Taxon Cycles in Neotropical Mangroves
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, E.O. The nature of the taxon cycle in the Melanesian ant fauna. Am. Natur. 1961, 95, 169–193. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Cox, G.C. Taxon cycles in the West Indian avifauna. Am. Natur. 1972, 106, 195–219. [Google Scholar] [CrossRef]
- Diamond, J.M. Colonization of exploded volcanic islands by birds: The supertramp strategy. Science 1974, 184, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Diamond, J.M.; Gilpin, M.E.; Mayr, E. Species-distance relation for birds of Solomon archipelago, and paradox of great speciators. Proc. Natl. Acad. Sci. USA 1976, 73, 2160–2164. [Google Scholar] [CrossRef]
- Pepke, M.L.; Irestedt, M.; Fjeldså, J.; Rahbeck, C.; Jønsson, K.A. Reconciling supertramps, great speciators and relict species with the taxon cycle stages of a large island radiation (Aves: Campephagidae). J. Biogeog. 2019, 46, 1214–1225. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Bermingham, E. The concept of the taxon cycle in biogeography. Glob. Ecol. Biogeog. 2002, 11, 353–361. [Google Scholar] [CrossRef]
- Lopez-Martinez, N. Time asymetry in the palaeobiogeographic history of species. Bull. Soc. Geol. Française 2009, 180, 445–455. [Google Scholar]
- Wilson, E.O. Adaptive shifts and dispersal in a tropical ant fauna. Evolution 1959, 13, 122–144. [Google Scholar] [CrossRef]
- MacLean, W.P.; Holt, R.D. Distributional patterns in St. Croix Sphaerodactylus lizards: The taxon cycle in action. Biotropica 1979, 11, 189–195. [Google Scholar] [CrossRef]
- Losos, J.B. A critical comparison of the taxon-cycle and character-displacement models for size evolution of Anolis lizards in the Lesser Antilles. Copeia 1992, 2, 279–288. [Google Scholar] [CrossRef]
- Jones, M.J.; Sullivan, M.S.; Marsden, S.J.; Lindsley, M.D. Correlates of extinction risk of birds from two Indonesian islands. Biol. J. Linn. Soc. 2001, 73, 65–79. [Google Scholar] [CrossRef]
- Cook, B.D.; Pringle, C.M.; Hughes, J.M. Molecular evidence for sequential colonization and taxon cycling in freshwater decapod shrimps on a Caribbean Island. Mol. Ecol. 2008, 17, 1066–1075. [Google Scholar] [CrossRef]
- Simberloff, D.; Collins, M.D. The domain of the dynamic equilibrium theory and assembly rules, with comments on the taxon cycle. In The Theory of Island Biogeography Revisited; Losos, J.B., Ricklefs, R.E., Eds.; Princeton University Press: Princeton, NJ, USA, 2010; pp. 237–263. [Google Scholar]
- Economo, E.P.; Sarnat, E.M. Revisiting the ants of Melanesia and the taxon cycle: Historical and human-mediated invasions of a tropical archipelago. Am. Natur. 2012, 180, E1–E16. [Google Scholar] [CrossRef] [PubMed]
- Jønsson, K.A.; Irestedt, M.; Christidis, L.; Clegg, S.M.; Holt, B.G.; Fjeldså, J. Evidence of taxon cycles in an Indo-Pacific passerine bird radiation (Aves: Pachycephala). Proc. R. Soc. B 2014, 281, 20131727. [Google Scholar] [CrossRef]
- Economo, E.P.; Sarnat, E.M.; Janda, M.; Clouse, R.; Klimov, P.B.; Fischer, G.; Blanchard, B.D.; Ramirez, L.N.; Andersen, A.N.; Berman, M.; et al. Breaking out biogeographical modules: Range expansion and taxon cycles in the hyperdiverse ant genus Pheidole. J. Biogeog. 2015, 42, 2289–2301. [Google Scholar] [CrossRef]
- Fuchs, J.; Lemoine, D.; Parra, J.L.; Pons, J.-M.; Raherilalao, M.J.; Prys-Jones, R.; Thebaud, C.; Warren, B.H.; Goodman, S.M. Long-distance dispersal and inter-island colonization across the western Malagasy Region explain diversification in brush-warblers (Passeriformes: Nesillas). Biol. J. Linn. Soc. 2016, 119, 873–889. [Google Scholar] [CrossRef]
- Dalsgaard, B.; Kennedy, J.; Simmons, B.; Baquero, A.C.; González, A.M.M.; Timmermann, A.; Maruyama, P.K.; A McGuire, J.; Ollerton, J.; Sutherland, W.; et al. Trait evolution, resource specialization and vulnerability to plant extinctions among Antillean hummingbirds. Proc. R. Soc. B 2018, 285, 20172754. [Google Scholar] [CrossRef]
- Matos-Maraví, P.; Matzke, N.J.; Larabee, F.J.; Clouse, R.M.; Wheeler, W.C.; Sorger, D.M.; Suarez, A.V.; Janda, M. Taxon cycle predictions supported by model-based inference in Indo-Pacific trap-jaw ants (Hymenoptera: Formicidae: Odontomachus). Mol. Ecol. 2017, 27, 4090–4107. [Google Scholar] [CrossRef]
- Oliver, P.M.; Brown, R.M.; Kraus, F.; Rittmeyer, E.; Travers, S.L.; Siler, C.D. Lizards of the lost arcs: Mid-Cenozoic diversification, persistence and ecological marginalization in the West Pacific. Proc. R. Soc. B 2018, 285, 20171760. [Google Scholar] [CrossRef]
- O’Connell, D.P.; Kelly, D.J.; Lawless, N.; Karya, A.; Analuddin, K.; Marples, N.M. Diversification of a ‘great speciator’ in the Wallacea region: Differing responses of closely related resident and migratory kingfischer species (Aves: Alceinidae: Todiramphus). Ibis 2019, 161, 806–823. [Google Scholar] [CrossRef]
- Cozzarolo, C.-S.; Balke, M.; Buerki, S.; Arrigo, N.; Pitteloud, C.; Gueuning, M.; Salamin, N.; Sartori, M.; Alvarez, N. Biogeography and ecological diversification of a mayfly clade in New Guinea. Front. Ecol. Evol. 2019, 7, 233. [Google Scholar] [CrossRef]
- Liu, C.; Sarnat, E.M.; Friedman, N.R.; Hita Garcia, F.; Darwell, C.; Booher, D.; Kubota, Y.; Mikheyev, A.S.; Economo, E.P. Colonize, radiate, decline: Unravelling the dynamics of island community assembly with Fijian trap-jaw ants. Evolution 2020, 74, 1082–1097. [Google Scholar] [CrossRef] [PubMed]
- Cognato, A.I.; Smith, S.M.; Jordal, B.H. Patterns of host tree use within a lineage of saproxlic snout-less weevils (Coleoptera; Curculionidae; Scolytinae; Scolytini). Mol. Phylogenet. Evol. 2021, 159, 107107. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Paris, M.; Good, D.A.; Parra-Olea, G.; Wake, D.B. Biodiversity of Costa Rican salamanders: Implications of high levels of genetic differentiation and phylogeographic structure for species formation. Proc. Natl. Acad. Sci. USA 2000, 97, 1640–1647. [Google Scholar] [CrossRef]
- Sheh, S.N.; Morueta-Holm, N.; Angert, A.L. Determinants of geographic range size in plants. New Phytol. 2018, 226, 650–665. [Google Scholar] [CrossRef]
- Lu, L.; Fritsch, P.W.; Matzke, N.J.; Wang, H.; Kron, K.A.; Li, D.-Z.; Wiens, J.J. Why is fruit color so variable? Phylogenetic analyses reveal relationships between fruit-color evolution, biogeography and diversification. Glob. Ecol. Biogeog. 2019, 28, 891–903. [Google Scholar] [CrossRef]
- Hays, J.D.; Imbrie, J.; Shackleton, N.J. Variations in Earth’s orbit: Pacemaker of ice ages. Science 1976, 194, 1121–1132. [Google Scholar] [CrossRef]
- Žliobaitė, I.; Fortelius, M.; Stenseth, N.C. Reconciling taxon senescence with the Red Queen’s hypothesis. Nature 2017, 552, 92–95. [Google Scholar] [CrossRef]
- Ho, S.Y.W. The Molecular Evolutionary Clock. Theory and Practice; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Parenti, L.R.; Ebach, M.C. Evidence and hypothesis in biogeography. J. Biogeog. 2013, 40, 813–820. [Google Scholar] [CrossRef]
- Foote, M. Symmetric waxing and waning of marine invertebrate genera. Paleobiology 2007, 33, 517–529. [Google Scholar] [CrossRef]
- Foote, M.; Crampton, J.S.; Beu, A.G.; Marshall, B.A.; Cooper, R.A.; Maxwell, P.A.; Matcham, I. Rise and fall of species occupancy in Cenozoic fossil mollusks. Science 2017, 318, 1131–1134. [Google Scholar] [CrossRef]
- Liow, L.H.; Stenseth, N.C. The rise and fall of species: Implications for macroevolutionary and macroecological studies. Proc. R. Soc. B 2007, 274, 2745–2752. [Google Scholar] [CrossRef] [PubMed]
- Brunet, M.; Beauvilain, A.; Coppens, Y.; Heintz, E.; Moutaye, A.H.E.; Pildeam, D. The first Australopithecine 2500 km west of the Rift Valley (Chad). Nature 1995, 378, 273–275. [Google Scholar] [CrossRef] [PubMed]
- Eldredge, N.; Gould, S.J. Punctuated equilibria: An alternative to phyletic gradualism. In Models in Paleobiology; Schopf, T.J.M., Ed.; Freeman Cooper: San Francisco, CA, USA, 1972; pp. 193–223. [Google Scholar]
- Gould, S.J.; Eldredge, N. Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology 1977, 3, 115–151. [Google Scholar] [CrossRef]
- Duke, N.C. A systematic revision of the vulnerable mangrove genus Pelliciera (Tetramerisraceae) in equatorial America. Blumea 2020, 65, 107–120. [Google Scholar] [CrossRef]
- Wijmstra, T.A. The identity of Psilatricolporites and Pelliciera. Acta Bot. Neerl. 1968, 17, 114–116. [Google Scholar] [CrossRef]
- Graham, A. New records of Pelliciera (Theaceae/Pellicieriaceae) in the Tertiary of the Caribbean. Biotropica 1977, 9, 48–52. [Google Scholar] [CrossRef]
- Graham, A. Diversification of Caribbean/Gulf mangrove communities through Cenozoic time. Biotropica 1995, 27, 20–27. [Google Scholar] [CrossRef]
- Rull, V. Middle Eocene mangroves and vegetation changes in the Maracaibo Basin, Venezuela. Palaios 1998, 13, 287–296. [Google Scholar] [CrossRef]
- Rull, V. A quantitative palynological record from the early Miocene of western Venezuela, with emphasis on mangroves. Palynology 2001, 25, 109–126. [Google Scholar] [CrossRef]
- Dangremond, E.M.; Feller, I.V.; Sousa, W.P. Environmental tolerances of rare and common mangroves along light and salinity gradients. Oecologia 2015, 179, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Dangremond, E.M.; Feller, I.C. Functional traits and nutrient limitation in the rare mangrove Pelliciera rhizophorae. Aquat. Bot. 2014, 116, 1–7. [Google Scholar] [CrossRef]
- Yepes, J.; Poveda, G.; Mejía, J.F.; Moreno, L.; Rueda, C. CHOCO-JEX a research experiment focused on the Chocó low-level jet over the far eastern Pacific and western Colombia. Bull. Am. Meteorol. Soc. 2019, 100, 779–796. [Google Scholar] [CrossRef]
- Germeraad, J.H.; Hopping, C.A.; Muller, J. Palynology of Tertiary sediments from tropical areas. Rev. Palaeobot. Palynol. 1968, 6, 189–348. [Google Scholar] [CrossRef]
- Rull, V. The Caribbean mangroves: An Eocene innovation with no Cretaceous precursors. Earth-Sci. Rev. 2022, 231, 104070. [Google Scholar] [CrossRef]
- Takayama, K.; Tateishi, Y.; Kaijita, T. Global phylogeography of a pantropical mangrove genus Rhizophora. Sci. Rep. 2021, 11, 7228. [Google Scholar] [CrossRef]
- Coxall, H.K.; Pearson, P.N. The Eocene-Oligocene transition. In Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies; Williams, M., Haywood, A.M., Gregory, F.J., Scmidt, D.N., Eds.; The Geological Society: London, UK, 2007; pp. 351–387. [Google Scholar]
- Hutchinson, D.K.; Coxall, H.K.; Lunt, D.J.; Steinthorsdottir, M.; de Boer, A.M.; Baatsen, M.; von der Heydt, A.; Huber, M.; Kennedy-Asser, A.T.; Kunzmann, L. The Eocene-Oligocene transition: A review of marine and terrestrial proxy data, models and model-data comparisons. Clim. Past 2021, 17, 269–315. [Google Scholar] [CrossRef]
- Fuchs, H.P. Ecological and palynological notes on Pelliciera rhizophorae. Acta Bot. Neerl. 1970, 19, 884–894. [Google Scholar] [CrossRef]
- Jiménez, J.A. A hypothesis to explain the reduced distribution of the mangrove Pelliciera rhizophorae Tr and Pl. Biotropica 1984, 16, 304–308. [Google Scholar] [CrossRef]
- Lorente, M.A. Palynology and palynofacies of the Upper Tertiary in Venezuela. Dissert. Bot. 1986, 99, 1–222. [Google Scholar]
- Darroch, S.A.; Saupe, E.E. Reconstructing geographic range-size dynamics from fossil data. Paleobiology 2018, 44, 25–39. [Google Scholar] [CrossRef]
- Darroch, S.A.; Casey, M.M.; Antell, G.S.; Sweeney, A.; Saupe, E.E. High preservation potential of paleogeographic range size distributions in deep time. Am. Natur. 2020, 196, 454–471. [Google Scholar] [CrossRef] [PubMed]
- Carotenuto, F.; Di Febbraro, M.; Mondanaro, A.; Castiglione, S.; Serio, C.; Melchionna, M.; Rook, L.; Raia, P. MInOSSE: A new method to reconstruct geographic ranges of fossil species. Meth. Ecol. Evol. 2020, 11, 1121–1132. [Google Scholar] [CrossRef]
- Rull, V. Responses of Caribbean mangroves to Quaternary climatic, eustatic and anthropogenic drivers of ecological change: A review. Plants 2022, 11, 3502. [Google Scholar] [CrossRef] [PubMed]
- Keesing, F.; Holt, R.D.; Ostfeld, R.S. Effects of species diversity on disease risk. Ecol. Lett. 2006, 9, 485–498. [Google Scholar] [CrossRef]
- Keesing, F.; Belden, L.K.; Daszak, P.; Dobson, A.; Harvell, C.D.; Holt, R.D.; Hudson, P.; Jolles, A.E.; Jones, K.E.; Mitchell, C.E.; et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 2010, 468, 647–652. [Google Scholar] [CrossRef]
- Castillo-Cárdenas, M.F.; Díaz-Gonzales, F.; Cerón-Souza, I.; Sanjur, O.; Toro-Perea, N. Jumping a geographical barrier: Diversification of the mangrove species Pelliciera rhizophorae (Tetrameristaceae) across the Central American Isthmus. Tree Genet. Genom. 2014, 11, 1–11. [Google Scholar]
- Castillo-Cárdenas, M.F.; Ramirez-Silva, J.A.; Sanjur, O.; Toro-Perea, N. Evidence of incipient speciation in the Neotropical mangrove Pelliciera rhizophorae (Tetrameristaceae) as revealed by molecular, morphological, physiological and climatic characteristics. Bot. J. Linn. Soc. 2015, 179, 499–510. [Google Scholar] [CrossRef]
- Frederiksen, N. Review of Early Tertiary sporomorph paleoecology. Am. Assoc. Strat. Palynol. Contr. Ser. 1985, 19, 1–92. [Google Scholar]
- Muller, J.; Di Giacomo, E.; Ven Erve, A.W. A palynological zonation for the Cretaceous, Tertiary and Quaternary of Northern South America. Am. Assoc. Strat. Palynol. Contr. Ser. 1987, 19, 7–76. [Google Scholar]
- Jaramillo, C.; Dilcher, D.L. Middle Paleogene palynology of Central Colombia, South America: A study of pollen and spores from tropical latitudes. Palaeontogr. B 2001, 258, 87–213. [Google Scholar] [CrossRef]
- Wiens, J.J.; Graham, C.H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Ann. Rev. Ecol. Evol. Syst. 2005, 36, 519–539. [Google Scholar] [CrossRef]
- Wiens, J.J.; Ackerly, D.D.; Allen, A.P.; Anacker, B.L.; Buckley, L.B.; Cornell, H.V.; Damschen, E.I.; Davies, T.J.; Grytnes, J.-A.; Harrison, S.P.; et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 2010, 13, 1310–1324. [Google Scholar] [CrossRef]
- Hadly, E.A.; Spaeth, P.A.; Li, C. Niche conservatism above the species level. Proc. Natl. Acad. Sci. USA 2009, 106, 19707–19714. [Google Scholar] [CrossRef] [PubMed]
- Westerhold, T.; Marwan, N.; Drury, A.J.; Liebrand, D.; Agnini, C.; Anagnostou, E.; Barnet, J.S.K.; Bohaty, S.M.; De Vleeschouwer, D.; Florindo, F.; et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 2020, 369, 1383–1387. [Google Scholar] [CrossRef] [PubMed]
- Mann, P. Gulf of Mexico, Central America, and the Caribbean. In Encyclopedia of Geology; Alderton, D., Elias, S.A., Eds.; Academic Press: London, UK, 2021; pp. 47–67. [Google Scholar]
- Romito, S.; Mann, P. Tectonic terrains underlying the present-day Caribbean plate: Their tectonic origin, sedimentary thickness, subsidence histories and regional controls on hydrocarbon resources. In The Basins, Orogens, and Evolution of the Southern Gulf of Mexico and Northen Caribbean; Davidson, I., Hull, J.N.F., Pindell, J., Eds.; Geological Society: London, UK, 2020; pp. 343–378. [Google Scholar]
- Rabinowitz, D. Dispersal properties of mangrove propagules. Biotropica 1978, 10, 47–57. [Google Scholar] [CrossRef]
- Van der Stocken, T.; Carroll, D.; Menemenlis, D.; Simard, M.; Koedam, N. Global-scale dispersal and connectivity in mangroves. Proc. Natl. Acad. Sci. USA 2019, 116, 915–922. [Google Scholar] [CrossRef]
- Boucher, D.H.; James, S.; Keeler, K.H. The ecology of mutualism. Ann. Rev. Ecol. Syst. 1982, 13, 315–347. [Google Scholar] [CrossRef]
- Callaway, R.M. Positive interactions among plants (interpreting botanical progress). Bot. Rev. 1995, 61, 306–349. [Google Scholar] [CrossRef]
- Stachowicz, J.J. Mutualism, facilitation, and the structure of ecological communities. BioScience 2001, 51, 235–246. [Google Scholar] [CrossRef]
- Bruno, J.F.; Stachowicz, J.J.; Bertness, M.D. Inclusion of facilitation into ecological theory. Tree 2003, 18, 119–125. [Google Scholar] [CrossRef]
- MacArthur, R.; Levins, R. The limiting of similarity, convergence, and divergence of coexisting species. Am. Natur. 1976, 10, 377–385. [Google Scholar] [CrossRef]
- Violle, C.; Nemergut, D.R.; Pu, Z.; Jiang, L. Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett. 2011, 14, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Kosicki, J.Z. Niche segregation on the landscape scale of two co-existing related congeners in the sympatric zone—Modelling approach. Ecol. Model. 2022, 468, 109960. [Google Scholar] [CrossRef]
- Futuyma, D.J.; Moreno, G. The evolution of ecological specialization. Ann. Rev. Ecol. Syst. 1988, 19, 207–233. [Google Scholar] [CrossRef]
- Pielou, E.C. Biogeography; Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Rull, V. Microrefugia. J. Biogeog. 2009, 36, 481–484. [Google Scholar] [CrossRef]
- Fernández-Palacios, J.M.; Otto, R.; Borregaard, M.K.; Kreft, H.; Price, J.P.; Steinbauer, M.J.; Weigelt, P.; Whittaker, R.J. Evolutionary winners are ecological losers among oceanic island plants. J. Biogeog. 2021, 48, 2186–2198. [Google Scholar] [CrossRef]
- Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Farnsworth, E.J.; Fernando, E.S.; Kathiresan, K.; Koedam, N.E.; et al. The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE 2010, 5, e10095. [Google Scholar] [CrossRef]
- Blanco, J.F.; Estrada, E.A.; Ortiz, L.F.; Urrego, L.E. Ecosystem-wide impacts of deforestation in mangroves: The Urabá Gulf (Colombian Caribbean) case study. ISRN Ecol. 2012, 2012, 958709. [Google Scholar] [CrossRef]
- Bhowmik, A.K.; Padmanaban, R.; Cabral, P.; Romeiras, M.M. Global mangrove deforestation and its interacting social-ecological drivers: A systematic review and synthesis. Sustainability 2022, 14, 4433. [Google Scholar] [CrossRef]
- Blanco-Libreros, J.F.; Ramírez-Ruiz, K. Threatened mangroves in the Anthropocene: Habitat fragmentation in urban coastalscapes of Pelliciera spp. (Tetrameristaceae) in northern South America. Front. Mar. Sci. 2021, 8, 670354. [Google Scholar] [CrossRef]
- Rull, V. Biodiversity crisis or sixth mass extinction? EMBO Rep. 2022, 23, e54193. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rull, V. Taxon Cycles in Neotropical Mangroves. Plants 2023, 12, 244. https://doi.org/10.3390/plants12020244
Rull V. Taxon Cycles in Neotropical Mangroves. Plants. 2023; 12(2):244. https://doi.org/10.3390/plants12020244
Chicago/Turabian StyleRull, Valentí. 2023. "Taxon Cycles in Neotropical Mangroves" Plants 12, no. 2: 244. https://doi.org/10.3390/plants12020244
APA StyleRull, V. (2023). Taxon Cycles in Neotropical Mangroves. Plants, 12(2), 244. https://doi.org/10.3390/plants12020244