Effect of Soil Composition on Secondary Metabolites of Moroccan Saffron (Crocus sativus L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Soil Composition on Secondary Metabolites of Saffron
2.1.1. Influence of Soil Texture
2.1.2. Influence of Soil pH
2.1.3. Influence of Soil Phosphorus
2.1.4. Influence of Soil Potassium
2.1.5. Influence of Soil Organic Matter
- -
- Ethylene glycol treatment: the blade is exposed to ethylene glycol vapor for 2 h to induce the swelling of some types of minerals.
- -
- Heating: this treatment heats the blade for 2 h at 550 °C.
3. Materials and Methods
3.1. Analysis of Saffron Samples
3.1.1. Samples
3.1.2. Standards
3.1.3. Solvents
3.1.4. Preparation of Saffron Extract
3.1.5. UV–Visible Spectroscopy Analysis
3.1.6. HPLC-DAD Analysis
3.2. Soil Sample Analysis
3.2.1. Physico-Chemical Analysis
3.2.2. ED-XRF Fluorescence Analysis
3.2.3. X-ray Diffraction Analysis
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Cardone, L.; Castonuovo, D.; Perniola, M.; Cicco, N.; Candido, V. Evaluation of corm origin and climatic conditions on saffron (Crocus sativus L.) yield and quality. J. Sci. Food Agric. 2019, 99, 5858–5869. [Google Scholar] [CrossRef]
- Lage, M.; Cantrell, C.L. Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Sci. Hortic. 2009, 121, 366–373. [Google Scholar] [CrossRef]
- Maggi, L.; Carmona, M.; Kelly, S.D.; Marigheto, N.; Alonso, G.L. Geographical origin differentiation of saffron spice (Crocus sativus L. stigmas)—Preliminary investigation using chemical and multi-element (H, C, N) stable isotope analysis. Food Chem. 2011, 128, 543–548. [Google Scholar] [CrossRef]
- Parizad, S.; Dizadji, A.; Habibi, M.K.; Winter, S.; Kalantari, S.; Movi, S.; Lorenzo, C.; Alonso, G.L.; Moratalla-Lopez, N. The effects of geographical origin and virus infection on the saffron (Crocus sativus L.) quality. Food Chem. 2019, 295, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Siracusa, L.; Gresta, F.; Avola, G.; Lombardo, G.M.; Ruberto, G. Influence of corm provenance and environmental condition on yield and apocarotenoid profiles in saffron (Crocus sativus L.). J. Food Compost. Anal. 2010, 23, 394–400. [Google Scholar] [CrossRef]
- Giorgi, A.; Pentimalli, D.; Giupponi, L.; Panseri, S. Quality traits of saffron (Crocus sativus L.) produced in the Italian Alps. Open Agric. 2017, 2, 52–57. [Google Scholar] [CrossRef]
- Kothari, D.; Thakur, M.; Joshi, R.; Kumar, A.; Kumar, R. Agro-climatic suitability evaluation for saffron production in areas of western Himalaya. Front. Plant Sci. 2021, 12, 657819. [Google Scholar] [CrossRef] [PubMed]
- Sampathu, S.R.; Shivashankar, S.; Lewis, Y.S.; Wood, A.B. Saffron (Crocus Sativus Linn.)—Cultivation, processing, chemistry and standardization. Crit. Rev. Food Sci. Nutr. 1984, 20, 123–157. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; Tsimidou, M.Z. Saffron quality: Effect of agricultural practices, processing and storage. Prod. Pract. Qual. Assess. Food Crops 2004, 1, 209–260. [Google Scholar] [CrossRef]
- Gresta, F.; Lombardo, G.M.; Siracusa, L.; Ruberto, G. Effect of mother corm dimension ans sowing time on stigma yield, daughter corms and qualitative aspects of saffron (Crocus sativus L.) in a Mediterranean environment. J. Sci. Food Agric. 2008, 88, 1144–1150. [Google Scholar] [CrossRef]
- Cardone, L.; Candido, V.; Castronuovo, D.; Perniola, M.; Cicco, N. Comparing annual and biennial crop cycle on the growth, yield and quality of saffron using three corm dimensions. Sci. Hortic. 2021, 288, 110393. [Google Scholar] [CrossRef]
- Erden, K.; Özel, A. Influence of delayed harvest on yield and some quality parameters of saffron (Crocus sativus L.). J. Agric. Biol. Sci. 2016, 11, 313–316. [Google Scholar]
- Alonso, G.L.; Varon, R.; Gomez, R.; Navarro, F.; Salinas, M.R. Auto-oxidation in saffron at 40 °C and 75% relative humidity. J. Food Sci. 1990, 55, 595–596. [Google Scholar] [CrossRef]
- Alonso, G.L.; Varon, R.; Salinas, M.R.; Navarro, F. Auto-oxidation of crocin and picrocrocin in saffron under different storage conditions. Boll. Chim.-Farm. 1993, 132, 116–120. [Google Scholar]
- Gregory, M.J.; Menary, R.C.; Davies, N.W. Effect of drying temperature and air flow on the production and retention of secondary metabolites in saffron. J. Agric. Food Chem. 2005, 53, 5969–5975. [Google Scholar] [CrossRef]
- del Campo, C.P.; Carmona, M.; Maggi, L.; Kanakis, C.D.; Anastasaki, E.G.; Tarantilis, P.A.; Polissiou, M.G.; Alonso, G.L. Effects of mild temperature conditions during dehydration procedures on saffron quality parameters. J. Sci. Food Agric. 2010, 90, 719–725. [Google Scholar] [CrossRef]
- Chaouqi, S.; Lage, M.; García-Rodríguez, M.V.; Alonso, G.L.; Guedira, T.; Kribii, A.; Douaik, A.; Carmona, M. Descriptive analysis of Moroccan volatile saffron according to the storage and drying conditions. Der. Pharma. Chem. 2016, 8, 222–227. [Google Scholar]
- Chaouqi, S.; Moratalla-López, N.; Lage, M.; Lorenzo, C.; Alonso, G.L.; Guedira, T. Effect of drying and storage process on Moroccan saffron quality. Food Biosci. 2018, 22, 146–153. [Google Scholar] [CrossRef]
- Macchia, M.; Ceccarini, L.; Molfetta, I.; Cioni, P.L.; Flamini, G. Studies on saffron (Crocus sativus L.) from Tuscan Maremma (Italy): Effects of geographical origin, cultivation environment and drying method on volatile emission. Int. J. Food Sci. Technol. 2013, 48, 2370–2375. [Google Scholar] [CrossRef]
- Arapcheska, M.; Tuteska, J. Factors affecting active constituents of saffron (Crocus Sativus L.). Curr. Trends Nat. Sci. 2020, 9, 289–295. [Google Scholar] [CrossRef]
- Atyane, L.H.; Lagram, K.; Ben El Caid, M.; Lachheb, M.; Salaka, L.; Serghini, M.A.; Elmaimouni, L. Study of the influence of geographical origin and environment conditions on the three secondary metabolites of Moroccan saffron by UV-visible spectrometry. Acta Hortic. 2016, 1184, 267–272. [Google Scholar] [CrossRef]
- Mykhailenko, O.; Desenko, V.; Ivanauskas, L.; Georgiyants, V. Standard operating procedure of Ukrainian saffron cultivation according with good agricultural and collection practices to assure quality and traceability. Ind. Crops Prod. 2020, 151, 112376. [Google Scholar] [CrossRef]
- Lambert, A.; Karra, Y. Influence of soil composition and drying methods on chemical and physical quality evaluation of saffron. Acta Hortic. 2016, 1184, 165–172. [Google Scholar] [CrossRef]
- El Grah, F.Z.; Bennasser, S.M.; El Ghazali, H.; Ait Hammou, R.; Harrouni, C.; Daoud, S. Characterization of the Moroccan saffron in relation to climate, soil, and water in its main production zones. J. Hortic. Postharvest Res. 2022, 5, 129–140. [Google Scholar]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.W. A new method for the mechanical analysis of soils and other dispersions. J. Agric. Sci. 1922, 12, 306–321. [Google Scholar] [CrossRef]
- Birouk, A.; Aboudrare, A.; Ait-Oubahou, A.; Kenny, L.; El Bennoury, H. Guide des Bonnes Pratiques de Production du Safran Dans la Reégion de Taliouine-Tazenakht; Rapport de la FAO; Office Régionale de Mise en Valeur Agricole de Ouarzazate: Ouarzazate, Morocco, 2011; 107p. [Google Scholar]
- Cardone, L.; Castronuovo, D.; Perniola, M.; Scrano, L.; Cicco, N.; Candido, V. The Influence of Soil Physical and Chemical Properties on Saffron (Crocus sativus L.) Growth, Yield and Quality. Agronomy 2020, 10, 1154. [Google Scholar] [CrossRef]
- Seljasen, R.; Lea, P.; Torp, T.; Riley, H.; Berentsen, E.; Thomsen, M.; Bengtsson, G.B. Effects of genotype, soil type, year and fertilisation on sensory and morphological attributes of carrots (Daucus carota L.). J. Sci. Food Agric. 2012, 92, 1786–1799. [Google Scholar] [CrossRef]
- Husaini, A.M.; Hassan, B.; Ghani, M.Y.; Teixeira da Silva, J.A.; Kirmani, N.A. Saffron (Crocus sativus Kashmirianus) cultivation in Kashmir: Practices and problems. Funct. Plant Sci. Biotechnol. 2010, 4, 108–115. [Google Scholar]
- Yarami, N.; Sepaskhah, A.R. Effect of irrigation water salinity, manure application and planting method on qualitative compounds of saffron (Crocus sativus L.). Int. J. Plant Prod. 2016, 10, 123–138. [Google Scholar]
- Baricevic, D.; Zupancic, A. The impact of drought stress and/or nitrogen fertilization in some medicinal plants. J. Herbs Spices Med. Plants 2002, 9, 53–64. [Google Scholar] [CrossRef]
- Pandey, V.; Patel, A.; Patra, D.D. Amelioration of mineral nutrition, productivity, antioxidant activity and aroma profile in marigold (Tagetes minuta L.) with organic and chemical fertilization. Ind. Crops Prod. 2015, 76, 378–385. [Google Scholar] [CrossRef]
- Hassan, A. Effects of mineral nutrients on physiological and biochemical processes related to secondary metabolites production in medicinal herbs. Med. Aromat. Plant Sci. Biotechnol. 2012, 6, 105–110. [Google Scholar]
- Rezaian, S.; Paseban, M. The effect of micronutrients and manure fertilizers on the quantity and quality of Khorasan saffron. Acta Hortic. 2006, 739, 155–158. [Google Scholar] [CrossRef]
- Rabani-Foroutagheh, M.; Hamidoghlia, Y.; Mohajeri, S.A. Effect of split foliar fertilisation on the quality and quantity of active constituents in saffron (Crocus sativus L.). J. Sci. Food Agric. 2013, 94, 1872–1878. [Google Scholar] [CrossRef]
- Ghanbari, J.; Khajoei-Nejad, G.; van Ruth, S.M.; Aghighi, S. The possibility for improvement of flowering, corm properties, bioactive compounds, and antioxidant activity in saffron (Crocus sativus L.) by different nutritional regimes. Ind. Crops Prod. 2019, 135, 301–310. [Google Scholar] [CrossRef]
- Liang, Y.; Nikolic, M.; Bélanger, R.; Gong, H.; Song, A. Silicon-mediated tolerance to salt stress. Silicon Agric. Theory Pract. 2015, 123–142. [Google Scholar] [CrossRef]
- Walgraffe, Y. Travail de fin d’étude: Influence de la Biodisponibilité du Silicium Dans les sols sur les Défenses Naturelles des Plantes Contre les Bio-Agresseurs. Master’s Thesis, Université de Liège, Liège, Belgique, 2018. [Google Scholar]
- Guével, M.H.; Menzies, J.G.; Bélanger, R.R. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur. J. Plant Pathol. 2007, 119, 429–436. [Google Scholar] [CrossRef]
- Rogalla, H.; Romheld, V. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ. 2002, 25, 549–555. [Google Scholar] [CrossRef]
- Liang, Y.; Sun, W.; Zhu, Y.G.; Christie, P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ. Pollut. 2007, 147, 422–428. [Google Scholar] [CrossRef]
- Williams, D.E.; Vlamis, J. The effect of silicon on yield and manganese-54 uptake and distribution in the leaves of barley plants grown in culture solutions. Plant Physiol. 1957, 32, 404–409. [Google Scholar] [CrossRef]
- Ma, J.F.; Miyake, Y.; Takahashi, E. Silicon as a beneficial element for crop plants. J. Plant Sci. 2001, 8, 17–39. [Google Scholar] [CrossRef]
- Ma, J.F.; Takahashi, E. Soil, Fertilizer, and Plant Silicon Research in Japan; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Barre, P.; Velde, B.; Abbadie, L. Dynamic role of ‘‘illite-like’’ clay minerals in temperate soils: Facts and hypotheses. Biogeochemistry 2007, 82, 77–88. [Google Scholar] [CrossRef]
- Savy, S. Biosynthèse de Caroténoïdes Aromatiques Hydroxylés par Des Bactéries Non Photosynthétiques: Des Carotènes aux Xanthophylles. Ph.D. Thesis, Université de Bretagne occidentale-Brest, Brest, France, 2005. [Google Scholar]
- Ma, J.F.; Takahashi, E. Effect of Silicon on the Growth and Phosphprus Uptake of Rice. Plant Soil. 1990, 126, 115–119. [Google Scholar] [CrossRef]
- Farahani, S.M.; Khalesi, A.; Sharghi, Y. Effect of Nano Iron Chelate Fertilizer on Iron Absorption and Saffron (Crocus sativus L.) Quantitative and Qualitative Characteristics. Asian J. Biol. Sci. 2015, 8, 72–82. [Google Scholar] [CrossRef]
- Chinnamuthu, C.R.; Boopathi, P.M. Nanotechnology and agroecosystem. Madras Agric. J. 2009, 96, 17–31. [Google Scholar]
- Cui, H.X.; Sun, C.J.; Liu, Q.; Jiang, J.; Gu, W. Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In Proceedings of the International Conference on Nanoagri, Sao Pedro, Brazil, 20–25 June 2010; pp. 28–33. [Google Scholar]
- Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of Nanotechnology in Plant Growth and Crop Protection: A Review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef]
- Miao, B.H.; Han, X.G.; Zhang, W.H. The ameliorative effect of silicon on soybean seedlings grown in potassium deficient medium. Ann. Bot. 2010, 105, 967–973. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Cao, B.; Wang, S.; Liu, P.; Deng, X.; Yin, L.; Zhang, S. Silicon moderated the K deficiency by improving the plant-water status in sorghum. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mali, M.; Aery, N.C. Silicon effects on nodule growth, dry-matter production, and mineral nutrition of cowpea (Vigna unguiculata). J. Plant Nutr. Soil Sci. 2008, 171, 835–840. [Google Scholar] [CrossRef]
- Li, Y.C.; Sumner, M.E.; Miller, W.P.; Alva, A.K. Mechanism of silicon induced alleviation of aluminum phytotoxicity. J. Plant Nutr. 1996, 19, 1075–1087. [Google Scholar] [CrossRef]
- Kidd, P.S.; Llugany, M.; Poschenrieder, C.; Gunsé, B.; Barceló, J. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 2001, 52, 1339–1352. [Google Scholar] [CrossRef]
- Ryder, M.; Gérard, F.; Evans, D.E.; Hodson, M.J. The use of root growth and modelling data to investigate amelioration of aluminium toxicity by silicon in Picea abies seedlings. J. Inorg. Biochem. 2003, 97, 52–58. [Google Scholar] [CrossRef]
- Wang, Y.; Stass, A.; Horst, W.J. Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol. 2004, 136, 3762–3770. [Google Scholar] [CrossRef] [PubMed]
- Hodson, M.J.; Sangster, A.G. The interaction between silicon and aluminium in sorghum bicolor (L.) Moench: Growth analysis and x-ray microanalysis. Ann. Bot. 1993, 72, 389–400. [Google Scholar] [CrossRef]
- Hodson, M.J.; Sangster, A.G. X-ray microanalytical studies of mineral localization in the needles of white pine (Pinus strobus L.). Ann. Bot. 2002, 89, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Arnó, J.; Rosell, J.R.; Blanco, R.; Ramos, M.C.; Martínez-Casasnovas, J.A. Spatial variability in grape yield and quality influenced by crop and soil nutrition characteristics. Precis. Agric. 2012, 13, 393–410. [Google Scholar] [CrossRef]
- Singh, S.; Tewari, G.; Pande, C.; Singh, C. Variation in essential oil composition of Ocimum americanum L. from north-western Himalayan region. J. Essent. Oil Res. 2013, 25, 278–290. [Google Scholar] [CrossRef]
- Mosleh, Z.; Salehi, M.H.; Rafieiolhossaini, M. Effect of different soil series and manure application on agro-morphological characteristics, essential oil and chamazulene content of German chamomile. J. Essent. Oil Bear. Plants 2013, 16, 730–739. [Google Scholar] [CrossRef]
- Amiri, N.; Yadegari, M.; Hamedi, B. Essential oil composition of Cirsium arvense L. produced in different climate and soil properties. Rec. Nat. Prod. 2018, 12, 251–262. [Google Scholar] [CrossRef]
- Ormeno, E.; Fernandez, C. Effect of soil nutrient on production and diversity of volatile terpenoids from plants. Curr. Bioact. Compd. 2012, 8, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Mumivand, H.; Babalar, M.; Hadian, J.; Fakhr-Tabatabaei, M. Plant growth and essential oil content and composition of Saturn (Satureja hortensis L.) in response to calcium carbonate and nitrogen application rates. J. Med. Plant Res. 2011, 5, 1859–1866. [Google Scholar]
- Zidorn, C.; Schubert, B.; Stuppner, H. Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochem. Syst. Ecol. 2005, 33, 855–872. [Google Scholar] [CrossRef]
- Zarinkamar, F.; Tajik, S.; Soleimanpour, S. Effects of altitude on anatomy and concentration of crocin, picrocrocin and safranal in Crocus sativus L. Aust. J. Crop Sci. 2011, 5, 831–838. [Google Scholar]
- ISO 3632; Saffron (Crocus sativus L.). Part 1: Specification, Part 2: Test methods. ISO: London, UK, 2011.
- García-Rodríguez, M.V.; Serrano-Díaz, J.; Tarantilis, P.A.; López-Córcoles, H.; Carmona, M.; Alonso, G.L. Determination of saffron quality by high-performance liquid chromatography. J. Agric. Food Chem. 2014, 62, 8068–8074. [Google Scholar] [CrossRef]
- Mosquera, M.; Isabel, M. (Eds.) Clorofilas y Carotenoides en Tecnología de los Alimentos; Universidad de Sevilla: Sevilla, Spain, 1997; pp. 43–60. [Google Scholar]
- Friend, J.; Mayer, A.M. The enzymic destruction of carotenoids by isolated chloroplasts. Biochim. Biophys. Acta 1960, 41, 422–429. [Google Scholar] [CrossRef]
- Weber, F.; Laskawy, G.; Grosch, W. Co-oxidation of carotene and crocin by soybean lipoxygenase iso-enzymes. Z. Lebensm. Unters.-Forsch. 1974, 155, 142–150. [Google Scholar] [CrossRef]
- Speranza, G.; Dada, G.; Manitto, P.; Monti, D.; Grammatica, P. 13-Cis crocin: A new crocinoid of saffron. Gazz. Chim. Ital. 1984, 114, 189–192. [Google Scholar]
Samples | Sand (%) | Clay (%) | Loam (%) | Texture | pH | Class | EC (ms/cm) | Class | P2O5 (ppm) | Class | OM (%) | Class | K2O (ppm) | Class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 52.9 | 21.4 | 25.6 | Sand–clay–loam | 7.35 | Weakly alkaline | 3.72 | Non-saline | 225.99 | Very high | 6.18 | Very rich | 704.93 | Very high |
T2 | 45.9 | 20.8 | 33.3 | Loam | 7.1 | Neutral | 1.2 | Non-saline | 22.11 | Low | 3.6 | Moderately rich | 123.5 | Rich |
T3 | 64.5 | 15.4 | 20 | Sand–loam | 7.63 | Weakly alkaline | 0.9 | Non-saline | 13.77 | Low | 2.84 | Moderately rich | 69.29 | Low |
T4 | 47.2 | 21.2 | 31.5 | Loam | 7.87 | Moderately alkaline | 1.12 | Non-saline | 105.57 | Very high | 4.92 | Rich | 466.94 | Very high |
T5 | 47 | 15.7 | 37.3 | Loam | 7.48 | Weakly alkaline | 0.97 | Non-saline | 30.24 | Rich | 2.34 | Moderately rich | 189.79 | High |
T6 | 48 | 17.8 | 34.1 | Loam | 6.85 | Neutral | 2.08 | Non-saline | 95.85 | High | 7.34 | Very rich | 241 | High |
T7 | 49.2 | 15.4 | 35.4 | Loam | 7.49 | Weakly alkaline | 0.94 | Non-saline | 46.44 | High | 3.2 | Rich | 120.5 | Rich |
T8 | 47.4 | 27.2 | 25.4 | Sand–clay–loam | 7.5 | Weakly alkaline | 0.86 | Non-saline | 31.86 | Rich | 3.78 | Rich | 265.1 | High |
T9 | 62.8 | 15.4 | 21.8 | Sand–loam | 7.39 | Weakly alkaline | 1.2 | Non-saline | 0.27 | Low | 4.24 | Rich | 132.55 | Rich |
T10 | 52.5 | 21.3 | 26.2 | Sand–clay–loam | 7.38 | Weakly alkaline | 1.51 | Non-saline | 81.54 | High | 3.16 | Rich | 259.08 | High |
Texture | Trans-5-nG | Trans-4-GG | Trans-4-ng | Trans-3-Gg | Trans-2-gg | Cis-4-GG | Trans-2-G | Cis-3-Gg | Cis-2-G | Trans-1-g |
---|---|---|---|---|---|---|---|---|---|---|
Loam–clay–sand | 3.90 b ± 0.58 | 103.76 b ± 7.81 | 3.56 b ± 0.84 | 78.46 c ± 9.19 | 14.20 b ± 3.91 | 2.62 b ± 0.67 | 1.00 a ± 0.26 | 10.62 b ± 1.62 | 0.39 b ± 0.08 | 3.42 b ± 1.25 |
Sand–loam | 2.77 a ± 0.09 | 86.16 a ± 10.78 | 2.61 a ± 0.14 | 39.51 a ± 1.34 | 7.99 a ± 0.78 | 2.24 b ± 0.11 | 1.03 a ± 0.08 | 7.06 a ± 1.71 | 0.29 a ± 0.04 | 1.88 a ± 0.03 |
Loam | 3.22 a ± 0.25 | 97.19 b ± 5.68 | 3.47 b ± 0.72 | 62.75 b ± 8.75 | 11.58 b ± 1.82 | 1.63 a ± 0.25 | 0.83 a ± 0.10 | 7.57 a ± 2.11 | 0.28 a ± 0.05 | 3.05 b ± 0.75 |
pH | ||||||||||
Weakly alkaline | 3.42 a ± 0.66 | 97.21 a ± 10.71 | 3.21 a ± 0.82 | 64.77 a ± 17.50 | 11.92 a ± 3.95 | 2.23 a ± 0.68 | 0.96 a ± 0.21 | 8.86 a,b ± 2.42 | 0.35 b ± 0.08 | 2.92 a ± 1.15 |
Moderately alkaline | 3.47 a ± 0.03 | 93.55 a ± 0.07 | 3.82 a ± 0.04 | 74.71 a ± 0.08 | 12.81 a ± 0.17 | 1.71 a ± 0.02 | 0.74 a ± 0.02 | 10.24 b ± 0.05 | 0.26 a.b ± 0.01 | 3.82 a ± 0.02 |
Neutral | 3.19 a ± 0.03 | 104.88 a ± 0.03 | 3.84 a ± 0.04 | 51.05 a ± 0.02 | 10.95 a ± 0.03 | 1.89 a ± 0.01 | 0.95 a ± 0.02 | 5.76 a ± 0.01 | 0.22 a ± 0.01 | 2.47 a ± 0.02 |
Phosphorus | ||||||||||
Low | 3.26 a ± 0.73 | 94.90 a ± 15.64 | 3.13 a ± 0.79 | 52.95 a ± 20.19 | 10.12 a ± 3.25 | 2.36 b ± 0.19 | 1.06 b ± 0.09 | 8.50 a,b ± 2.54 | 0.31 a ± 0.04 | 2.34 a ± 0.70 |
Rich | 3.19 a ± 0.20 | 95.74 a ± 4.14 | 3.21 a ± 0.79 | 68.13 a ± 5.40 | 12.26 a ± 1.36 | 1.41 a ± 0.19 | 0.73 a ± 0.17 | 6.72 a ± 1.37 | 0.33 a ± 0.01 | 2.98 a ± 0.80 |
High | 3.51 a ± 0.74 | 100.89 a ± 7.60 | 3.53 a ± 0.98 | 68.40 a ± 18.40 | 13.41 a ± 5.20 | 2.21 b ± 0.66 | 0.94 a,b ± 0.17 | 8.57 a,b ± 2.35 | 0.35 a ± 0.14 | 3.36 a ± 1.54 |
Very high | 3.68 a ± 0.24 | 98.64 a ± 5.58 | 3.46 a ± 0.40 | 71.78 a ± 3.23 | 11.99 a ± 0.93 | 2.46 b ± 0.82 | 0.96 a,b ± 0.24 | 11.10 b ± 0.94 | 0.31 a ± 0.06 | 3.29 a ± 0.59 |
Organic matter | ||||||||||
Moderately rich | 3.48 a ± 0.61 | 102.63 b ± 7.47 | 3.61 a ± 0.67 | 61.26 a ± 16.99 | 12.12 a ± 2.79 | 1.99 a ± 0.60 | 0.99 a ± 0.11 | 8.49 a ± 2.55 | 0.33 a ± 0.02 | 2.95 a ± 0.83 |
Rich | 3.30 a ± 0.66 | 91.92 a ± 10.07 | 3.11 a ± 0.90 | 68.04 a ± 18.34 | 12.12 a ± 4.60 | 2.08 a ± 0.59 | 0.86 a ± 0.22 | 8.74 a ± 2.03 | 0.34 a ± 0.10 | 3.11 a ± 1.38 |
Very rich | 3.54 a ± 0.39 | 104.30 b ± 0.64 | 3.47 a ± 0.41 | 59.95 a ± 9.76 | 11.05 a ± 0.21 | 2.55 a ± 0.72 | 1.07 a ± 0.13 | 8.86 a ± 3.40 | 0.29 a ± 0.08 | 2.61 a ± 0.16 |
Potassium | ||||||||||
Low | 2.85 a ± 0.03 | 96.00 a ± 0.01 | 2.73 a ± 0.02 | 40.73 a ± 0.02 | 8.48 a ± 0.89 | 2.15 a ± 0.02 | 0.95 a ± 0.02 | 8.63 a,b ± 0.02 | 0.32 a ± 0.02 | 1.88 a ± 0.02 |
Rich | 3.26 a ± 0.73 | 93.18 a ± 15.72 | 2.98 a ± 0.90 | 60.06 a,b ± 18.05 | 10.30 a,b ± 3.13 | 2.20 a ± 0.41 | 0.99 a ± 0.19 | 8.55 a,b ± 2.54 | 0.31 a ± 0.04 | 2.45 a,b ± 0.64 |
High | 3.51 a ± 0.60 | 100.83 a ± 6.05 | 3.68 a ± 0.76 | 69.85 b ± 15.69 | 13.93 b ± 3.96 | 1.95 a ± 0.73 | 0.89 a ± 0.21 | 7.59 a ± 2.38 | 0.35 a ± 0.12 | 3.46 b ± 1.31 |
Very high | 3.68 a ± 0.24 | 98.64 a ± 5.58 | 3.46 a ± 0.40 | 71.78 b ± 3.23 | 11.99 a,b ± 0.93 | 2.46 a ± 0.82 | 0.96 a ± 0.24 | 11.10 b ± 0.94 | 0.31 a ± 0.06 | 3.29 a,b ± 0.59 |
Texture | 440 nm | Kaempferol 3-Sophoroside 7-Glucoside | Picrocrocin | Safranal |
---|---|---|---|---|
Loam–clay–sand | 253.63 c ± 23.15 | 11.29 b ± 0.93 | 134.33 a ± 30.57 | 2.20 a ± 1.33 |
Sand–loam | 199.00 a ± 7.29 | 9.14 a ± 0.26 | 112.42 a ± 3.08 | 4.16 b ± 0.24 |
Loam | 219.66 b ± 4.85 | 10.26 a,b ± 1.56 | 129.30 a ± 30.96 | 3.26 a,b ± 1.43 |
pH | ||||
Weakly alkaline | 230.81 a ± 29.24 | 10.25 a ± 1.40 | 129.39 a ± 30.73 | 2.95 a ± 1.49 |
Moderately alkaline | 227.00 a ± 2.00 | 12.25 a ± 0.07 | 110.15 a ± 0.32 | 4.37 a ± 0.11 |
Neutral | 217.66 a ± 0.58 | 10.24 a ± 0.09 | 134.08 a ± 0.10 | 2.19 a ± 0.11 |
Phosphorus | ||||
Low | 220.93 a ± 33.69 | 9.39 a ± 0.42 | 121.16 a ± 13.34 | 3.20 a ± 1.46 |
Rich | 221.00 a ± 2.37 | 11.11 b ± 0.66 | 139.67 a ± 39.10 | 3.01 a ± 1.49 |
High | 237.90 a ± 32.53 | 10.19 a,b ± 1.84 | 137.27 a ± 35.81 | 2.80 a ± 1.57 |
Very high | 237.90 a ± 10.65 | 11.77 b ± 0.54 | 112.36 a ± 2.44 | 3.07 a ± 1.42 |
Organic matter | ||||
Moderately rich | 229.71 a ± 27.36 | 9.92 a ± 0.50 | 141.20 a ± 28.54 | 2.43 a,b ± 1.46 |
Rich | 227.74 a ± 30.32 | 10.64 a ± 1.86 | 121.42 a ± 30.99 | 3.78 b ± 1.29 |
Very rich | 231.66 a ± 15.58 | 10.77 a ± 0.58 | 124.33 a ± 10.68 | 1.98 a ± 0.24 |
Potassium | ||||
Low | 205.33 a ± 2.52 | 9.38 a ± 0.06 | 109.60 a ± 0.07 | 4.37 a ± 0.11 |
Rich | 224.16 a ± 32.32 | 8.94 a ± 0.79 | 117.16 a,b ± 17.83 | 3.35 a ± 1.61 |
High | 235.17 a ± 27.86 | 11.18 b ± 0.88 | 148.38 b ± 32.66 | 2.40 a ± 1.23 |
Very high | 236.33 a ± 10.65 | 11.77 b ± 0.54 | 112.36 a,b ± 2.44 | 3.07 a ± 1.42 |
Minerals | Chemical Formula |
---|---|
Muscovite-1\ITM\RG, syn | KAl2Si3AlO10(OH)2 |
Muscovite 2\ITM\RG#1 | KAl3Si3O10(OH)2 |
Quartz | SiO2 |
Albite (ordered, high) | NaAlSi3O8 K0.2Na0.8AlSi3O8 |
Illite-2\ITM\RG#1 [NR] | (K, H3O)Al2Si3AlO10(OH)2 |
Albite, calcian, ordered | (Na, Ca)Al(Si, Al)3O8 (Na, Ca) (Si, Al)4O8 |
Aerinite | [(Fe+2, Fe+3, Al )3Mg3(Ca, Na)4[Si13.5Al4.5O42] (OH)6]11.3 H2O |
SiO2 (%) | Al2O3 (%) | CaO (%) | Fe2O3 (%) | K2O (%) | MgO (%) | MnO (%) | Na2O (%) | P2O5 (%) | TiO2 (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | XF | XDR | XF | XDR | XF | XDR | XF | XDR | XF | XDR | XF | XDR | XF | XDR | XF | XDR | XF | XDR | XF | XDR |
T1 | 55.00 | 49.50 | 16.30 | 18.80 | 3.20 | 3.92 | 9.20 | 2.80 | 2.40 | 3.00 | 2.90 | 2.80 | 0.20 | 0.00 | 1.20 | 8.20 | 0.10 | 0.00 | 1.20 | 0.00 |
T2 | 52.40 | 43.60 | 16.40 | 16.70 | 2.20 | 3.78 | 8.40 | 2.70 | 2.70 | 2.80 | 2.20 | 2.70 | 0.20 | 0.00 | 1.20 | 6.70 | 0.20 | 0.00 | 1.10 | 0.00 |
T3 | 52.20 | 49.70 | 15.30 | 18.20 | 3.10 | 4.90 | 9.30 | 3.50 | 2.70 | 2.40 | 3.10 | 3.50 | 0.20 | 0.00 | 1.10 | 8.90 | 0.20 | 0.00 | 1.20 | 0.00 |
T4 | 54.30 | 33.20 | 15.70 | 28.10 | 2.30 | 5.10 | 7.50 | 0.00 | 3.00 | 5.70 | 2.40 | 0.00 | 0.20 | 0.00 | 0.90 | 2.70 | 0.00 | 0.00 | 1.00 | 0.00 |
T5 | 51.00 | 40.10 | 15.20 | 19.00 | 2.40 | 4.20 | 9.00 | 3.00 | 2.00 | 3.10 | 2.40 | 3.00 | 0.10 | 0.00 | 1.40 | 7.70 | 0.10 | 0.00 | 1.20 | 0.00 |
T6 | 53.80 | 40.60 | 13.90 | 12.60 | 3.10 | 5.60 | 9.70 | 4.00 | 2.60 | 0.00 | 3.10 | 4.00 | 0.20 | 0.00 | 0.50 | 10.20 | 0.20 | 0.00 | 1.30 | 0.00 |
T7 | 54.40 | 43.30 | 14.70 | 28.00 | 3.00 | 9.60 | 9.50 | 3.00 | 2.30 | 4.20 | 2.80 | 3.00 | 0.20 | 0.00 | 1.40 | 5.00 | 0.20 | 0.00 | 1.30 | 0.00 |
T8 | 53.10 | 23.40 | 16.40 | 10.00 | 3.10 | 0.00 | 8.80 | 0.00 | 2.50 | 2.20 | 2.40 | 0.00 | 0.20 | 0.00 | 0.70 | 3.40 | 0.10 | 0.00 | 1.20 | 0.00 |
T9 | 51.60 | 46.20 | 15.20 | 17.90 | 2.80 | 4.20 | 9.60 | 3.00 | 2.40 | 2.80 | 2.90 | 3.00 | 0.20 | 0.00 | 0.50 | 7.30 | 0.10 | 0.00 | 1.20 | 0.00 |
T10 | 60.70 | 47.30 | 16.20 | 29.20 | 1.80 | 10.20 | 7.10 | 4.10 | 3.10 | 4.80 | 2.00 | 4.10 | 0.20 | 0.00 | 2.00 | 5.30 | 0.00 | 0.00 | 0.90 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaouqi, S.; Moratalla-López, N.; Alonso, G.L.; Lorenzo, C.; Zouahri, A.; Asserar, N.; Haidar, E.M.; Guedira, T. Effect of Soil Composition on Secondary Metabolites of Moroccan Saffron (Crocus sativus L.). Plants 2023, 12, 711. https://doi.org/10.3390/plants12040711
Chaouqi S, Moratalla-López N, Alonso GL, Lorenzo C, Zouahri A, Asserar N, Haidar EM, Guedira T. Effect of Soil Composition on Secondary Metabolites of Moroccan Saffron (Crocus sativus L.). Plants. 2023; 12(4):711. https://doi.org/10.3390/plants12040711
Chicago/Turabian StyleChaouqi, Soukaina, Natalia Moratalla-López, Gonzalo L. Alonso, Cándida Lorenzo, Abdelmjid Zouahri, Nazha Asserar, El Mehdi Haidar, and Taoufiq Guedira. 2023. "Effect of Soil Composition on Secondary Metabolites of Moroccan Saffron (Crocus sativus L.)" Plants 12, no. 4: 711. https://doi.org/10.3390/plants12040711
APA StyleChaouqi, S., Moratalla-López, N., Alonso, G. L., Lorenzo, C., Zouahri, A., Asserar, N., Haidar, E. M., & Guedira, T. (2023). Effect of Soil Composition on Secondary Metabolites of Moroccan Saffron (Crocus sativus L.). Plants, 12(4), 711. https://doi.org/10.3390/plants12040711