.84 | 2.46 | 2.71 | |||||
E32M61_246 | 2.56 | 2.41 | 2.26 | 2.36 | 2.23 | 2.20 | 2.05 | 2.09 | |||||
E32M62_76 | 2.23 | 2.46 | 2.04 | 2.14 | 3.29 | 3.21 | 2.50 | 3.10 | |||||
E37M49_183 | 2.29 | 2.58 | 2.77 | 2.20 | 2.30 | 2.20 | 2.45 | 2.82 | 2.92 | 2.30 | |||
E39M50_82 | 2.03 | 2.12 | 2.04 | ||||||||||
SMC703BS_214 | 2.35 | 2.48 | 2.27 | 2.17 | 2.07 | 2.09 | 2.03 | ||||||
SMC703BS_216 | 2.35 | 2.48 | 2.27 | 2.17 | 2.07 | 2.09 | 2.03 | ||||||
StSy-R3-128 | 2.17 | 2.21 | 2.13 | 2.23 | 2.23 | 2.18 | |||||||
E32M49_431 | 2.45 | 2.22 | 2.36 | 2.68 | 2.40 | Fiber Content | |||||||
E32M61_127 | 3.67 | 2.71 | 2.11 | 2.70 | 2.60 | 2.08 | 2.25 | 3.84 | 3.09 | 2.19 | 3.11 | ||
E33M61_97 | 2.98 | 2.94 | 2.33 | 2.20 | 2.95 | 2.97 | 2.63 | 2.55 | 3.32 | 3.37 | 2.59 | 2.70 | |
E33M62_170 | 2.66 | 2.44 | 2.32 | 2.17 | 2.00 | 3.32 | 3.16 | 2.19 | 2.70 | ||||
E36M48_61 | 4.18 | 3.55 | 2.89 | 3.08 | 3.28 | 2.95 | 2.40 | 2.66 | |||||
E36M60_250 | 2.33 | 2.11 | 2.26 | 2.13 | 2.95 | 2.84 | 2.62 | 2.39 | |||||
E36M61_73 | 3.26 | 3.28 | 3.54 | 2.81 | 2.10 | 2.13 | 2.27 | ||||||
E37M50_316 | 2.89 | 3.07 | 2.19 | 2.13 | 2.79 | 2.77 | 2.41 | 3.81 | 3.90 | 2.72 | 3.09 | ||
E38M61_165 | 3.77 | 3.36 | 2.62 | 2.78 | 3.37 | 3.19 | 2.19 | 2.73 | |||||
E40M59_188 | 2.25 | 2.08 | 2.37 | 2.06 | |||||||||
E40M62 153 | 2.19 | 2.40 | 2.07 | 2.17 | |||||||||
E41M61_215 | 2.18 | 2.16 | 3.13 | 3.13 | 2.74 | 2.54 | |||||||
SMC1814LA_152 | 2.09 | 2.37 | 2.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, H.; Chen, Y.; Pan, Y.-B.; Shi, A. A Genome-Wide Association Study and Genomic Prediction for Fiber and Sucrose Contents in a Mapping Population of LCP 85-384 Sugarcane. Plants 2023, 12, 1041. https://doi.org/10.3390/plants12051041
Xiong H, Chen Y, Pan Y-B, Shi A. A Genome-Wide Association Study and Genomic Prediction for Fiber and Sucrose Contents in a Mapping Population of LCP 85-384 Sugarcane. Plants. 2023; 12(5):1041. https://doi.org/10.3390/plants12051041
Chicago/Turabian StyleXiong, Haizheng, Yilin Chen, Yong-Bao Pan, and Ainong Shi. 2023. "A Genome-Wide Association Study and Genomic Prediction for Fiber and Sucrose Contents in a Mapping Population of LCP 85-384 Sugarcane" Plants 12, no. 5: 1041. https://doi.org/10.3390/plants12051041
APA StyleXiong, H., Chen, Y., Pan, Y.-B., & Shi, A. (2023). A Genome-Wide Association Study and Genomic Prediction for Fiber and Sucrose Contents in a Mapping Population of LCP 85-384 Sugarcane. Plants, 12(5), 1041. https://doi.org/10.3390/plants12051041