Unveiling the Cardioprotective Power: Liquid Chromatography–Mass Spectrometry (LC–MS)-Analyzed Neolamarckia cadamba (Roxb.) Bosser Leaf Ethanolic Extract against Myocardial Infarction in Rats and In Silico Support Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. HR-LC–MS Analysis of Neolamarckia cadamba Ethanol Extract (NCEE)
2.2. Drug Likeliness
2.3. Molecular Docking Studies
2.4. ADMET Analysis
2.5. Acute Oral Toxicity Test
2.6. Effects of NCEE on Serum and Cardiac Biochemical Parameters in Rats
2.6.1. Electrocardiogram Monitoring
2.6.2. Effects of NCEE on the Serum Parameters
2.6.3. Liver HMG-CoA Analysis
2.7. Histopathological Studies
3. Materials and Methods
3.1. Plant Material and Extraction
3.2. Identification of Bioactive Compounds by High-Resolution Liquid Chromatography–Mass Spectrometry (HR-LC–MS)
3.3. In-Silico Studies
3.3.1. Drug-Likeliness
3.3.2. Molecular Docking
3.3.3. ADMET Analysis
3.4. Acute Toxicity
3.5. Induction of MI
3.6. Experimental Procedure
- Normal group: rats received two subcutaneous injections of normal saline (vehicle of ISO) in a volume of 1.5 mL/kg, with one injection per day on days 8 and 9.
- In the ISO group, rats received two injections of ISO (85 mg/kg/day, s.c.) at a volume of 1.5 mL/kg, with one injection per day on days 8 and 9, to induce acute MI.
- ATV + ISO group: rats received atorvastatin (10 mg/kg, per oral) for nine days, followed by two injections of ISO (85 mg/kg/day, s.c.), with one injection per day on days 8 and 9.
- NCEE (200 mg/kg) + ISO group: rats were treated with NCEE at a dose of 200 mg/kg/day (p.o.) for nine days, followed by two injections of ISO (85 mg/kg/day, s.c.), with one injection per day on days 8 and 9.
- NCEE (400 mg/kg) + ISO group: rats were treated with NCEE at a dose of 400 mg/kg/day (p.o.) for nine days, followed by two injections of ISO (85 mg/kg/day, s.c.), with one injection per day on days 8 and 9.
3.7. Electrocardiogram Monitoring
3.8. Collection of Blood and Tissue Samples
3.9. Histopathological Studies
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Atherogenic Coefficient |
ADMET | Absorption, Distribution, Metabolism, Excretion, and Toxicity |
ATV | Atorvastatin |
AIP | Atherogenic Index of Plasma |
AMR | Antimicrobial Resistance |
ATP | Adenosine Triphosphate |
CaCO2 | Calcium Carbonate |
CAT | Catalase |
CK-MB | Creatine Kinase-MB |
CRR | Cardiac Risk Ratio |
CYP1A2 | Cytochrome P450 1A2 |
CYP2C19 | Cytochrome P450 2C19 |
CYP2C9 | Cytochrome P450 2C9 |
CYP2D6 | Cytochrome P450 2D6 |
ECG | Electrocardiogram |
GSH | Reduced Glutathione |
H2O2 | Hydrogen Peroxide |
HBA | Hydrogen Bond Acceptor |
HBD | Hydrogen Bond Donor |
HDL | High-Density Lipoprotein |
HIA | Human Intestinal Absorption |
HMG-CoA | 3-Hydroxy-3-Methylglutaryl Coenzyme A |
HR-LC–MS | High-Resolution Liquid Chromatography–Mass Spectrometry |
iNOS | Inducible Nitric Oxide Synthase |
ISO | Isoproterenol |
LD50 | LD50 is the abbreviation used for the dose which kills 50% of the test population |
LDL | Low-Density Lipoprotein |
logP | Logarithm of the Octanol-Water Partition Coefficient |
MDA | Malondialdehyde |
MI | Myocardial Infarction |
MW | Molecular Weight |
NCEE | Neolamarckia cadamba Leaf Ethanol Extract |
PDB | Protein Data Bank |
ROS | Reactive Oxygen Species |
SGOT | Serum Glutamic Oxaloacetic Transaminase |
SOD | Superoxide Dismutase |
TC | Total Cholesterol |
TG | Triglycerides |
TPSA | Topological Polar Surface Area |
VLDL | Very Low-Density Lipoprotein |
References
- Milei, J.; Núñez, R.G.; Rapaport, M. Pathogenesis of isoproterenol-induced myocardial lesions: Its relation to human ‘coagulative myocytolysis’. Cardiology 2008, 63, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Sreepriya, M.; Devaki, T.; Nayeem, M. Effects of l-arginine pre-treatment on isoproterenol-induced changes in lipid metabolism during experimental myocardial injury in rats. J. Clin. Biochem. Nutr. 1998, 25, 169–175. [Google Scholar] [CrossRef]
- Harada, K.; Fukata, Y.; Miwa, A.; Kaneta, S.; Fukushima, H.; Ogawa, N. Effect of KRN2391, a novel vasodilator, on various experimental anginal models in rats. Jpn. J. Pharmacol. 1993, 63, 35–39. [Google Scholar] [CrossRef]
- Reddy, V.D.; Padmavathi, P.; Paramahamsa, M.; Varadacharyulu, N.C. Amelioration of alcohol-induced oxidative stress by Emblica officinalis (amla) in rats. Indian J. Biochem. Biophys. 2010, 47, 20–25. [Google Scholar]
- Sever, P.S.; Dahlöf, B.; Poulter, N.R.; Wedel, H.; Beevers, G.; Caulfield, M.; Collins, R.; Kjeldsen, S.E.; Kristinsson, A.; McInnes, G.T.; et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): A multicentre randomised controlled trial. Lancet 2003, 361, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Lekshmi, V.S.; Kurup, G.M. Sulfated polysaccharides from the edible marine algae Padina tetrastromatica protects heart by ameliorating hyperlipidemia, endothelial dysfunction and inflammation in isoproterenol induced experimental myocardial infarction. J. Funct. Foods 2019, 54, 22–31. [Google Scholar] [CrossRef]
- Erejuwa, O.; Akpan, J.; Uwaezuoke, N.; Nwobodo, N.; Ezeokpo, B.; Erhiano, E.; Araromi, E.; Ude, U.; Wahab, M.A.; Sulaiman, S. Effects of honey on postprandial hyperlipidemia and oxidative stress in Wistar rats: Role of HMG-CoA reductase inhibition and antioxidant effect. Niger. J. Physiol. Sci. 2018, 33, 129–138. [Google Scholar]
- Hassler, F.A. Charaka Samhita. Science 1893, 22, 17–18. [Google Scholar] [CrossRef]
- Dwevedi, A.; Sharma, K.; Sharma, Y.K. Cadamba: A miraculous tree having enormous pharmacological implications. Pharmacogn. Rev. 2015, 9, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Prathibhakumari, P. A comparative study on the diuretic activity of neolamarckia cadamba. Int. Res. J. Pharm. 2018, 8, 55–61. [Google Scholar]
- Ali, S.I.; Venkatesalu, V. Larvicidal activity of neolamarckia cadamba against the anopheles stephensi, aedes aegypti and culex quinquefasciatus. Proc. Zool. Soc. 2020, 73, 227–234. [Google Scholar] [CrossRef]
- Love, O.; Johnny, R.; Iruobe, A.F. Larvicidal activity of some tropical plants on the mortality of Anopheles gambiae s.l mosquitoes. GSC Biol. Pharm. Sci. 2019, 9, 024–031. [Google Scholar]
- Munira, S.; Nesa, L.; Islam, M.S.; Begum, Y.; Rashid, M.A.; Sarker, M.R.; Ahmed, T. Antidiabetic activity of Neolamarckia cadamba (Roxb.) Bosser flower extract in alloxan-induced diabetic rats. Clin. Phytosci. 2020, 6, 33. [Google Scholar] [CrossRef]
- Pandey, A.; Negi, P.S. Phytochemical composition, in vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts. Nat. Prod. Res. 2018, 32, 1189–1192. [Google Scholar] [CrossRef]
- Gupta, N.; Qayum, A.; Singh, S.; Mujwar, S.; Sangwan, P.L. Isolation, cytotoxicity evaluation, docking, admet and drug likeness studies of secondary metabolites from the stem bark of Anthocephalus cadamba (roxb.). ChemistrySelect 2022, 7, e202202950. [Google Scholar] [CrossRef]
- Raj, A.; Shakya, M.K.; Singh, T.; Agrawal, M.; Katiyar, N.S. Evaluation of anti-arthritic activity of leaves extracts of Neolamarckia cadamba. Res. J. Pharm. Technol. 2022, 15, 873–877. [Google Scholar] [CrossRef]
- Hass, C.; Kumar, P.; Rajak, D.; Jain, S.; Wanjari, M.M. Evaluation of Analgesic and Anti-inflammatory Activity of Bark of Neolamarckia cadamba in Rodents. Res. J. Pharm. Technol. 2010, 3, 1178–1184. [Google Scholar]
- Ercan, S.; Çınar, E.; Özaydın, C.; Efe Ertürk, N.; Çakmak, R. Inhibitor design for 3-hydroxy-3-methyl-glutaryl-CoA reductase enzyme; molecular docking and determination of molecular and electronic properties of ligands by density functional theory method. J. Heterocycl. Chem. 2020, 57, 2875–2888. [Google Scholar] [CrossRef]
- Ferreira, L.L.G.; Andricopulo, A.D. ADMET modeling approaches in drug discovery. Drug Discov. Today 2019, 24, 1157–1165. [Google Scholar] [CrossRef]
- Killari, K.N.; Polimati, H.; Prasanth, D.; Singh, G.; Panda, S.P.; Vedula, G.S.; Tatipamula, V.B. Salazinic acid attenuates male sexual dysfunction and testicular oxidative damage in streptozotocin-induced diabetic albino rats. RSC Adv. 2023, 13, 12991–13005. [Google Scholar] [CrossRef] [PubMed]
- Norinder, U.; Bergstrom, C.A. Prediction of ADMET Properties. ChemMedChem 2006, 1, 920–937. [Google Scholar] [CrossRef] [PubMed]
- Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012, 4, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. The Blood-Brain Barrier: Bottleneck in Brain Drug Development. Neurotherapeutics 2005, 2, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Ejeh, S.; Uzairu, A.; Shallangwa, G.A.; Abechi, S.E. In silico design, drug-likeness and ADMET properties estimation of some substituted thienopyrimidines as HCV NS3/4A protease inhibitors. Chem. Afr. 2021, 4, 563–574. [Google Scholar] [CrossRef]
- Lounkine, E.; Keiser, M.J.; Whitebread, S.; Mikhailov, D.; Hamon, J.; Jenkins, J.L.; Lavan, P.; Weber, E.; Doak, A.K.; Cote, S.; et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012, 486, 361–367. [Google Scholar] [CrossRef]
- Pantaleão, S.Q.; Fernandes, P.O.; Gonçalves, J.E.; Maltarollo, V.G.; Honorio, K.M. Recent advances in the prediction of pharmacokinetics properties in drug design studies: A review. ChemMedChem 2022, 17, e202100542. [Google Scholar] [CrossRef]
- Frampton, J.; Devries, J.T.; Welch, T.D.; Gersh, B.J. Modern Management of ST-Segment Elevation Myocardial Infarction. Curr. Probl. Cardiol. 2020, 45, 100393. [Google Scholar] [CrossRef]
- Omar, E.M.; Omar, R.S.; Shoela, M.S.; El Sayed, N.S. A study of the cardioprotective effect of spermidine: A novel inducer of autophagy. Chin. J. Physiol. 2021, 64, 281–288. [Google Scholar] [CrossRef]
- Thippeswamy, B.; Thakker, S.; Tubachi, S.; Kalyani, G.; Netra, M.; Patil, U.; Desai, S.; Gavimath, C.; Veerapur, V. Cardioprotective effect of Cucumis trigonus Roxb on isoproterenol-induced myocardial infarction in rat. Am. J. Pharmacol. Toxicol. 2009, 4, 29–37. [Google Scholar] [CrossRef]
- Metias, E.; Aboelmaaty, N.; Hussein, A.; Abdallah, E.; Abdelaziz, A. Modulation of ECG, myocardial oxidative stress markers and connexion 43 expression by ascorbic acid and ferulic acid in isoproterenol-induced myocardial infarction in rats. Biochem. Physiol. 2016, 5, 2. [Google Scholar] [CrossRef]
- Patel, V.; Upaganlawar, A.; Zalawadia, R.; Balaraman, R. Cardioprotective effect of melatonin against isoproterenol induced myocardial infarction in rats: A biochemical, electrocardiographic and histoarchitectural evaluation. Eur. J. Pharmacol. 2010, 644, 160–168. [Google Scholar] [CrossRef]
- Khdhiri, E.; Mnafgui, K.; Ncir, M.; Feriani, A.; Ghazouani, L.; Hajji, R.; Jallouli, D.; Abid, M.; Jamoussi, K.; Allouche, N.; et al. Cardiopreventive capacity of a novel (E)-N’-(1-(7-methoxy-2-oxo-2H-chromen-3-yl)ethylidene)-4-methylbenzenesulfonohydrazide against isoproterenol-induced myocardial infarction by moderating biochemical, oxidative stress, and histological parameters. J. Biochem. Mol. Toxicol. 2021, 35, e22747. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.M. Cardioprotective effect of resveratrol analogue isorhapontigenin versus omega-3 fatty acids in isoproterenol-induced myocardial infarction in rats. J. Physiol. Biochem. 2016, 72, 469–484. [Google Scholar] [CrossRef]
- Danese, E.; Montagnana, M. An historical approach to the diagnostic biomarkers of acute coronary syndrome. Ann. Transl. Med. 2016, 4, 194. [Google Scholar] [CrossRef] [PubMed]
- Saqib, F.; Ali, A.; Ahmedah, H.T.; Irimie, C.A.; Toma, S.I.; Popovici, B.E.; Moga, M.; Irimie, M. Cardioprotective, hypotensive and toxicological studies of Populus ciliata (Wall. ex Royle). Biomed. Pharmacother. 2021, 142, 112065. [Google Scholar] [CrossRef]
- Cinar, I.; Yayla, M.; Tavaci, T.; Toktay, E.; Ugan, R.A.; Bayram, P.; Halici, H. In Vivo and In Vitro Cardioprotective Effect of Gossypin Against Isoproterenol-Induced Myocardial Infarction Injury. Cardiovasc. Toxicol. 2022, 22, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Lofthus, D.M.; Stevens, S.R.; Armstrong, P.W.; Granger, C.B.; Mahaffey, K.W. Pattern of liver enzyme elevations in acute ST-elevation myocardial infarction. Coron. Artery Dis. 2012, 23, 22–30. [Google Scholar] [CrossRef]
- Al-Yahya, M.A.; Mothana, R.A.; Al-Said, M.S.; El-Tahir, K.E.; Al-Sohaibani, M.; Rafatullah, S. Citrus medica “Otroj”: Attenuates oxidative stress and cardiac dysrhythmia in isoproterenol-induced cardiomyopathy in rats. Nutrients 2013, 5, 4269–4283. [Google Scholar] [CrossRef]
- Meeran, M.N.; Azimullah, S.; Al Ahbabi, M.M.; Jha, N.K.; Lakshmanan, V.-K.; Goyal, S.N.; Ojha, S. Nootkatone, a dietary fragrant bioactive compound, attenuates dyslipidemia and intramyocardial lipid accumulation and favorably alters lipid metabolism in a rat model of myocardial injury: An in vivo and in vitro study. Molecules 2020, 25, 5656. [Google Scholar] [CrossRef]
- Anandan, R.; Ganesan, B.; Obulesu, T.; Mathew, S.; Kumar, R.S.; Lakshmanan, P.T.; Zynudheen, A.A. Dietary chitosan supplementation attenuates isoprenaline-induced oxidative stress in rat myocardium. Int. J. Biol. Macromol. 2012, 51, 783–787. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Bai, B.R.; Devaraj, S.N. Cardioprotective effect of grape seed proanthocyanidins on isoproterenol-induced myocardial injury in rats. Int. J. Cardiol. 2007, 115, 326–333. [Google Scholar] [CrossRef]
- Selvaraj, P.; Pugalendi, K.V. Hesperidin, a flavanone glycoside, on lipid peroxidation and antioxidant status in experimental myocardial ischemic rats. Redox Rep. 2010, 15, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Kumar Pasala, P.; Donakonda, M.; Dintakurthi, P.S.; Rudrapal, M.; Gouru, S.A.; Ruksana, K. Investigation of Cardioprotective Activity of Silybin: Network Pharmacology, Molecular Docking, and In Vivo Studies. ChemistrySelect 2023, 8, e202300148. [Google Scholar] [CrossRef]
- Panda, S.; Kar, A.; Biswas, S. Preventive effect of Agnucastoside C against Isoproterenol-induced myocardial injury. Sci. Rep. 2017, 7, 16146. [Google Scholar] [CrossRef] [PubMed]
- Pramod, C.; Ratheesh, M.; Jose, S.P.; Jose, S. Evaluation of hypolipidemic activity of ethanolic extract of Trema orientalis L. Blume leaves. J. Pharmacogn. Phytochem. 2020, 9, 904–911. [Google Scholar]
- Qudus, A.A. Effect of Ethanolic Extract of Parquetina nigrescens (Bullock) Leaves on Some Indices of Myocardial Infarction in Isoproterenol Administered Rats. Master’s Thesis, Kwara State University (Nigeria), Ilorin, Nigeria, 2021. [Google Scholar]
- Noumi, E.; Snoussi, M.; Anouar, E.H.; Alreshidi, M.; Veettil, V.N.; Elkahoui, S.; Adnan, M.; Patel, M.; Kadri, A.; Aouadi, K.; et al. Hr-lcms-based metabolite profiling, antioxidant, and anticancer properties of Teucrium polium l. Methanolic extract: Computational and in vitro study. Antioxidants 2020, 9, 1089. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, J.; Medhi, T.; Kumar, A. Phytochemical Screening, Quantification, FT-IR Analysis, and In Silico Characterization of Potential Bio-active Compounds Identified in HR-LC/MS Analysis of the Polyherbal Formulation from Northeast India. ACS Omega 2022, 7, 33067–33078. [Google Scholar] [CrossRef] [PubMed]
- Setlur, A.S.; Naik, S.Y.; Skariyachan, S. Herbal Lead as Ideal Bioactive Compounds Against Probable Drug Targets of Ebola Virus in Comparison with Known Chemical Analogue: A Computational Drug Discovery Perspective. Interdiscip. Sci. 2017, 9, 254–277. [Google Scholar] [CrossRef]
- Lin, S.H.; Huang, K.J.; Weng, C.F.; Shiuan, D. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening. Drug Des. Dev. Ther. 2015, 9, 3313–3324. [Google Scholar] [CrossRef]
- Sharma, V.; Pattanaik, K.K.; Jayprakash, V.; Basu, A.; Mishra, N. A utility script for automating and integrating AutoDock and other associated programs for virtual screening. Bioinformation 2009, 4, 84–86. [Google Scholar] [CrossRef]
- Prasanth, D.; Panda, S.P.; Rao, A.L.; Chakravarti, G.; Teja, N.; Vani, V.B.N.; Sandhya, T. In-silico strategies of some selected phytoconstituents from zingiber officinale as SARS-CoV-2 main protease (COVID-19) inhibitors. Indian J. Pharm. Educ. Res. 2020, 54, s552–s559. [Google Scholar] [CrossRef]
- OECD. OECD Guidelines for the Testing of Chemicals; OECD: Paris, France, 1994. [Google Scholar]
- Yang, Q.; Huang, D.D.; Li, D.G.; Chen, B.; Zhang, L.M.; Yuan, C.L.; Huang, H.H. Tetramethylpyrazine exerts a protective effect against injury from acute myocardial ischemia by regulating the PI3K/Akt/GSK-3beta signaling pathway. Cell. Mol. Biol. Lett. 2019, 24, 17. [Google Scholar] [CrossRef] [PubMed]
- Ghasi, S.; Umana, I.; Ogbonna, A.; Nwokike, M.; Ufelle, S. Cardioprotective effects of animal grade piperazine citrate on isoproterenol induced myocardial infarction in wistar rats: Biochemical and histopathological evaluation. Afr. J. Pharm. Pharmacol. 2020, 14, 285–293. [Google Scholar] [CrossRef]
- Meeran, M.F.N.; Azimullah, S.; Adeghate, E.; Ojha, S. Nootkatone attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats. Phytomedicine 2021, 84, 153405. [Google Scholar] [CrossRef] [PubMed]
- Dobiasova, M. AIP—Atherogenic index of plasma as a significant predictor of cardiovascular risk: From research to practice. Vnitr Lek. 2006, 52, 64–71. [Google Scholar] [PubMed]
- Jollow, D.J.; Mitchell, J.R.; Zampaglione, N.; Gillette, J.R. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 1974, 11, 151–169. [Google Scholar] [CrossRef]
- Rao, A.V.; Ramakrishnan, S. Indirect assessment of hydroxymethylglutaryl-CoA reductase (NADPH) activity in liver tissue. Clin. Chem. 1975, 21, 1523–1525. [Google Scholar] [CrossRef]
- Sharma, M.; Kishore, K.; Gupta, S.K.; Joshi, S.; Arya, D.S. Cardioprotective potential of ocimum sanctum in isoproterenol induced myocardial infarction in rats. Mol. Cell. Biochem. 2001, 225, 75–83. [Google Scholar] [CrossRef]
tR (min) | m/z | Error (ppm) | Molecular Formula | Molecular Weight | Height | Base Peak | Identification |
---|---|---|---|---|---|---|---|
1.407 | 239.0782 | −3.36 | C7H14O6 | 194.0797 | 7259 | 191.0567 | D-Pinitol |
1.482 | 191.0558 | 1.62 | C7H12O6 | 192.0631 | 6,939,261 | 191.0558 | Quinic acid |
1.534 | 133.0148 | −4.86 | C4H6O5 | 134.0222 | 19,152 | 191.0569 | L-Malic acid |
5.805 | 169.0143 | −0.66 | C7H6O5 | 170.0216 | 3300 | 197.8084 | Gallic acid |
7.643 | 109.0295 | 0.56 | C6H6O2 | 110.0367 | 35,876 | 355.104 | Resorcinol |
7.643 | 153.0196 | −2.11 | C7H6O4 | 154.0269 | 71,074 | 197.8085 | 2,6-dihydroxybenzoic acid |
8.622 | 351.0731 | −2.49 | C16H16O9 | 352.0803 | 1,261,779 | 191.0571 | Chlorogenoquinone |
8.874 | 593.1546 | −5.48 | C27H30O15 | 594.1617 | 1,368,207 | 353.0689 | Biorobin |
8.975 | 253.0718 | −0.14 | C10H10O4 | 194.0579 | 6547 | 191.0571 | Vanillin acetate |
9.046 | 177.0199 | −3 | C9H6O4 | 178.0271 | 28,346 | 191.0571 | 5,7-Dihydroxychromone |
9.066 | 399.1312 | −4.71 | C17H22O8 | 354.1331 | 468,368 | 191.0568 | Fusarenone X |
9.109 | 179.0357 | −3.82 | C9H8O4 | 180.0429 | 290,533 | 191.0571 | 4-Hydroxyphenylpyruvic acid (HPPA) |
9.109 | 289.0729 | −3.44 | C15H14O6 | 290.08 | 162,667 | 191.0571 | Catechin |
9.569 | 121.0297 | 0.92 | C7H6O2 | 122.0367 | 10,887 | 609.15 | Benzoic acid |
9.785 | 739.1713 | 1457.58 | C34H33NO15 | 694.1732 | 845,632 | 177.0188 | Dexylosylbenanomicin A |
9.979 | 463.0913 | −6.47 | C21H20O12 | 464.0985 | 486,727 | 300.0288 | Myricitrin |
10.032 | 163.0409 | −4.77 | C9H8O3 | 164.0481 | 29,719 | 565.2001 | 4-Hydroxycinnamic acid |
10.578 | 285.0418 | −4.84 | C15H10O6 | 286.0491 | 7696 | 515.1239 | Luteolin |
10.619 | 381.1218 | 5.42 | C15H28O7P2 | 382.129 | 394,523 | 135.0458 | 2-cis,6-trans-farnesyl diphosphate |
10.629 | 529.2234 | −7.5 | C27H34N2O9 | 530.2304 | 698,376 | 295.1093 | 3-α(S)-Strictosidine |
10.819 | 497.1497 | −9.02 | C26H26O10 | 498.1571 | 669,685 | 109.0298 | Dukunolide B |
10.848 | 625.125 | −8.1 | C30H26O15 | 626.1322 | 564,414 | 300.0297 | 6″-Caffeoylhyperin |
10.905 | 447.0937 | −0.74 | C21H20O11 | 448.1009 | 50,786 | 451.1075 | Kaempferol 7-O-glucoside |
11.235 | 451.1073 | −8.49 | C24H20O9 | 452.1146 | 4,076,514 | 341.0697 | Cinchonain Ib |
12.068 | 543.2032 | −1.18 | C30H28O6 | 484.1892 | 1,446,440 | 265.1011 | Thamnosin |
12.076 | 995.4003 | −18.71 | C45H61CoN6 O12 | 936.3855 | 405,084 | 265.1003 | Cob(I)urinate a,c diamide |
12.35 | 613.1406 | −1.11 | C20H31N4O16 P | 614.1479 | 444,048 | 341.0697 | CMP-N-acetylneuraminic acid |
15.118 | 503.3421 | −8.52 | C30H48O6 | 504.3494 | 710,989 | 503.3415 | Protobassic acid |
15.781 | 501.3266 | −9.08 | C30H46O6 | 502.334 | 388,829 | 435.2933 | Esculentic acid (Phytolacca) |
19.378 | 617.3906 | 1809.59 | C33H53NO6 | 558.3769 | 494,114 | 163.0418 | gamma-Chaconine |
19.551 | 615.3201 | −4.64 | C33H46O8 | 570.3219 | 1,266,231 | 163.0419 | Avermectin B1b aglycone |
20.291 | 647.4022 | −10.26 | C40H56O7 | 648.4093 | 945,095 | 193.0534 | trans-3-Feruloylcorosolic acid |
23.745 | 455.3595 | −13.7 | C30H48O3 | 456.3666 | 5,285,974 | 455.3583 | Ursolic acid |
Sr. No. | Compound | MW | logp | HBA | HBD | TPSA | AMR | Lipinski’s Rule Violated |
---|---|---|---|---|---|---|---|---|
1 | Benzoic acid | 115.99 | 0.982 | 2 | 0 | 17.07 | 36.96 | No |
2 | 5,7-Dihydroxychromone | 171.98 | 0.554 | 4 | 0 | 26.3 | 48.72 | No |
3 | 4-Hydroxycinnamic acid | 155.98 | 0.751 | 3 | 0 | 17.07 | 48.8 | No |
4 | Luteolin | 275.97 | 1.486 | 6 | 0 | 26.3 | 81.76 | No |
5 | Gallic acid | 163.97 | 0.964 | 5 | 0 | 17.07 | 41.77 | No |
6 | 4-Hydroxyphenylpyruvic | 171.98 | −0.229 | 4 | 0 | 34.14 | 48.46 | No |
7 | Catechin | 275.97 | 0.852 | 6 | 0 | 9.23 | 81.07 | No |
8 | Vanillin acetate | 183.98 | 0.78 | 4 | 0 | 52.6 | 53.72 | No |
9 | Resorcinol | 103.99 | 0.654 | 2 | 0 | 0 | 34.17 | No |
10 | D-Pinitol | 179.97 | −1.797 | 6 | 0 | 9.23 | 40.53 | No |
11 | 2,6-dihydroxybenzoic acid | 147.98 | 1.045 | 4 | 0 | 17.07 | 40.17 | No |
12 | Ursolic acid | 407.98 | 8.954 | 3 | 0 | 17.07 | 132.26 | Yes |
13 | Thamnosin | 455.97 | 4.775 | 6 | 0 | 71.06 | 148.54 | No |
14 | Quinic acid | 179.97 | −1.979 | 6 | 0 | 17.07 | 38.88 | No |
15 | Kaempferol 7-O-glucoside | 427.94 | 0.18 | 11 | 0 | 44.76 | 114.53 | Yes |
16 | Chlorogenoquinone | 335.95 | −2.011 | 9 | 0 | 77.51 | 82.81 | No |
17 | Biorobin | 563.92 | −1.083 | 15 | 0 | 63.22 | 145.57 | Yes |
18 | Fusarenone X | 331.96 | −0.967 | 8 | 0 | 65.13 | 81.98 | No |
19 | Dexylosylbenanomicin A | 661.93 | −0.705 | 16 | 0 | 95.97 | 175.16 | Yes |
20 | Myricitrin | 443.94 | 1.15 | 12 | 0 | 44.76 | 116.37 | Yes |
21 | 2-cis-6-trans-farnesyl diphosphate | 353.91 | 1.888 | 7 | 0 | 72.22 | 96.1 | No |
22 | Dukunolide B | 471.95 | −1.089 | 10 | 0 | 103.96 | 115.45 | No |
23 | 6″-Caffeoylhyperin | 599.92 | 1.378 | 15 | 0 | 71.06 | 163.06 | Yes |
24 | Cinchonain Ib | 431.95 | 1.18 | 9 | 0 | 35.53 | 125.14 | No |
25 | Thamnosin | 455.97 | 4.775 | 6 | 0 | 71.06 | 148.54 | No |
26 | CMP-N-acetylneuraminic acid | 582.9 | −6.358 | 20 | 0 | 130.61 | 121.07 | Yes |
27 | Protobassic acid | 455.97 | 5.874 | 6 | 0 | 17.07 | 140.37 | Yes |
28 | Esculentic acid (Phytolacca) | 455.97 | 5.855 | 6 | 0 | 34.14 | 137.52 | Yes |
29 | gamma-Chaconine | 505.97 | 5.035 | 7 | 0 | 21.7 | 147.36 | Yes |
30 | Avermectin B1b aglycone | 523.96 | 1.137 | 8 | 0 | 53.99 | 152.72 | Yes |
31 | trans-3-Feruloylcorosolic acid | 591.96 | 9.313 | 7 | 0 | 52.6 | 187.26 | Yes |
32 | Ursolic acid | 407.98 | 8.954 | 3 | 0 | 17.07 | 132.26 | Yes |
Compound | Binding Energies (kcal/mol) |
---|---|
Cinchonain Ib | −5.7 |
Dukunolide B | −5.3 |
Chlorogenoquinone | −4.9 |
Thamnosin | −4.9 |
Luteolin | −4.8 |
Catechin | −4.7 |
Fusarenone X | −4.2 |
2-cis-6-trans-farnesyl diphosphate | −3.9 |
Quinic acid | −3.9 |
Vanillin acetate | −3.8 |
4-Hydroxyphenylpyruvic | −3.7 |
5,7-Dihydroxychromone | −3.7 |
D-Pinitol | −3.7 |
4-Hydroxycinnamic acid | −3.6 |
Gallic acid | −3.6 |
2,6-dihydroxybenzoic acid | −3.5 |
Benzoic acid | −3 |
Resorcinol | −2.8 |
Atorvastatin | −3.9 |
Ligands | Binding Affinity, ΔG (kcal/mol) | Amino Acids Involved and Distance (Å) | ||
---|---|---|---|---|
Hydrogen-Bond Interactions | Hydrophobic Interactions | Electrostatic Interactions | ||
Cinchonain Ib | −5.7 | ARG A:590 (6.09), GLU A:665 (5.19), SER A:684 (3.25), ASP A:690 (3.39, 4.47) | VAL A:683 (5.93) | ARG A:590 (6.84) |
Dukunolide B | −5.3 | ARG A:590 (6.10, 6.50), ASP A:690 (4.66), LYS A:691 (4.47) | - | - |
Chlorogenoquinone | −4.9 | ARG A:590 (2.34, 4.75), ASP A:690 (2.92), SER A:661 (2.95), LYS A:692 (2.66) | - | - |
Thamnosin | −4.9 | ARG A:590 (5.93), LYS A:691 (5.17) | MET A:657 (5.17), ASP A:690 (5.12) | - |
Luteolin | −4.8 | ARG A:590 (6.18), ASP A:690 (2.94), ASN A:658 (3.51) | VAL A:683 (5.61) | ARG A:590 (5.93, 6.78) |
Catechin | −4.7 | ARG A:590 (4.70), SER A:661 (4.17), ASN A:658 (4.53), ASP A:690 (3.93) | - | ARG A:590 (7.42, 7.64) |
Artovastatin | −3.9 | LYS A:691 (4.76) | ASP A:767 (5.57), ALA A:682 (6.39), VAL A:683 (5.16), SER A:684 (4.38), SP A:690 (5.10) | ARG A:590 (6.74), MET A:657 (5.99, 6.42) |
Phytocompounds | Swiss ADME | ADMETSAR | PROTOX-II | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
log P o/w | Water Solubility | GI Absorption | Lipinski’s Rule | Veber’s Rule | PAINS Alert | TPSA | Lead Likeliness | HIA | CaCO2 | CYP1A2 | CYP2C19 | CYP2C9 | CYP2D6 | LD50 (mg/kg) | Hepatotoxicity | Carcinogenicity | Mutagenicity | Cytotoxicity | |
Cinchonain Ib | 1.72 | Moderately soluble | Low | Yes | No | 1 | 156.91 | No | 0.9651 | 0.9014 | 0.9311 | 0.9153 | 0.8302 | 0.8996 | 2500 (Class 5) | Inactive | Inactive | Inactive | Inactive |
Dukunolide B | 2.09 | Soluble | Low | Yes | No | 0 | 148.33 | No | 0.9876 | 0.7312 | 0.7957 | 0.8360 | 0.7483 | 0.9308 | 555 (Class 4) | Inactive | Active | Inactive | Inactive |
Chlorogenoquinone | 0.22 | Very soluble | Low | Yes | No | 2 | 158.43 | No | 0.6350 | 0.7382 | 0.9477 | 0.8825 | 0.8960 | 0.9002 | 50 (Class 2) | Inactive | Inactive | Inactive | Inactive |
Thamnosin | 4.63 | Poorly soluble | High | Yes | Yes | 0 | 78.88 | No | 0.9907 | 0.8063 | 0.5228 | 0.6371 | 0.8185 | 0.8590 | 500 (Class 4) | Inactive | Inactive | Inactive | Inactive |
Luteolin | 1.86 | Moderately soluble | High | Yes | Yes | 1 | 111.13 | Yes | 0.9650 | 0.8957 | 0.9106 | 0.9025 | 0.7898 | 0.9116 | 3919 (Class 5) | Inactive | Active | Active | Inactive |
Catechin | 1.33 | Soluble | High | Yes | Yes | 1 | 110.38 | Yes | 0.9654 | 0.8956 | 0.9046 | 0.9041 | 0.8227 | 0.8771 | 10,000 (Class 6) | Inactive | Inactive | Inactive | Inactive |
Centre | x | y | z |
---|---|---|---|
Human HMG-CoA reductase (PDB ID:1HWK) | 18.313098 | 8.379805 | 15.174463 |
Size | x | y | z |
12 | 12 | 12 | |
Exhaustiveness | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.N.; Prasanth, D.; Midthuri, P.G.; Ahmad, S.F.; Badarinath, A.V.; Karumanchi, S.K.; Seemaladinne, R.; Nalluri, R.; Pasala, P.K. Unveiling the Cardioprotective Power: Liquid Chromatography–Mass Spectrometry (LC–MS)-Analyzed Neolamarckia cadamba (Roxb.) Bosser Leaf Ethanolic Extract against Myocardial Infarction in Rats and In Silico Support Analysis. Plants 2023, 12, 3722. https://doi.org/10.3390/plants12213722
Kumar RN, Prasanth D, Midthuri PG, Ahmad SF, Badarinath AV, Karumanchi SK, Seemaladinne R, Nalluri R, Pasala PK. Unveiling the Cardioprotective Power: Liquid Chromatography–Mass Spectrometry (LC–MS)-Analyzed Neolamarckia cadamba (Roxb.) Bosser Leaf Ethanolic Extract against Myocardial Infarction in Rats and In Silico Support Analysis. Plants. 2023; 12(21):3722. https://doi.org/10.3390/plants12213722
Chicago/Turabian StyleKumar, Raghupathi Niranjan, Dsnbk Prasanth, Praisy Gladys Midthuri, Sheikh F. Ahmad, Attuluri Venkata Badarinath, Srikanth Kumar Karumanchi, Ramanjaneyulu Seemaladinne, Rahul Nalluri, and Praveen Kumar Pasala. 2023. "Unveiling the Cardioprotective Power: Liquid Chromatography–Mass Spectrometry (LC–MS)-Analyzed Neolamarckia cadamba (Roxb.) Bosser Leaf Ethanolic Extract against Myocardial Infarction in Rats and In Silico Support Analysis" Plants 12, no. 21: 3722. https://doi.org/10.3390/plants12213722
APA StyleKumar, R. N., Prasanth, D., Midthuri, P. G., Ahmad, S. F., Badarinath, A. V., Karumanchi, S. K., Seemaladinne, R., Nalluri, R., & Pasala, P. K. (2023). Unveiling the Cardioprotective Power: Liquid Chromatography–Mass Spectrometry (LC–MS)-Analyzed Neolamarckia cadamba (Roxb.) Bosser Leaf Ethanolic Extract against Myocardial Infarction in Rats and In Silico Support Analysis. Plants, 12(21), 3722. https://doi.org/10.3390/plants12213722