Ranunculus sceleratus as a Model Species to Decrypt the Role of Ethylene in Plant Adaptation to Salinity
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Plant Material and Cultivation Conditions
2.3. Treatments
2.4. Measurements
2.5. Data Analysis
3. Results
3.1. Experiment 1
3.2. Calibration of the System
3.3. Experiment 2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, M.; Yang, Z.; Liu, J.; Zhu, T.; Wei, X.; Fan, H.; Wang, B. Adaptation Mechanism of Salt Excluders under Saline Conditions and Its Applications. Int. J. Mol. Sci. 2018, 19, 3668. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Mostofa, M.G.; Keya, S.S.; Siddiqui, N.; Ansary, M.U.; Das, A.K.; Rahman, A.; Tran, L.S.-P. Adaptive Mechanisms of Halophytes and Their Potential in Improving Salinity Tolerance in Plants. Int. J. Mol. Sci. 2021, 22, 10733. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, F.J.; Reineke, D.; Leventini, D.; Chen, C.C.L.; Barrett-Lennard, E.G.; Colmer, T.D.; Dodd, I.C.; Shabala, S.; Brown, P.; Bazihizina, N. Plant responses to heterogeneous salinity: Agronomic relevance and research priorities. Ann. Bot. 2022, 129, 499–518. [Google Scholar] [CrossRef]
- Belkheiri, O.; Mulas, M. The effects of salt stress on growth, water relations and ion accumulation in two halophyte Atriplex species. Environ. Exp. Bot. 2013, 86, 17–28. [Google Scholar] [CrossRef]
- Dugardeyn, J.; Van Der Straeten, D. Ethylene: Fine-tuning plant growth and development by stimulation and inhibition of elongation. Plant Sci. 2008, 175, 59–70. [Google Scholar] [CrossRef]
- Chen, H.; Bullock, D.A.; Alonso, J.M.; Stepanova, A.N. To Fight or to Grow: The Balancing Role of Ethylene in Plant Abiotic Stress Responses. Plants 2021, 11, 33. [Google Scholar] [CrossRef]
- Tao, J.-J.; Chen, H.-W.; Ma, B.; Zhang, W.-K.; Chen, S.-Y.; Zhang, J.-S. The Role of Ethylene in Plants Under Salinity Stress. Front. Plant Sci. 2015, 6, 1059. [Google Scholar] [CrossRef]
- Iqbal, N.; Umar, S.; Per, T.S.; Khan, N.A. Ethephon increases photosynthetic-nitrogen use efficiency, proline and antioxidant metabolism to alleviate decrease in photosynthesis under salinity stress in mustard. Plant Signal. Behav. 2017, 12, e1297000. [Google Scholar] [CrossRef]
- Pan, Y.-J.; Liu, L.; Lin, Y.-C.; Zu, Y.-G.; Li, L.-P.; Tang, Z.-H. Ethylene Antagonizes Salt-Induced Growth Retardation and Cell Death Process via Transcriptional Controlling of Ethylene-, BAG- and Senescence-Associated Genes in Arabidopsis. Front. Plant Sci. 2016, 7, 696. [Google Scholar] [CrossRef]
- Shibli, R.A.; Kushad, M.; Yousef, G.G.; Lila, M.A. Physiological and biochemical responses of tomato microshoots to induced salinity stress with associated ethylene accumulation. Plant Growth Regul. 2007, 51, 159–169. [Google Scholar] [CrossRef]
- Zapata, P.J.; Serrano, M.; García-Legaz, M.F.; Pretel, M.T.; Botella, M.A. Short Term Effect of Salt Shock on Ethylene and Polyamines Depends on Plant Salt Sensitivity. Front. Plant Sci. 2017, 8, 855. [Google Scholar] [CrossRef] [PubMed]
- Ellouzi, H.; Ben Hamed, K.; Hernández, I.; Cela, J.; Müller, M.; Magné, C.; Abdelly, C.; Munné-Bosch, S. A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity. Planta 2014, 240, 1299–1317. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Charles, T.C.; Glick, B.R. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol. Biochem. 2014, 80, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Shelke, G.M.; Kumar, A.; Jha, P.N. Biochemistry and genetics of ACC deaminase: A weapon to “stress ethylene” produced in plants. Front. Microbiol. 2015, 6, 937. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.-H.; Liu, J.; He, X.-J.; Mu, R.-L.; Zhou, H.-L.; Chen, S.-Y.; Zhang, J.-S. Modulation of Ethylene Responses Affects Plant Salt-Stress Responses. Plant Physiol. 2006, 143, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zu, Y.-G.; Tang, Z.-H. Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environ. Exp. Bot. 2013, 86, 60–69. [Google Scholar] [CrossRef]
- Zhang, W.; Wen, C.-K. Preparation of ethylene gas and comparison of ethylene responses induced by ethylene, ACC, and ethephon. Plant Physiol. Biochem. 2010, 48, 45–53. [Google Scholar] [CrossRef]
- Tassoni, A.; Watkins, C.B.; Davies, P.J. Inhibition of ethylene response by 1-MCP in tomato suggests that polyamines are not involved in delaying ripening, but may moderate the rate of ripening or over-ripening. J. Exp. Bot. 2006, 57, 3313–3325. [Google Scholar] [CrossRef]
- Watkins, C.B. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol. Adv. 2006, 24, 389–409. [Google Scholar] [CrossRef]
- Acuña, M.G.V.; Biasi, W.V.; Mitcham, E.J.; Holcroft, D. Fruit temperature and ethylene modulate 1-MCP response in ‘Bartlett’ pears. Postharvest Biol. Technol. 2011, 60, 17–23. [Google Scholar] [CrossRef]
- Hays, D.B.; Do, J.H.; Mason, R.E.; Morgan, G.; Finlayson, S.A. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci. 2007, 172, 1113–1123. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.; Al-Khatib, K. Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress. Environ. Exp. Bot. 2011, 71, 215–223. [Google Scholar] [CrossRef]
- Dubois, V.; Moritz, T.; Garcia-Martinez, J.L. Comparison of the role of gibberellins and ethylene in response to submergence of two lowland rice cultivars, Senia and Bomba. J. Plant Physiol. 2011, 168, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.C.H.; Benschop, J.J.; Vreeburg, R.A.M.; Wagemaker, C.A.M.; Moritz, T.; Peeters, A.J.M.; Voesenek, A.C.J. The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles. Plant Physiol. 2004, 136, 2948–2960. [Google Scholar] [CrossRef]
- Bufler, G. Exogenous ethylene inhibits sprout growth in onion bulbs. Ann. Bot. 2008, 103, 23–28. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, G.; Chang, J.; Liu, J.; Cai, J.; Rao, X.; Zhang, L.; Zhong, J.; Xie, J.; Zhu, S. Effects of 1-MCP and ethylene on expression of three CAD genes and lignification in stems of harvested Tsai Tai (Brassica chinensis). Food Chem. 2010, 123, 32–40. [Google Scholar] [CrossRef]
- Cheema, M.; Rees, D.; Colgan, R.; Taylor, M.; Westby, A. The effects of ethylene, 1-MCP and AVG on sprouting in sweetpotato roots. Postharvest Biol. Technol. 2013, 85, 89–93. [Google Scholar] [CrossRef]
- Laime, B. 1310 Salicornia and other annuals colonising mud and sand. In European Union Protected Habitats in Latvia. Interpretation Manual; Auniņš, A., Ed.; Latvian Fund for Nature; Ministry of Environmental Protection and Regional Development: Riga, Latvia, 2013; pp. 52–54. [Google Scholar]
- Rove, I. 1640 Boreal Baltic sandy beaches with perennial vegetation. In European Union Protected Habitats in Latvia. Interpretation Manual; Auniņš, A., Ed.; Latvian Fund for Nature; Ministry of Environmental Protection and Regional Development: Riga, Latvia, 2013; pp. 58–61. [Google Scholar]
- Smulders, M.J.M.; Horton, R.F. Ethylene Promotes Elongation Growth and Auxin Promotes Radial Growth in Ranunculus sceleratus Petioles. Plant Physiol. 1991, 96, 806–811. [Google Scholar] [CrossRef][Green Version]
- Ievinsh, G.; Landorfa-Svalbe, Z.; Andersone-Ozola, U.; Karlsons, A.; Osvalde, A. Salinity and heavy metal tolerance, and phytoextraction potential of Ranunculus sceleratus plants from a sandy coastal beach. Life 2022, 12, 1959. [Google Scholar] [CrossRef]
- Nanthachai, N.; Ratanachinakorn, B.; Kosittrakun, M.; Beaudry, R.M. Absorption of 1-MCP by fresh produce. Postharvest Biol. Technol. 2007, 43, 291–297. [Google Scholar] [CrossRef]
- Blankenship, S.M.; Dole, J.M. 1-Methylcyclopropene: A review. Postharvest Biol. Technol. 2003, 28, 1–25. [Google Scholar] [CrossRef]
- Pierik, R.; Tholen, D.; Poorter, H.; Visser, E.J.; Voesenek, L.A. The Janus face of ethylene: Growth inhibition and stimulation. Trends Plant Sci. 2006, 11, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Kende, H.; van der Knaap, E.; Cho, H.-T. Deepwater Rice: A Model Plant to Study Stem Elongation. Plant Physiol. 1998, 118, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Fukao, T.; Bailey-Serres, J. Ethylene—A key regulator of submergence responses in rice. Plant Sci. 2008, 175, 43–51. [Google Scholar] [CrossRef]
- Voesenek, L.A.C.J.; Benschop, J.J.; Bou, J.; Cox, M.C.H.; Groeneveld, H.W.; Millenaar, F.F.; Vreeburg, R.A.M.; Peeters, A.J.M. Interactions between plant hormones regulate submergence-induced elongation in the flooding tolerant dicot Rumex palustris. Ann. Bot. 2003, 91, 205–211. [Google Scholar] [CrossRef]
- Musgrave, A.; Walters, J. Ethylene-stimulated growth and auxin transport in Ranunculus sceleratus petioles. New Phytol. 1973, 72, 783–789. [Google Scholar] [CrossRef]
- Fahad, S.; Hussain, S.; Matloob, A.; Khan, F.A.; Khaliq, A.; Saud, S.; Hassan, S.; Shan, D.; Khan, F.; Ullah, N.; et al. Phytohormones and plant responses to salinity stress: A review. Plant Growth Regul. 2014, 75, 391–404. [Google Scholar] [CrossRef]
- Gharbi, E.; Martínez, J.-P.; Benahmed, H.; Lepoint, G.; Vanpee, B.; Quinet, M.; Lutts, S. Inhibition of ethylene synthesis reduces salt-tolerance in tomato wild relative species Solanum chilense. J. Plant Physiol. 2017, 210, 24–37. [Google Scholar] [CrossRef]
- Cuin, T.A.; Betts, S.A.; Chalmandrier, R.; Shabala, S. A root’s ability to retain K+ correlates with salt tolerance in wheat. J. Exp. Bot. 2008, 59, 2697–2706. [Google Scholar] [CrossRef]
- Wang, D.; Wang, H.; Han, B.; Wang, B.; Guo, A.; Zheng, D.; Liu, C.; Chang, L.; Peng, M.; Wang, X. Sodium instead of potassium and chloride is an important macronutrient to improve leaf succulence and shoot development for halophyte Sesuvium portulacastrum. Plant Physiol. Biochem. 2012, 51, 53–62. [Google Scholar] [CrossRef]
- Kronzucker, H.J.; Coskun, D.; Schulze, L.M.; Wong, J.R.; Britto, D.T. Sodium as nutrient and toxicant. Plant Soil 2013, 369, 1–23. [Google Scholar] [CrossRef]
- Ievinsh, G.; Ieviņa, S.; Andersone-Ozola, U.; Samsone, I. Leaf sodium, potassium and electrolyte accumulation capacity of plant species from salt-affected coastal habitats of the Baltic Sea: Towards a definition of Na hyperaccumulation. Flora 2020, 274, 151748. [Google Scholar] [CrossRef]
- He, J.B.; Bögemann, G.M.; Van De Steeg, H.M.; Rijnders, J.G.H.M.; Voesenek, L.A.C.J.; Blom, C.W.P.M. Survival tactics of Ranunculus species in river floodplains. Oecologia 1999, 118, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Park, W.J.; Hertel, R.; Kang, B.G. Enhancement of auxin sensitivity in Ranunculus sceleratus by ethylene: A mechanism to escape from hypoxia under temporary submergence. Environ. Exp. Bot. 2011, 72, 266–271. [Google Scholar] [CrossRef]
- Shiono, K.; Takahashi, H.; Colmer, T.D.; Nakazono, M. Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci. 2008, 175, 52–58. [Google Scholar] [CrossRef]
- Schaller, G.E.; Binder, B.M. Inhibitors of ethylene biosynthesis and signaling. In Ethylene Signaling: Methods and Protocols; Binder, B.M., Schaller, G.E., Eds.; Methods in Molecular biology; Springer Science+Business Media: Berlin/Heidelberg, Germany, 2017; Volume 1573, pp. 223–234. [Google Scholar]
- Mortensen, L.M.; Giselrød, H.R. Effects of air humidity and supplementary lighting on foliage plants. Sci. Hortic. 1990, 44, 301–308. [Google Scholar] [CrossRef]
- Rosenvald, K.; Tullus, A.; Ostonen, I.; Uri, V.; Kupper, P.; Aosaar, J.; Varik, M.; Sõber, J.; Niglas, A.; Hansen, R.; et al. The effect of elevated air humidity on young silver birch and hybrid aspen biomass allocation and accumulation—Acclimation mechanisms and capacity. For. Ecol. Manag. 2014, 330, 252–260. [Google Scholar] [CrossRef]
- Koch, K.; Hartmann, K.D.; Schreiber, L.; Barthlott, W.; Neinhuis, C. Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environ. Exp. Bot. 2006, 56, 1–9. [Google Scholar] [CrossRef]
- Sellin, A.; Alber, M.; Kupper, P. Increasing air humidity influences hydraulic efficiency but not functional vulnerability of xylem in hybrid aspen. J. Plant Physiol. 2017, 219, 28–36. [Google Scholar] [CrossRef]
- Calvo-Polanco, M.; Ibort, P.; Molina, S.; Ruiz-Lozano, J.M.; Zamarreño, A.M.; García-Mina, J.M.; Aroca, R. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants. Planta 2017, 246, 987–997. [Google Scholar] [CrossRef]
- Fanourakis, D.; Hyldgaard, B.; Giday, H.; Bouranis, D.; Körner, O.; Nielsen, K.L.; Ottosen, C.-O. Differential effects of elevated air humidity on stomatal closing ability of Kalanchoë blossfeldiana between the C3 and CAM states. Environ. Exp. Bot. 2017, 143, 115–124. [Google Scholar] [CrossRef]
- Georgii, E.; Jin, M.; Zhao, J.; Kanawati, B.; Schmitt-Kopplin, P.; Albert, A.; Winkler, J.B.; Schäffner, A.R. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis. BMC Plant Biol. 2017, 17, 120. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Yang, Z.; Huang, L.; Sun, C.; Yu, X.; Zhao, M. Fuzzy comprehensive evaluation of the effects of relative air humidity on the morpho-physiological traits of Pakchoi (Brassica chinensis L.) under high temperature. Sci. Hortic. 2018, 246, 971–978. [Google Scholar] [CrossRef]
- Rodrigues, C.R.F.; Silveira, J.A.G.; Viégas, R.A.; Moura, R.M.; Aragão, R.M.; Silva, E.N. Combined effects of high relative humidity and K+ supply mitigates damage caused by salt stress on growth, photosynthesis and ion homeostasis in J. curcas plants. Agric. Waste Manag. 2016, 163, 255–262. [Google Scholar] [CrossRef]
- Backhausen, J.E.; Klein, M.; Klocke, M.; Jung, S.; Scheibe, R. Salt tolerance of potato (Solanum tuberosum L. var. Desirée) plants depends on light intensity and air humidity. Plant Sci. 2005, 169, 229–237. [Google Scholar] [CrossRef]
- Carvalho, D.R.; Vasconcelos, M.W.; Lee, S.; Vreugdenhil, D.; Heuvelink, E.; Carvalho, S.M. Moderate salinity improves stomatal functioning in rose plants grown at high relative air humidity. Environ. Exp. Bot. 2017, 143, 1–9. [Google Scholar] [CrossRef]
- Poorter, H.; Fiorani, F.; Stitt, M.; Schurr, U.; Finck, A.; Gibon, Y.; Usadel, B.; Munns, R.; Atkin, O.; Tardieu, F.; et al. The art of growing plants for experimental purposes: A practical guide for the plant biologist. Funct. Plant Biol. 2012, 39, 821–838. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, M.C.; Garmendia, I. Age of plant influences the effect of salinity in yield and mineral content in ice plants. J. Appl. Bot. Food Qual. 2022, 95, 94–99. [Google Scholar]
- Samarakoon, A.B.; Hotron, R.F. Flowering and stem growth in the celery-leaved buttercup, Ranunculus sceleratus. Can. J. Bot. 1981, 59, 1386–1392. [Google Scholar] [CrossRef]
- Ashraf, A.M.; Begam, S.N.; Ragavan, T. Defoliants Harvest-aid Chemicals: Cost Effective Technology to Facilitate Synchronized Maturity for Mechanical Harvesting in Cotton: A Review. Agric. Rev. 2021, R-2081. [Google Scholar] [CrossRef]
- Rutkowski, K.; Łysiak, G.P. Thinning Methods to Regulate Sweet Cherry Crops—A Review. Appl. Sci. 2022, 12, 1280. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, W.; Wen, C.-K. Ethylene preparation and its application to physiological experiments. Plant Signal. Behav. 2010, 5, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.; Mahfouz, S. Effect of 1-methylcyclopropene (1-MCP) on the postharvest senescence of coriander leaves during storage and its relation to antioxidant enzyme activity. Sci. Hortic. 2012, 141, 69–75. [Google Scholar] [CrossRef]
- Tiwari, K.; Paliyath, G. Microarray analysis of ripening-regulated gene expression and its modulation by 1-MCP and hexanal. Plant Physiol. Biochem. 2011, 49, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Mata, C.I.; Magpantay, J.; Hertog, M.L.A.T.M.; Van de Poel, B.; Nicolaï, B.M. Expression and protein levels of ethylene receptors, CTRs and EIN2 during tomato fruit ripening as affected by 1-MCP. Postharv. Biol. Technol. 2021, 179, 111573. [Google Scholar] [CrossRef]
Experiment/Treatment | NaCl | MCP | CEPA | Silica Xerogel | Container Volume (L) | Replicates (Boxes/ Plants) |
---|---|---|---|---|---|---|
Experiment 1 (high humidity) | ||||||
Control | − | − | − | − | 48 | 2/6 |
NaCl | + | − | − | − | 48 | 2/6 |
MCP | − | + | − | − | 48 | 2/6 |
NaCl MCP | + | + | − | − | 48 | 2/6 |
C2H4 | − | − | + | − | 48 | 2/6 |
NaCl C2H4 | + | − | + | − | 48 | 2/6 |
Experiment 2 (high humidity) | ||||||
Control | − | − | − | − | 48 | 2/6 |
NaCl | + | − | − | − | 48 | 2/6 |
NaCl C2H4 | + | − | + | − | 48 | 2/6 |
NaCl MCP | + | + | − | − | 48 | 2/6 |
NaCl MCP C2H4 | + | + | + | − | 48 | 2/6 |
Experiment 2 (normal humidity) | ||||||
Control | − | − | − | + | 24 | 3/6 |
NaCl | + | − | − | + | 24 | 3/6 |
NaCl C2H4 | + | − | + | + | 24 | 3/6 |
NaCl MCP | + | + | − | + | 24 | 3/6 |
NaCl MCP C2H4 | + | + | + | + | 24 | 3/6 |
Treatment | High Humidity | Normal Humidity | ||
---|---|---|---|---|
In Respect to Control (%) | Statistical Significance (p) | In Respect to Control (%) | Statistical Significance (p) | |
Leaf petiole length | ||||
NaCl | 75 | <0.05 | 80 | <0.05 |
NaCl C2H4 | 112 | ns | 102 | ns |
NaCl MCP | 81 | <0.05 | 75 | <0.05 |
NaCl MCP C2H4 | 78 | <0.05 | 89 | ns |
Leaf petiole dry mass | ||||
NaCl | 109 | ns | 100 | ns |
NaCl C2H4 | 147 | <0.05 | 141 | ns |
NaCl MCP | 113 | ns | 101 | ns |
NaCl MCP C2H4 | 137 | <0.05 | 134 | ns |
Leaf blade dry mass | ||||
NaCl | 132 | ns | 116 | ns |
NaCl C2H4 | 123 | ns | 117 | ns |
NaCl MCP | 137 | ns | 119 | ns |
NaCl MCP C2H4 | 175 | <0.05 | 149 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prokopoviča, V.; Ievinsh, G. Ranunculus sceleratus as a Model Species to Decrypt the Role of Ethylene in Plant Adaptation to Salinity. Plants 2023, 12, 370. https://doi.org/10.3390/plants12020370
Prokopoviča V, Ievinsh G. Ranunculus sceleratus as a Model Species to Decrypt the Role of Ethylene in Plant Adaptation to Salinity. Plants. 2023; 12(2):370. https://doi.org/10.3390/plants12020370
Chicago/Turabian StyleProkopoviča, Veronika, and Gederts Ievinsh. 2023. "Ranunculus sceleratus as a Model Species to Decrypt the Role of Ethylene in Plant Adaptation to Salinity" Plants 12, no. 2: 370. https://doi.org/10.3390/plants12020370
APA StyleProkopoviča, V., & Ievinsh, G. (2023). Ranunculus sceleratus as a Model Species to Decrypt the Role of Ethylene in Plant Adaptation to Salinity. Plants, 12(2), 370. https://doi.org/10.3390/plants12020370