Elevated CO2 Can Improve the Tolerance of Avena sativa to Cope with Zirconium Pollution by Enhancing ROS Homeostasis
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Materials and Treatment
2.2. Determination of Zr in Plant Tissues
2.3. Photosynthesis and Photosynthetic Related Parameters
2.4. Determination of Oxidative Stress Markers
2.5. Determination of Antioxidants’ Secondary Metabolites
2.6. Estimation of Enzymatic Antioxidants
2.7. Determination of AsA/GSH Metabolites
2.8. Statistical Analysis
3. Results
3.1. Effect of eCO2 on Zr Cumulation and the Growth of Oat Plants
3.2. Photosynthesis of Oats as Affected by Zr and/or eCO2
3.3. Influence of eCO2 on the Zr-Induced Oxidative Damage in Oat Plants
3.4. eCO2 and Non-Enzymatic Antioxidants in Zr-Contaminated Oat Plants
3.5. eCO2 Affecting the Enzymatic Antioxidants of Zr-Contaminated Oat Plants
3.6. Effect of Zr and/or eCO2 on the AsA/GSH Metabolic Pool of Oat Plants
4. Discussion
4.1. eCO2 Ameliorated the Growth Reduction and Oxidative Burst in Oat That Was Initiated by Zr
4.2. eCO2 Highly Quenched the Oxidative Damage Caused by Zr in Oat Plants
4.3. eCO2 Raised Oat Tolerance to Zr Contamination by Regulating the Antioxidant Defense System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, S.K. Heavy Metals Toxicity in Plants: An Overview on the Role of Glutathione and Phytochelatins in Heavy Metal Stress Tolerance of Plants. S. Afr. J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef]
- Shanmugaraj, B.M.; Malla, A.; Ramalingam, S. Cadmium Stress and Toxicity in Plants: An Overview. In Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 1–17. ISBN 9780128148655. [Google Scholar]
- Goyal, D.; Yadav, A.; Prasad, M.; Singh, T.B.; Shrivastav, P.; Ali, A.; Dantu, P.K.; Mishra, S. Effect of Heavy Metals on Plant Growth: An Overview. In Contaminants in Agriculture; Springer International Publishing: Cham, Switzerland, 2020; pp. 79–101. [Google Scholar]
- Perks, C.; Mudd, G. Titanium, Zirconium Resources and Production: A State of the Art Literature Review. Ore Geol. Rev. 2019, 107, 629–646. [Google Scholar] [CrossRef]
- Song, T.; Xia, C.; Ding, Y.; Liu, S.; Chen, B.; Feng, Z.; Yang, T.; Li, Q. Improvement of Corrosion and Wear Resistance of Novel Zr-Ti-Al-V Alloy with High Strength and Toughness by Thermal Nitridation Treatment. Corros. Sci. 2022, 208, 110685. [Google Scholar] [CrossRef]
- Shahid, M.; Ferrand, E.; Schreck, E.; Dumat, C. Behavior and Impact of Zirconium in the Soil-Plant System: Plant Uptake and Phytotoxicity. Rev. Environ. Contam. Toxicol. 2013, 221, 107–127. [Google Scholar] [CrossRef]
- Parveen, A.; Siddiqui, Z.A. Zirconium Dioxide Nanoparticles Affect Growth, Photosynthetic Pigments, Defense Enzymes Activities and Mitigate Severity of Bacterial and Fungal Diseases of Tomato. Gesunde Pflanz. 2022, 74, 615–628. [Google Scholar] [CrossRef]
- Simon, L.; Fodor, M.; Pais, I. Effects of Zirconium on the Growth and Photosynthetic Pigment Composition of Chlorella Pyrenoidosa Green Algae. J. Plant Nutr. 2001, 24, 159–174. [Google Scholar] [CrossRef]
- Fodor, M.; Hegedüs, A.; Stefanovits-Bányai, É. Zirconium Induced Physiological Alterations in Wheat Seedlings. Biol. Plant. 2005, 49, 633–636. [Google Scholar] [CrossRef]
- Shabbaj, I.; AbdElgawad, H.; Tammar, A.; Alsiary, W.A.; Madany, M.M.Y. Future Climate CO2 Can Harness ROS Homeostasis and Improve Cell Wall Fortification to Alleviate the Hazardous Effect of Phelipanche Infection in Pea Seedlings. Plant Physiol. Biochem. 2021, 166, 1131–1141. [Google Scholar] [CrossRef]
- Thompson, M.; Gamage, D.; Hirotsu, N.; Martin, A.; Seneweera, S. Effects of Elevated Carbon Dioxide on Photosynthesis and Carbon Partitioning: A Perspective on Root Sugar Sensing and Hormonal Crosstalk. Front. Physiol. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Dong, J.; Gruda, N.; Lam, S.K.; Li, X.; Duan, Z. Effects of Elevated CO2 on Nutritional Quality of Vegetables: A Review. Front. Plant Sci. 2018, 9, 924. [Google Scholar] [CrossRef]
- Saleh, A.M.; Hassan, Y.M.; Selim, S.; AbdElgawad, H. NiO-Nanoparticles Induce Reduced Phytotoxic Hazards in Wheat (Triticum aestivum L.) Grown under Future Climate CO2. Chemosphere 2019, 220, 1047–1057. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Farfan-Vignolo, E.R.; de Vos, D.; Asard, H. Elevated CO2 Mitigates Drought and Temperature-Induced Oxidative Stress Differently in Grasses and Legumes. Plant Sci. 2015, 231, 1–10. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A. The Response of Photosynthesis and Stomatal Conductance to Rising [CO2]: Mechanisms and Environmental Interactions. Plant Cell Environ. 2007, 30, 258–270. [Google Scholar] [CrossRef]
- Abdelgawad, H.; Sheteiwy, M.S.; Saleh, A.M.; Mohammed, A.E.; Alotaibi, M.O.; Beemster, G.T.S.; Madany, M.M.Y.; Dijk, J.R. Van Elevated CO2 Differentially Mitigates Chromium (VI) Toxicity in Two Rice Cultivars by Modulating Mineral Homeostasis and Improving Redox Status. Chemosphere 2022, 307, 135880. [Google Scholar] [CrossRef]
- Pérez-López, U.; Robredo, A.; Lacuesta, M.; Sgherri, C.; Muñoz-Rueda, A.; Navari-Izzo, F.; Mena-Petite, A. The Oxidative Stress Caused by Salinity in Two Barley Cultivars Is Mitigated by Elevated CO2. Physiol. Plant. 2009, 135, 29–42. [Google Scholar] [CrossRef]
- Mhamdi, A.; Noctor, G. High CO2 Primes Plant Biotic Stress Defences through Redox-Linked Pathways. Plant Physiol. 2016, 172, 929–942. [Google Scholar] [CrossRef]
- Zhou, Y.; Van Leeuwen, S.K.; Pieterse, C.M.J.; Bakker, P.A.H.M.; Van Wees, S.C.M. Effect of Atmospheric CO2 on Plant Defense against Leaf and Root Pathogens of Arabidopsis. Eur. J. Plant Pathol. 2019, 154, 31–42. [Google Scholar] [CrossRef]
- Pan, C.; Ahammed, G.J.; Li, X.; Shi, K. Elevated CO2 Improves Photosynthesis under High Temperature by Attenuating the Functional Limitations to Energy Fluxes, Electron Transport and Redox Homeostasis in Tomato Leaves. Front. Plant Sci. 2018, 871, 1739. [Google Scholar] [CrossRef]
- Hemphill, J.K.; Venketeswaran, S. Chlorophyll and Carotenoid Accumulation in Three Chlorophyllous Callus Phenotypes of Glycine Max. Am. J. Bot. 1978, 65, 1055–1063. [Google Scholar] [CrossRef]
- Jiang, Z.-Y.; Woollard, A.C.S.; Wolff, S.P. Hydrogen Peroxide Production during Experimental Protein Glycation. FEBS Lett. 1990, 268, 69–71. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Amaresan, N.; Sankaranarayanan, A. Estimation of Malondialdehyde (MDA) by Thiobarbituric Acid (TBA) Assay; Springer: Berlin/Heidelberg, Germany, 2021; pp. 103–105. [Google Scholar]
- Mohamed, M.S.M.; Saleh, A.M.; Abdel-Farid, I.B.; El-Naggar, S.A. Growth, Hydrolases and Ultrastructure of Fusarium Oxysporum as Affected by Phenolic Rich Extracts from Several Xerophytic Plants. Pestic. Biochem. Physiol. 2017, 141, 57–64. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “ Antioxidant Power ”: The FRAP Assay. Anal. Biochem. 1996, 76, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.B.; Khan, P.A. Peroxidase & Polyphenol Oxidase in Excised Ragi (Eleusine Corocana Cv PR 202) Leaves during Senescence. Indian J. Exp. Biol. 1982, 20, 412–416. [Google Scholar]
- Dhindsa, R.S.; Plumb-dhindsa, P.; Thorpe, T.A. Leaf Senescence: Correlated with Increased Levels of Membrane Permeability and Lipid Peroxidation, and Decreased Levels of Superoxide Dismutase and Catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Murshed, R.; Lopez-Lauri, F.; Sallanon, H. Microplate Quantification of Enzymes of the Plant Ascorbate–Glutathione Cycle. Anal. Biochem. 2008, 383, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in Vitro. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Drotar, A.; Phelps, P.; Fall, R. Evidence for Glutathione Peroxidase Activities in Cultured Plant Cells. Plant Sci. 1985, 42, 35–40. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.K.; AbdElgawad, H.; Giblen, T.; Zinta, G.; De Rop, M.; Asard, H.; Blust, R.; De Boeck, G. Anti-Oxidative Defences Are Modulated Differentially in Three Freshwater Teleosts in Response to Ammonia-Induced Oxidative Stress. PLoS ONE 2014, 9, e95319. [Google Scholar] [CrossRef]
- Shabbaj, I.I.; Abdelgawad, H.; Balkhyour, M.A.; Tammar, A.; Madany, M.M.Y. Elevated CO2 Differentially Mitigated Oxidative Stress Induced by Indium Oxide Nanoparticles in Young and Old Leaves of C3 and C4 Crops. Antioxidants 2022, 11, 308. [Google Scholar] [CrossRef]
- Madany, M.M.Y.; Zinta, G.; Abuelsoud, W.; Hozzein, W.N.; Selim, S.; Asard, H.; Elgawad, H.A. Hormonal Seed-Priming Improves Tomato Resistance against Broomrape Infection. J. Plant Physiol. 2020, 250, 153184. [Google Scholar] [CrossRef]
- Masalem, T.; Daher, A.; Mahmoud, A.; Al-Shobaki, M.; Shosha, A. Effect of Zirconium in Nutrient Solution on Growth and Uptake of Some Elements By Maize Plant. J. Soil Sci. Agric. Eng. 2010, 1, 613–619. [Google Scholar] [CrossRef]
- Syu, C.H.; Chien, P.H.; Huang, C.C.; Jiang, P.Y.; Juang, K.W.; Lee, D.Y. The Growth and Uptake of Ga and In of Rice (Oryza sative L.) Seedlings as Affected by Ga and In Concentrations in Hydroponic Cultures. Ecotoxicol. Environ. Saf. 2017, 135, 32–39. [Google Scholar] [CrossRef]
- Kopittke, P.M.; McKenna, B.A.; Blamey, F.P.C.; Wehr, J.B.; Menzies, N.W. Metal-Induced Cell Rupture in Elongating Roots Is Associated with Metal Ion Binding Strengths. Plant Soil 2009, 322, 303–315. [Google Scholar] [CrossRef]
- Wilke, M.; Schmidt, C.; Dubrail, J.; Appel, K.; Borchert, M.; Kvashnina, K.; Manning, C.E. Zircon Solubility and Zirconium Complexation in H2O+Na2O+SiO2±Al2O3 Fluids at High Pressure and Temperature. Earth Planet. Sci. Lett. 2012, 349–350, 15–25. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Hassan, Y.M.; Alotaibi, M.O.; Mohammed, A.E.; Saleh, A.M. C3 and C4 Plant Systems Respond Differently to the Concurrent Challenges of Mercuric Oxide Nanoparticles and Future Climate CO2. Sci. Total Environ. 2020, 749, 142356. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, S.; Sidhu, G.P.S. Climate Change Regulated Abiotic Stress Mechanisms in Plants: A Comprehensive Review; Springer: Berlin/Heidelberg, Germany, 2022; Volume 41, ISBN 0029902102759. [Google Scholar]
- Kaiser, E.; Zhou, D.; Heuvelink, E.; Harbinson, J.; Morales, A.; Marcelis, L.F.M. Elevated CO2 Increases Photosynthesis in Fluctuating Irradiance Regardless of Photosynthetic Induction State. J. Exp. Bot. 2017, 68, 5629–5640. [Google Scholar] [CrossRef]
- Pérez-López, U.; Miranda-Apodaca, J.; Muñoz-Rueda, A.; Mena-Petite, A. Lettuce Production and Antioxidant Capacity Are Differentially Modified by Salt Stress and Light Intensity under Ambient and Elevated CO2. J. Plant Physiol. 2013, 170, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Gjorgieva, D.; Kadifkova Panovska, T.; Ruskovska, T.; Bačeva, K.; Stafilov, T. Influence of Heavy Metal Stress on Antioxidant Status and DNA Damage in Urtica Dioica. Biomed Res. Int. 2013, 2013, 276417. [Google Scholar] [CrossRef]
- Ali, A.; Guo, D.; Mahar, A.; Ma, F.; Li, R.; Shen, F.; Wang, P.; Zhang, Z. Streptomyces Pactum Assisted Phytoremediation in Zn/Pb Smelter Contaminated Soil of Feng County and Its Impact on Enzymatic Activities. Sci. Rep. 2017, 7, 46087. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Schoenaers, S.; Zinta, G.; Hassan, Y.M.; Abdel-Mawgoud, M.; Alkhalifah, D.H.M.; Hozzein, W.N.; Asard, H.; Abuelsoud, W. Soil Arsenic Toxicity Differentially Impacts C3 (Barley) and C4 (Maize) Crops under Future Climate Atmospheric CO2. J. Hazard. Mater. 2021, 414, 125331. [Google Scholar] [CrossRef]
- Selim, S.; AbdElgawad, H.; Reyad, A.M.; Alowaiesh, B.F.; Hagagy, N.; Al-Sanea, M.M.; Alsharari, S.S.; Madany, M.M.Y. Potential Use of a Novel Actinobacterial Species to Ameliorate Tungsten Nanoparticles Induced Oxidative Damage in Cereal Crops. Plant Physiol. Biochem. 2022, 171, 226–239. [Google Scholar] [CrossRef]
- Kumar, S.; Trivedi, P.K. Heavy Metal Stress Signaling in Plants. In Plant Metal Interaction; Elsevier: Amsterdam, The Netherlands, 2016; pp. 585–603. ISBN 9780128031582. [Google Scholar]
- Rizvi, A.; Khan, M.S. Heavy Metal Induced Oxidative Damage and Root Morphology Alterations of Maize (Zea mays L.) Plants and Stress Mitigation by Metal Tolerant Nitrogen Fixing Azotobacter Chroococcum. Ecotoxicol. Environ. Saf. 2018, 157, 9–20. [Google Scholar] [CrossRef]
- Chibuike, G.U.; Obiora, S.C. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef]
- Hasan, S.A.; Fariduddin, Q.; Ali, B.; Hayat, S.; Ahmad, A. Cadmium: Toxicity and Tolerance in Plants. J. Environ. Biol. 2009, 30, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Černý, M.; Habánová, H.; Berka, M.; Luklová, M.; Brzobohatý, B. Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks. Int. J. Mol. Sci. 2018, 19, 2812. [Google Scholar] [CrossRef]
- Shu, S.; Gao, P.; Li, L.; Yuan, Y.; Sun, J.; Guo, S. Abscisic Acid-Induced H2O2 Accumulation Enhances Antioxidant Capacity in Pumpkin-Grafted Cucumber Leaves under Ca(NO3)2 Stress. Front. Plant Sci. 2016, 7, 1489. [Google Scholar] [CrossRef] [PubMed]
- AbdElgawad, H.; El-Sawah, A.M.; Mohammed, A.E.; Alotaibi, M.O.; Yehia, R.S.; Selim, S.; Saleh, A.M.; Beemster, G.T.S.; Sheteiwy, M.S. Increasing Atmospheric CO2 Differentially Supports Arsenite Stress Mitigating Impact of Arbuscular Mycorrhizal Fungi in Wheat and Soybean Plants. Chemosphere 2022, 296, 134044. [Google Scholar] [CrossRef]
- Saleh, A.M.; Hassan, Y.M.; Habeeb, T.H.; Alkhalaf, A.A.; Hozzein, W.N.; Selim, S.; AbdElgawad, H. Interactive Effects of Mercuric Oxide Nanoparticles and Future Climate CO2 on Maize Plant. J. Hazard. Mater. 2021, 401, 123849. [Google Scholar] [CrossRef]
- Voss, I.; Sunil, B.; Scheibe, R.; Raghavendra, A.S. Emerging Concept for the Role of Photorespiration as an Important Part of Abiotic Stress Response. Plant Biol. 2013, 15, 713–722. [Google Scholar] [CrossRef]
- Bräutigam, A.; Gowik, U. Photorespiration Connects C3 and C4 Photosynthesis. J. Exp. Bot. 2016, 67, 2953–2962. [Google Scholar] [CrossRef]
- Laxa, M.; Liebthal, M.; Telman, W.; Chibani, K.; Dietz, K.J. The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants 2019, 8, 94. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Anee, T.I.; Fujita, M. Glutathione in Plants: Biosynthesis and Physiological Role in Environmental Stress Tolerance. Physiol. Mol. Biol. Plants 2017, 23, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Zubova, M.Y.; Nechaeva, T.L.; Kartashov, A.V.; Zagoskina, N.V. Regulation of the Phenolic Compounds Accumulation in the Tea-Plant Callus Culture with a Separate and Combined Effect of Light and Cadmium Ions. Biol. Bull. 2020, 47, 593–604. [Google Scholar] [CrossRef]
- Yan, H.; Filardo, F.; Hu, X.; Zhao, X.; Fu, D.H. Cadmium Stress Alters the Redox Reaction and Hormone Balance in Oilseed Rape (Brassica napus L.) Leaves. Environ. Sci. Pollut. Res. 2016, 23, 3758–3769. [Google Scholar] [CrossRef] [PubMed]
- Bortoloti, G.A.; Baron, D. Phytoremediation of Toxic Heavy Metals by Brassica Plants: A Biochemical and Physiological Approach. Environ. Adv. 2022, 8, 100204. [Google Scholar] [CrossRef]
- Choudhury, S.; Panda, S.K. Toxic Effects, Oxidative Stress and Ultrastructural Changes in Moss Taxithelium Nepalense (Schwaegr.) Broth. Under Chromium and Lead Phytotoxicity. Water. Air. Soil Pollut. 2005, 167, 73–90. [Google Scholar] [CrossRef]
- Thounaojam, T.C.; Panda, P.; Choudhury, S.; Patra, H.K.; Panda, S.K. Zinc Ameliorates Copper-Induced Oxidative Stress in Developing Rice (Oryza sativa L.) Seedlings. Protoplasma 2014, 251, 61–69. [Google Scholar] [CrossRef]
- Gajewska, E.; Skłodowska, M.; Słaba, M.; Mazur, J. Effect of Nickel on Antioxidative Enzyme Activities, Proline and Chlorophyll Contents in Wheat Shoots. Biol. Plant. 2006, 50, 653–659. [Google Scholar] [CrossRef]
- Upadhyay, S.; Dixit, M. Role of Polyphenols and Other Phytochemicals on Molecular Signaling. Oxid. Med. Cell. Longev. 2015, 2015, 504253. [Google Scholar] [CrossRef]
- Siemińska-Kuczer, A.; Szymańska-Chargot, M.; Zdunek, A. Recent Advances in Interactions between Polyphenols and Plant Cell Wall Polysaccharides as Studied Using an Adsorption Technique. Food Chem. 2022, 373, 131487. [Google Scholar] [CrossRef]
- Christophe, H.; Duangjai, T. Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines 2020, 7, 26. [Google Scholar]
- AbdElgawad, H.; Zinta, G.; Abuelsoud, W.; Hassan, Y.M.; Alkhalifah, D.H.M.; Hozzein, W.N.; Zrieq, R.; Beemster, G.T.; Schoenaers, S. An Actinomycete Strain of Nocardiopsis Lucentensis Reduces Arsenic Toxicity in Barley and Maize. J. Hazard. Mater. 2021, 417, 126055. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Sirhindi, G.; Bhardwaj, R.; Alyemeni, M.N.; Siddique, K.H.M.; Ahmad, P. 28-Homobrassinolide Regulates Antioxidant Enzyme Activities and Gene Expression in Response to Salt- and Temperature-Induced Oxidative Stress in Brassica Juncea. Sci. Rep. 2018, 8, 8735. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Wang, Y.; Wang, L.; Ding, J.; Cao, Y.; Qin, G.; Yan, L.; Xi, L.; Zhang, J.; Zou, Z. Increased CO2 and Light Intensity Regulate Growth and Leaf Gas Exchange in Tomato. Physiol. Plant. 2020, 168, 694–708. [Google Scholar] [CrossRef]
- Dawood, M.F.A.; Azooz, M.M. Insights into the Oxidative Status and Antioxidative Responses of Germinating Broccoli (Brassica oleracea Var. Italica L.) Seeds in Tungstate Contaminated Water. Chemosphere 2020, 261, 127585. [Google Scholar] [CrossRef] [PubMed]
- Couée, I.; Sulmon, C.; Gouesbet, G.; El Amrani, A. Involvement of Soluble Sugars in Reactive Oxygen Species Balance and Responses to Oxidative Stress in Plants. J. Exp. Bot. 2006, 57, 449–459. [Google Scholar] [CrossRef]
Dependent Variables | Type III Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
Zr content | 178.230 | 1 | 178.230 | 51.630 | *** |
FW | 0.152 | 1 | 0.152 | 31.423 | *** |
DW | 0.002 | 1 | 0.002 | 8.790 | * |
Photosynthesis | 0.194 | 1 | 0.194 | 0.231 | ns |
CHLa | 0.000 | 1 | 0.000 | 4.014 | ns |
CHLb | 0.000 | 1 | 0.000 | 6.258 | * |
CHLab | 0.000 | 1 | 0.000 | 5.429 | ** |
Carotenoids | 0.000 | 1 | 0.000 | 0.958 | ns |
gs | 0.005 | 1 | 0.005 | 0.001 | ns |
CHLflourec | 0.009 | 1 | 0.009 | 80.172 | *** |
Rubisco | 7.279 | 1 | 7.279 | 0.989 | ns |
Dependent Variables | Type III Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
H2O2 | 5903.0 | 1 | 5903.0 | 12.62 | * |
MDA | 4.114 | 1 | 4.114 | 48.04 | *** |
FRAP | 18.639 | 1 | 18.639 | 6.267 | * |
Polyphenol | 3.157 | 1 | 3.157 | 2.338 | *** |
Flavo | 0.030 | 1 | 0.030 | 0.002 | * |
POX | 0.226 | 1 | 0.226 | 10.63 | * |
CAT | .001 | 1 | 0.001 | 4.171 | ns |
SOD | 1428.6 | 1 | 1428.6 | 37.0 | *** |
APX | 0.000 | 1 | 0.000 | .000 | ns |
DHAR | 0.217 | 1 | 0.217 | 14.90 | ** |
MDHAR | 0.000 | 1 | 0.000 | 4.004 | ns |
GR | 0.006 | 1 | 0.006 | 1.939 | ns |
GPX | 0.044 | 1 | 0.044 | 5.253 | * |
Dependent Variables | Type III Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
ASC | 0.000 | 1 | 0.000 | 0.159 | ns |
TASC | 0.000 | 1 | 0.000 | 0.551 | ns |
DHA | 0.000 | 1 | 0.000 | 9.152 | * |
ASC_DHA | 0.163 | 1 | 0.163 | 36.236 | *** |
GSH | 0.000 | 1 | 0.000 | 9.543 | ** |
TGSH | 0.027 | 1 | 0.027 | 81.929 | *** |
GSSG | 0.020 | 1 | 0.020 | 131.102 | *** |
GSH_GSSG | 0.038 | 1 | 0.038 | 42.503 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madany, M.M.Y.; AbdElgawad, H.; Galilah, D.A.; Khalil, A.M.A.; Saleh, A.M. Elevated CO2 Can Improve the Tolerance of Avena sativa to Cope with Zirconium Pollution by Enhancing ROS Homeostasis. Plants 2023, 12, 3792. https://doi.org/10.3390/plants12223792
Madany MMY, AbdElgawad H, Galilah DA, Khalil AMA, Saleh AM. Elevated CO2 Can Improve the Tolerance of Avena sativa to Cope with Zirconium Pollution by Enhancing ROS Homeostasis. Plants. 2023; 12(22):3792. https://doi.org/10.3390/plants12223792
Chicago/Turabian StyleMadany, Mahmoud M. Y., Hamada AbdElgawad, Doaa A. Galilah, Ahmed M. A. Khalil, and Ahmed M. Saleh. 2023. "Elevated CO2 Can Improve the Tolerance of Avena sativa to Cope with Zirconium Pollution by Enhancing ROS Homeostasis" Plants 12, no. 22: 3792. https://doi.org/10.3390/plants12223792
APA StyleMadany, M. M. Y., AbdElgawad, H., Galilah, D. A., Khalil, A. M. A., & Saleh, A. M. (2023). Elevated CO2 Can Improve the Tolerance of Avena sativa to Cope with Zirconium Pollution by Enhancing ROS Homeostasis. Plants, 12(22), 3792. https://doi.org/10.3390/plants12223792