Assessment of Mediterranean Citrus Peel Flavonoids and Their Antioxidant Capacity Using an Innovative UV-Vis Spectrophotometric Approach
Abstract
:1. Introduction
2. Results
2.1. Analyses of Standard Flavonoid Molecules
2.2. Citrus Peel Extracts Characterisation
2.3. Antioxidant Activity of Citrus Peel Extracts
2.4. Scavenging Activity of Citrus Peel Extracts
3. Materials and Methods
3.1. Materials
3.2. UV-Vis Spectrophotometer Analyses
3.3. HPLC Analyses
3.4. Citrus Peel Extracts (CPE)
3.5. Total Phenolic Content (TPC)
3.6. Flavonoid Extracts and Quantification
3.7. Antioxidants of Citrus Peel Extracts
3.8. Scavenging Activity of Citrus Peel Extracts
3.9. Statistical Analyses
4. Discussion
5. Conclusions
6. Limits of the Study
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wedamulla, N.E.; Fan, M.; Choi, Y.-J.; Kim, E.-K. Citrus peel as a renewable bioresource: Transforming waste to food additives. J. Funct. Foods 2022, 95, 105163. [Google Scholar] [CrossRef]
- Yao, L.H.; Jiang, Y.-M.; Shi, J.; Tomas-Barberan, F.; Datta, N.; Singanusong, R.; Chen, S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004, 59, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Banjarnahor, S.D.; Artanti, N. Antioxidant properties of flavonoids. Med. J. Indones. 2014, 23, 239–244. [Google Scholar] [CrossRef]
- Ciumărnean, L.; Milaciu, M.V.; Runcan, O.; Vesa, Ș.C.; Răchișan, A.L.; Negrean, V.; Perné, M.-G.; Donca, V.I.; Alexescu, T.-G.; Para, I. The effects of flavonoids in cardiovascular diseases. Molecules 2020, 25, 4320. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef] [PubMed]
- Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers 2018, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Stefova, M.; Stafilov, T.; Kulevanova, S. HPLC Analysis of Flavonoids; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Cuyckens, F.; Claeys, M. Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom. 2004, 39, 1–15. [Google Scholar] [CrossRef]
- Csepregi, K.; Kocsis, M.; Hideg, É. On the spectrophotometric determination of total phenolic and flavonoid contents. Acta Biol. Hung. 2013, 64, 500–509. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Mare, R.; Maurotti, S.; Ferro, Y.; Galluccio, A.; Arturi, F.; Romeo, S.; Procopio, A.; Musolino, V.; Mollace, V.; Montalcini, T.; et al. A Rapid and Cheap Method for Extracting and Quantifying Lycopene Content in Tomato Sauces: Effects of Lycopene Micellar Delivery on Human Osteoblast-Like Cells. Nutrients 2022, 14, 717. [Google Scholar] [CrossRef] [PubMed]
- Blainski, A.; Lopes, G.C.; De Mello, J.C.P. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 2013, 18, 6852–6865. [Google Scholar] [CrossRef] [PubMed]
- Lenucci, M.S.; Cadinu, D.; Taurino, M.; Piro, G.; Dalessandro, G. Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem. 2006, 54, 2606–2613. [Google Scholar] [CrossRef]
- Maurotti, S.; Mare, R.; Pujia, R.; Ferro, Y.; Mazza, E.; Romeo, S.; Pujia, A.; Montalcini, T. Hemp Seeds in Post-Arthroplasty Rehabilitation: A Pilot Clinical Study and an In Vitro Investigation. Nutrients 2021, 13, 4330. [Google Scholar] [CrossRef]
- Musolino, V.; Macrì, R.; Cardamone, A.; Serra, M.; Coppoletta, A.R.; Tucci, L.; Maiuolo, J.; Lupia, C.; Scarano, F.; Carresi, C. Nocellara Del Belice (Olea europaea L. Cultivar): Leaf Extract Concentrated in Phenolic Compounds and Its Anti-Inflammatory and Radical Scavenging Activity. Plants 2022, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- M’hiri, N.; Ioannou, I.; Ghoul, M.; Boudhrioua, N.M. Extraction methods of citrus peel phenolic compounds. Food Rev. Int. 2014, 30, 265–290. [Google Scholar] [CrossRef]
- Sisa, M.; Bonnet, S.L.; Ferreira, D.; Van der Westhuizen, J.H. Photochemistry of flavonoids. Molecules 2010, 15, 5196–5245. [Google Scholar] [CrossRef] [PubMed]
- Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember variability in spectral mixture analysis: A review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Niaz, K.; Khan, F. Analysis of polyphenolics. In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 39–197. [Google Scholar]
- Viuda-Martos, M.; Ruiz Navajas, Y.; Sánchez Zapata, E.; Fernández-López, J.; Pérez-Álvarez, J.A. Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Fragr. J. 2010, 25, 13–19. [Google Scholar] [CrossRef]
- Jun, H.I.; Song, G.S.; Yang, E.I.; Youn, Y.; Kim, Y.S. Antioxidant activities and phenolic compounds of pigmented rice bran extracts. J. Food Sci. 2012, 77, C759–C764. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, S.; Kaul, R.; Sofi, S.; Bashir, N.; Nazir, F.; Nayik, G.A. Citrus peel as a source of functional ingredient: A review. J. Saudi Soc. Agric. Sci. 2018, 17, 351–358. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef] [PubMed]
Rutin RT = 6.97 min | Naringin RT = 11.217 min | Hesperidin RT = 12.324 min | Apigenin RT = 19.08 min | Total | |
---|---|---|---|---|---|
mg/mL ± SD | mg/mL ± SD | mg/mL ± SD | mg/mL ± SD | mg/mL ± SD | |
Lemon extract | 0.0379 ± 0.0012 | 0.2183 ± 0.0019 | 0.2273 ± 0.0017 | 0.0362 ± 0.0017 | 0.5198 ± 0.0007 |
Orange extract | 0.0571 ± 0.0007 | 0.2641 ± 0.0141 | 0.1787 ± 0.0050 | 0.0130 ± 0.0039 | 0.5130 ± 0.0237 |
Tangerine extract | 0.0044 ± 0.0009 | 0.1235 ± 0.0008 | 0.3214 ± 0.0064 | 0.0081 ± 0.0004 | 0.4575 ± 0.0086 |
Cedar extract | 0.0142 ± 0.0005 | 0.0344 ± 0.0007 | 0.0578 ± 0.0015 | 0.0329 ± 0.0006 | 0.1395 ± 0.0021 |
Bergamot extract | 0.0120 ± 0.0017 | 0.1651 ± 0.0011 | 0.6881 ± 0.0078 | 0.0262 ± 0.0008 | 0.8915 ± 0.0081 |
Samples | Mean Abs760 nm ± SD | Mean GAE (mg/mL) ± SD |
---|---|---|
Tangerine | 1.808 ± 0.058 | 0.375 ± 0.012 |
Orange | 1.629 ± 0.177 | 0.338 ± 0.037 |
Lemon | 1.472 ± 0.183 | 0.305 ± 0.038 |
Cedar | 0.796 ± 0.091 | 0.164 ± 0.019 |
Bergamot | 1.687 ± 0.075 | 0.350 ± 0.016 |
Sample | New Approach-λ~340 nm | Traditional Assay-λ~510 nm | ||
---|---|---|---|---|
Abs340nm ± SD | TFC-mg/mL ± SD | Abs510nm ± SD | TFC–mg/mL ± SD | |
Lemon extract | 0.528 ± 0.001 | 1.524 ± 0.005 | 0.054 ± 0.007 | 0.530 ± 0.068 |
Orange extract | 0.635 ± 0.001 | 1.874 ± 0.004 | 0.036 ± 0.003 | 0.349 ± 0.031 |
Tangerine extract | 0.963 ± 0.001 | 2.946 ± 0.003 | 0.053 ± 0.011 | 0.517 ± 0.101 |
Cedar extract | 0.460 ± 0.002 | 1.302 ± 0.005 | 0.030 ± 0.003 | 0.286 ± 0.026 |
Bergamot extract | 0.597 ± 0.002 | 1.735 ± 0.005 | 0.091 ± 0.008 | 0.902 ± 0.081 |
Sample | Mean Abs518 nm ± SD | Mean I(%) ± SD |
---|---|---|
Negative CRT | 2.482 | |
Control (+) L-ascorbic Acid 5 mg/mL | 0.193 | |
Tangerine | 1.12 ± 0.09 | 54.66 ± 3.49 |
Orange | 0.65 ± 0.08 | 73.93 ± 3.14 |
Lemon | 0.71 ± 0.05 | 71.55 ± 2.16 |
Cedar | 1.77 ± 0.03 | 28.55 ± 1.1 |
Bergamot | 1.63 ± 0.02 | 34.43 ± 0.74 |
Sample | Spectral Area (∫, a.u. ± SD) | % Scavenging |
---|---|---|
DPPH | 1754 ± 3 | |
DPPH + tangerine extract | 784 ± 3 | 55.30% |
DPPH + orange extract | 431 ± 3 | 75.42% |
DPPH + lemon extract | 716 ± 3 | 59.18% |
DPPH + cedar extract | 1287 ± 3 | 26.62% |
DPPH + bergamot extract | 859 ± 3 | 51.03% |
DPPH + Ascorbic acid 0.16 mg/mL | 786 ± 3 | 55.19% |
DPPH + Ascorbic acid 0.34 mg/mL | 427 ± 2 | 75.65% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mare, R.; Pujia, R.; Maurotti, S.; Greco, S.; Cardamone, A.; Coppoletta, A.R.; Bonacci, S.; Procopio, A.; Pujia, A. Assessment of Mediterranean Citrus Peel Flavonoids and Their Antioxidant Capacity Using an Innovative UV-Vis Spectrophotometric Approach. Plants 2023, 12, 4046. https://doi.org/10.3390/plants12234046
Mare R, Pujia R, Maurotti S, Greco S, Cardamone A, Coppoletta AR, Bonacci S, Procopio A, Pujia A. Assessment of Mediterranean Citrus Peel Flavonoids and Their Antioxidant Capacity Using an Innovative UV-Vis Spectrophotometric Approach. Plants. 2023; 12(23):4046. https://doi.org/10.3390/plants12234046
Chicago/Turabian StyleMare, Rosario, Roberta Pujia, Samantha Maurotti, Simona Greco, Antonio Cardamone, Anna Rita Coppoletta, Sonia Bonacci, Antonio Procopio, and Arturo Pujia. 2023. "Assessment of Mediterranean Citrus Peel Flavonoids and Their Antioxidant Capacity Using an Innovative UV-Vis Spectrophotometric Approach" Plants 12, no. 23: 4046. https://doi.org/10.3390/plants12234046
APA StyleMare, R., Pujia, R., Maurotti, S., Greco, S., Cardamone, A., Coppoletta, A. R., Bonacci, S., Procopio, A., & Pujia, A. (2023). Assessment of Mediterranean Citrus Peel Flavonoids and Their Antioxidant Capacity Using an Innovative UV-Vis Spectrophotometric Approach. Plants, 12(23), 4046. https://doi.org/10.3390/plants12234046