Residue Analysis and Dietary Risk Assessment of Pymetrozine in Potato (Solanum tuberosum L.) and Chrysanthemum morifolium (Ramat)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection and Preparation
2.3. Sample Pretreatment
2.4. HPLC-MS/MS Analysis
2.5. Method Validation
2.6. Risk Assessment
3. Results and Discussion
3.1. Analytical Method Validation
3.2. Pesticide Residues in Market Samples
3.3. Dietary Intake Risk Assessment Based on Market Surveillance Data
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; He, X.; Ye, S.; Zhou, J.; Han, P.; Gao, Y.; Yang, M. Pest Management of Postharvest Potatoes: Lethal, Sublethal and Transgenerational Effects of the Ectoparasitic Mite Pyemotes Zhonghuajia on the Potato Worm Phthorimaea Operculella. Pest Manag. Sci. 2023, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Gao, W.; Lv, J.; Gao, M. Analysis of the development situation of China’s potato industry from 2021 to 2022. Potato Ind. Seed Ind. Innov. 2022, 6, 15–18. [Google Scholar]
- Ouyang, H.; Fan, Y.; Wei, S.; Chang, Y.; He, J. Study on the Chemical Profile of Chrysanthemum (Chrysanthemum Morifolium) and the Evaluation of the Similarities and Differences between Different Cultivars. Chem. Biodivers. 2022, 19, e202200252. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, B.; Huang, W.; Amrouche, A.T.; Maurizio, B.; Simal-Gandara, J.; Tundis, R.; Xiao, J.; Zou, L.; Lu, B. Edible Flowers as Functional Raw Materials: A Review on Anti-Aging Properties. Trends Food Sci. Technol. 2020, 106, 30–47. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Huang, X.; Zhu, Y.; Li, J.; Miao, Y.; Du, H.; Liu, D. Comparison of Chemical Constituents and Pharmacological Effects of Different Varieties of Chrysanthemum Flos in China. Chem. Biodivers. 2021, 18, e2100206. [Google Scholar] [CrossRef]
- Peng, A.; Lin, L.; Zhao, M.; Sun, B. Identifying Mechanisms Underlying the Amelioration Effect of Chrysanthemum Morifolium Ramat. “Boju” Extract on Hyperuricemia Using Biochemical Characterization and UPLC-ESI-QTOF/MS-Based Metabolomics. Food Funct. 2019, 10, 8042–8055. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Sun, X.; Jiang, Y.; Zhang, J.; Guo, H.; Li, H.; Wang, K. Occurrence characteristics of chrysanthemum diseases and insect pests and green prevention and control technology. Mod. Agric. Sci. Technol. 2023, 7, 102–104+109. [Google Scholar]
- Zhong, J.; Wang, Y.; Lu, Y.; Ma, X.; Zhang, Q.; Wang, X.; Zhang, Q.; Sun, M. Identification and Expression Analysis of Chemosensory Genes in the Antennal Transcriptome of Chrysanthemum Aphid Macrosiphoniella Sanborni. Insects 2022, 13, 597. [Google Scholar] [CrossRef]
- Yang, D.; Wang, S.; Hu, Y.-F.; Zhang, Y.-X.; Feng, W.-H.; Zhu, J.-J.; Wang, Z.-M. Research progress of pesticide residues in Chrysanthemum. J. Chin. Mater. Medica 2021, 46, 1339–1344. [Google Scholar] [CrossRef]
- Ma, Z.; Ren, B.; Zhao, Z.; Li, C.; Sheng, J.; Yang, S. Comparative analysis of the occurrence and control of pests and diseases in four major potato producing areas in China in recent years. J. Plant Prot. 2020, 47, 463–470. [Google Scholar] [CrossRef]
- Xia, C.; Xue, W.; Li, Z.; Shi, J.; Yu, G.; Zhang, Y. Presenting the Secrets: Exploring Endogenous Defense Mechanisms in Chrysanthemums against Aphids. Horticulturae 2023, 9, 937. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, X.; Tu, Q.; Tan, Z.; Liang, J. Investigation on Disease and Insect Pest of Asteraceae Plants. Tianjin Agric. Sci. 2019, 25, 72–76. [Google Scholar]
- Zhang, W.; Gao, T.; Li, P.; Tian, C.; Song, A.; Jiang, J.; Guan, Z.; Fang, W.; Chen, F.; Chen, S. Chrysanthemum CmWRKY53 Negatively Regulates the Resistance of Chrysanthemum to the Aphid Macrosiphoniella Sanborni. Hortic. Res. 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Spalthoff, C.; Salgado, V.L.; Balu, N.; David, M.D.; Hehlert, P.; Huang, H.; Jones, J.E.; Kandasamy, R.; Knudsen, G.A.; Lelito, K.R.; et al. The Novel Pyridazine Pyrazole carboxamide Insecticide Dimpropyridaz Inhibits Chordotonal Organ Function Upstream of TRPV Channels. Pest Manag. Sci. 2023, 79, 1635–1649. [Google Scholar] [CrossRef]
- Yin, X.; Li, H.; Wu, S.; Lu, Y.; Yang, Y.; Qin, L.; Li, L.; Xiao, J.; Liang, J.; Si, Y.; et al. A Sensitive and Specific Enzyme-Linked Immunosorbent Assay for the Detection of Pymetrozine in Vegetable, Cereal, and Meat. Food Chem. 2023, 418, 135949. [Google Scholar] [CrossRef]
- Tudi, M.; Atabila, A.; Ruan, H.D.; Wang, L.; Lyu, J.; Tong, S.; Yu, Q.J.; Sadler, R.; Phung, D.T.; Connell, D. Natural Dynamics and Residues of Pymetrozine for Typical Rice-Growing Areas of China. Ecotoxicol. Environ. Saf. 2022, 232, 113230. [Google Scholar] [CrossRef]
- Jing, Q.; Liu, J.; Chen, A.; Chen, C.; Liu, J. The Spatial–Temporal Chemical Footprint of Pesticides in China from 1999 to 2018. Environ. Sci. Pollut. Res. 2022, 29, 75539–75549. [Google Scholar] [CrossRef]
- Moebus, S.; Boedeker, W. Case Fatality as an Indicator for the Human Toxicity of Pesticides-A Systematic Scoping Review on the Availability and Variability of Severity Indicators of Pesticide Poisoning. Int. J. Environ. Res. Public 2021, 18, 8307. [Google Scholar] [CrossRef]
- Hamsan, H.; Ho, Y.B.; Zaidon, S.Z.; Hashim, Z.; Saari, N.; Karami, A. Occurrence of Commonly Used Pesticides in Personal Air Samples and Their Associated Health Risk among Paddy Farmers. Sci. Total Environ. 2017, 603–604, 381–389. [Google Scholar] [CrossRef]
- Valcke, M.; Bourgault, M.-H.; Rochette, L.; Normandin, L.; Samuel, O.; Belleville, D.; Blanchet, C.; Phaneuf, D. Human Health Risk Assessment on the Consumption of Fruits and Vegetables Containing Residual Pesticides: A Cancer and Non-Cancer Risk/Benefit Perspective. Environ. Int. 2017, 108, 63–74. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Pesticide Risk Assessment for the Active Substance Pymetrozine in Light of Negligible Exposure Data Submitted. EFSA J. Eur. Food Saf. Auth. 2017, 15, e04678. [Google Scholar] [CrossRef]
- Wang, W.; Cho, Y.-J.; Song, J.-W.; Kim, Y.-J.; Seo, J.-S.; Kim, J.-H. Residue Behavior of Methoxyfenozide and Pymetrozine in Chinese Cabbage and Their Health Risk Assessment. Foods 2022, 11, 2995. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Xu, P.; Li, J.; Wang, H. Dissipation and Residue of Pymetrozine in Rice Field Ecosystem. Environ. Monit. Assess. 2015, 187, 78. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Sun, H.; Wang, X.; Liang, Y.; Guo, M.; Yu, J.; Yang, M.; Zhang, X.; Luo, F.; Zhou, L. Residue Behavior and Safety Evaluation of Pymetrozine in Tea. J. Sci. Food Agric. 2021, 101, 4118–4124. [Google Scholar] [CrossRef]
- China Agriculture. Guideline for the Testing of Pesticide Residues in Crops. NY/T 788-2018. 2018. Available online: http://down.foodmate.net/standard/yulan.php?itemid=54761 (accessed on 12 September 2023).
- Zhou, W.; Yang, S.; Wang, P.G. Matrix Effects and Application of Matrix Effect Factor. Bioanalysis 2017, 9, 1839–1844. [Google Scholar] [CrossRef]
- Rutkowska, E.; Łozowicka, B.; Kaczyński, P. Compensation of Matrix Effects in Seed Matrices Followed by Gas Chromatography-Tandem Mass Spectrometry Analysis of Pesticide Residues. J. Chromatogr. A 2020, 1614, 460738. [Google Scholar] [CrossRef]
- Xiao, J.; Xu, X.; Wang, F.; Ma, J.; Liao, M.; Shi, Y.; Fang, Q.; Cao, H. Analysis of Exposure to Pesticide Residues from Traditional Chinese Medicine. J. Hazard. Mater. 2019, 365, 857–867. [Google Scholar] [CrossRef]
- Lv, X.; Chang, Q.; Li, H.; Liang, S.; Zhe, Z.; Shen, S.; Pang, G. Risk Assessment of Carbofuran Residues in Fruits and Vegetables at the Chinese Market: A 7-Year Survey. Ecotoxicol. Environ. Saf. 2022, 239, 113667. [Google Scholar] [CrossRef]
- Xu, Z.; Li, L.; Xu, Y.; Wang, S.; Zhang, X.; Tang, T.; Yu, J.; Zhao, H.; Wu, S.; Zhang, C.; et al. Pesticide Multi-Residues in Dendrobium Officinale Kimura et Migo: Method Validation, Residue Levels and Dietary Exposure Risk Assessment. Food Chem. 2021, 343, 128490. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhuang, M.; Xiao, P.; Wang, K.; Song, J.; Liu, H.; Zhao, J.; Chu, Z. Pesticide Residues and Dietary Risk Assessment in Radishes in Shandong. J. Food Sci. 2022, 87, 4751–4760. [Google Scholar] [CrossRef]
- ICAMA chinapesticide.org.cn. Available online: http://www.icama.org.cn/zwb/dataCenter?hash=reg-info (accessed on 5 May 2023).
- Stephenson, C.L.; Harris, C.A.; Clarke, R. An Assessment of the Acute Dietary Exposure to Glyphosate Using Deterministic and Probabilistic Methods. Food Addit. Contam. Part Chem. Anal. Control Expo. Risk Assess. 2018, 35, 258–272. [Google Scholar] [CrossRef] [PubMed]
- WHO. Inventory of Evaluations Performed by the Joint Meeting on Pesticide Residues (JMPR). 2008. Available online: https://apps.who.int/pesticide-residues-jmpr-database/pesticide?name=Pymetrozine (accessed on 12 September 2023).
- Li, Z. Improving Pesticide Uptake Modeling and Management in Potatoes: A Simple and Approximate Phloem-Adjusted Model. J. Environ. Manag. 2021, 296, 113180. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Luo, F.; Zhang, X.; Zhou, L.; Lou, Z.; Chen, Z. Residue Analysis and Dietary Exposure Risk Assessment of Acibenzolar-S-Methyl and Its Metabolite Acibenzolar Acid in Potato, Garlic, Cabbage, Grape and Tomato. Ecotoxicol. Environ. Saf. 2021, 207, 111178. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Li, G.; Lu, X.; Wang, D.; Yang, Z.; Wang, S.; Ji, X. Monitoring Residue Levels of Multiple Types Pesticides in Chrysan themum (Chrysanthemum Morifolium Ramat) and Its Residue Pattern in Diet Consumption. J. Food Compos. Anal. 2023, 121, 105403. [Google Scholar] [CrossRef]
Matrix | Linear Range (mg L−1) | Calibration Curve | R2 | MEs | LODs (mg kg−1) | LOQs (mg kg−1) |
---|---|---|---|---|---|---|
Solvent | 0.001–0.2 | y = 63,107,860.25x + 367,623 | 0.9999 | / | 0.001 | 0.01 |
S. tuberosum | 0.001–0.2 | y = 8,140,913.97x + 786,650 | 0.9997 | 12.90 | 0.001 | 0.01 |
C. morifolium | 0.001–0.2 | y = 6,979,729.34x + 140,705 | 0.9967 | 11.06 | 0.001 | 0.01 |
Matrix | Spiking Levels (mg kg−1) | Recovery (%) | ARs (%) | RSDs (%) | ||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||
S. tuberosum | 0.01 | 92.1 | 83.51 | 87.16 | 84.11 | 90.55 | 89.19 | 4.27 |
0.02 | 102.64 | 106.21 | 107.06 | 103.11 | 98.85 | 103.57 | 3.13 | |
0.05 | 98.44 | 96.21 | 109.46 | 96.65 | 105.91 | 101.34 | 3.02 | |
C. morifolium | 0.01 | 80.25 | 82.5 | 76.01 | 73.21 | 75.32 | 77.26 | 4.33 |
0.05 | 98.85 | 113.41 | 104.38 | 110.55 | 107.1 | 106.85 | 4.91 | |
0.1 | 89.58 | 91.31 | 93.48 | 94.49 | 96.83 | 93.14 | 2.82 |
Matrix | Area | Detection /Total Samples | Total Detection rates (%) | High Residue (mg kg −1) | Median Residues (mg kg−1) | Mean Residues ± SD (mg kg −1) |
---|---|---|---|---|---|---|
S. tuberosum * | Changchun | 19/20 | 98.17 | 0.036 | 0.02 | 0.028 ± 0.0029 |
Jinan | 19/20 | |||||
Tongzhou | 20/20 | |||||
Changsha | 20/20 | |||||
Xining | 20/20 | |||||
Guiyan | 18/20/ | |||||
Xiaoxia | 20/20 | |||||
Yinchua | 20/20 | |||||
Lanzhou | 20/20 | |||||
Nanning | 20/20 | |||||
C. morifolium | Tongxiang | 20/20 | 92.31 | 0.024 | 0.017 | 0.019 ± 0.0011 |
Huangshan | 18/20 | |||||
Huanggang | 19/20 | |||||
Yongzhou | 19/20 | |||||
Linyi | 19/20 | |||||
Yancheng | 19/20 | |||||
Yunyang | 20/20 |
Food Classification | FI (kg d−1) | Commodity | Reference Limit (mg kg−1) | Sources | NEDI (mg) | ADI (mg) | HQC (%) |
---|---|---|---|---|---|---|---|
Rice and its products | 0.2399 | Brown rice | 0.2 | China | 0.004798 | 0.03 × 63 | |
Flour and its products | 0.1385 | Wheat | 0.02 | China | 0.00277 | ||
Other cereals | 0.0233 | Maize | 0.05 | AU | 0.001165 | ||
Potatoes | 0.0495 | S. tuberosum | 0.02 | STMRs | 0.000495 | ||
Dark vegetables | 0.0915 | Spinach | 15 | China | 1.373 | ||
Light vegetables | 0.1837 | Cucumber | 1 | China | 0.1873 | ||
Fruits | 0.0457 | Peach | 0.05 | AU | 0.02285 | ||
Vegetable oil | 0.0327 | Cotton seed | 0.1 | China | 0.00327 | ||
Salt | 0.012 | C. morifolium | 0.017 | STMRs | 0.00020 | ||
Total | 0.8168 | 1.6389 | 1.89 | 86.71 |
Matrix | LP (kg/day) | IESTI (mg) | HQa (%) |
---|---|---|---|
S. tuberosum | 0.1 | 0.000057 | 0.057 |
C. morifolium | 0.043 | 0.001032 | 0.164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Ye, H.; Fang, N.; Luo, Y.; Wang, X.; Li, Y.; He, H.; Cheng, Y.; Zhang, C. Residue Analysis and Dietary Risk Assessment of Pymetrozine in Potato (Solanum tuberosum L.) and Chrysanthemum morifolium (Ramat). Plants 2023, 12, 3905. https://doi.org/10.3390/plants12223905
Chen Y, Ye H, Fang N, Luo Y, Wang X, Li Y, He H, Cheng Y, Zhang C. Residue Analysis and Dietary Risk Assessment of Pymetrozine in Potato (Solanum tuberosum L.) and Chrysanthemum morifolium (Ramat). Plants. 2023; 12(22):3905. https://doi.org/10.3390/plants12223905
Chicago/Turabian StyleChen, Yuting, Hui Ye, Nan Fang, Yuqin Luo, Xiangyun Wang, Yanjie Li, Hongmei He, Youpu Cheng, and Changpeng Zhang. 2023. "Residue Analysis and Dietary Risk Assessment of Pymetrozine in Potato (Solanum tuberosum L.) and Chrysanthemum morifolium (Ramat)" Plants 12, no. 22: 3905. https://doi.org/10.3390/plants12223905