Converting Hybrid Potato Breeding Science into Practice
Abstract
:1. Introduction
2. Inbred Line Development
2.1. Germplasm
2.2. Self-Compatibility in Diploid Potato
2.3. Mapping Traits at the Diploid Level
2.4. Inbreeding Depression Hampers Line Development
2.5. Trait Introgression
2.6. Marker Assisted Backcrossing, Example of Late Blight
2.7. Male Sterility
2.8. Inbred Line Development; Conclusions and Outlook
3. Hybrid Development and Evaluation
3.1. Crossing Strategies: Combining Abilities versus a General Breeding Value
3.2. Hybrid Evaluation
3.3. Field Trial Techniques
3.4. Conclusion Hybrid Development and Evaluation
4. Cropping Systems
4.1. Development Scale adjusted for HTPS
4.2. Transplants
4.3. Seedling-Tubers
4.4. Conclusion Cropping Systems
5. Variety Registration and Marketing
5.1. Regulatory Hurdles for Variety Registration
5.2. Certification
- Seed-tubers derived from HTPS plants need to be classified according to the existing tuber class certification scheme.
- Minimum requirements for germination, purity and health status of the true seeds should be defined.
- Provision of quality requirements and inspection guidelines of seedlings of HTPS varieties intended to be transplanted for the production of potato tubers.
5.3. Plant Material Exchange
5.4. Conclusion Variety Registration and Marketing
6. Implementation
6.1. Application and Execution
6.2. Information Sharing and Product Management
7. Societal Context and Future Outlook
7.1. Hybrid Potato Breeding and Society
7.2. Challenges Still to Tackle
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ter Steeg, E.M.S.; Struik, P.C.; Visser, R.G.F.; Lindhout, P. Crucial factors for the feasibility of commercial hybrid breeding in food crops. Nat. Plants 2022, 8, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, J.E. Breeding Diploid F1 Hybrid Potatoes for Propagation from Botanical Seed (TPS): Comparisons with Theory and Other Crops. Plants 2022, 11, 1121. [Google Scholar] [CrossRef] [PubMed]
- Mackay, I.J.; Cockram, J.; Howell, P.; Powell, W. Understanding the classics: The unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnol. J. 2021, 19, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Bethke, P.C.; Halterman, D.A.; Jansky, S. Are We Getting Better at Using Wild Potato Species in Light of New Tools? Crop. Sci. 2017, 57, 1241–1258. [Google Scholar] [CrossRef][Green Version]
- Busse, J.S.; Jansky, S.H.; Agha, H.I.; Schmitz Carley, C.A.; Shannon, L.M.; Bethke, P.C. A High Throughput Method for Generating Dihaploids from Tetraploid Potato. Am. J. Potato Res. 2021, 98, 304–314. [Google Scholar] [CrossRef]
- Bethke, P.C.; Jansky, S.H. Genetic and Environmental Factors Contributing to Reproductive Success and Failure in Potato. Am. J. Potato Res. 2021, 98, 24–41. [Google Scholar] [CrossRef]
- Lindhout, P.; de Vries, M.; ter Maat, M.; Ying, S.; Viquez-Zamora, M.; van Heusden, S. Hybrid Potato Breeding for Improved Varieties. Achiev. Sustain. Cultiv. Potatoes 2018, 1, 1–24. [Google Scholar] [CrossRef][Green Version]
- Zhou, Q.; Tang, D.; Huang, W.; Yang, Z.; Zhang, Y.; Hamilton, J.P.; Visser, R.G.F.; Bachem, C.W.B.; Buell, C.R.; Zhang, Z.; et al. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat. Genet. 2020, 52, 1018–1023. [Google Scholar] [CrossRef]
- Hoopes, G.; Meng, X.; Hamilton, J.P.; Achakkagari, S.R.; Guesdes, F.d.A.F.; Bolger, M.E.; Coombs, J.J.; Esselink, D.; Kaiser, N.R.; Kodde, L.; et al. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Mol. Plant. 2022, 15, 520–536. [Google Scholar] [CrossRef]
- Tang, D.; Jia, Y.; Zhang, J.; Li, H.; Cheng, L.; Wang, P.; Bao, Z.; Liu, Z.; Feng, S.; Zhu, X.; et al. Genome evolution and diversity of wild and cultivated potatoes. Nature 2022, 606, 535–541. [Google Scholar] [CrossRef]
- Spooner, D.M.; Ghislain, M.; Simon, R.; Jansky, S.H.; Gavrilenko, T. Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Bot. Rev. 2014, 80, 283–383. [Google Scholar] [CrossRef]
- Haynes, K.G.; Guedes, M.L. Self-Compatibility in a Diploid Hybrid Population of Solanum phureja—S. stenotomum. Am. J. Potato Res. 2018, 95, 729–734. [Google Scholar] [CrossRef]
- Cipar, M.S.; Peloquin, S.J.; Hougas, R.W. Variability in the expression of self-incompatibility in tuber-bearing diploid solanum species. Am. Potato J. 1964, 41, 155–162. [Google Scholar] [CrossRef]
- Fujii, S.; Kubo, K.I.; Takayama, S. Non-self- and self-recognition models in plant self-incompatibility. Nat. Plants 2016, 2, 16130. [Google Scholar] [CrossRef]
- Hosaka, K.; Hanneman, R.E., Jr. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 1. Detection of an S locus inhibitor (Sli) gene. Euphytica 1998, 99, 191–197. [Google Scholar] [CrossRef]
- Hosaka, K.; Hanneman, R.E., Jr.; Hanneman, R.E. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 2. Localization of an S locus inhibitor (Sli) gene on the potato genome using DNA markers. Euphytica 1998, 103, 265–271. [Google Scholar] [CrossRef]
- Clot, C.R.; Polzer, C.; Prodhomme, C.; Schuit, C.; Engelen, C.J.M.; Hutten, R.C.B.; Van Eck, H.J. The origin and widespread occurrence of Sli-based self-compatibility in potato. Theor. Appl. Genet. 2020, 133, 2713–2728. [Google Scholar] [CrossRef]
- Lindhout, P.; Meijer, D.; Schotte, T.; Hutten, R.C.B.; Visser, R.G.F.; van Eck, H.J. Towards F1 Hybrid Seed Potato Breeding. Potato Res. 2011, 54, 301–312. [Google Scholar] [CrossRef][Green Version]
- Peterson, B.A.; Holt, S.H.; Laimbeer, F.P.E.; Doulis, A.G.; Coombs, J.; Douches, D.S.; Hardigan, M.A.; Buell, C.R.; Veilleux, R.E. Self-fertility in a cultivated diploid potato population examined with the Infinium 8303 potato single-nucleotide polymorphism array. Plant Genome. 2016, 9, 0003. [Google Scholar] [CrossRef][Green Version]
- Eggers, E.J.; van der Burgt, A.; van Heusden, S.A.W.; de Vries, M.E.; Visser, R.G.F.; Bachem, C.W.B.; Lindhout, P. Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, C.; Zhang, B.; Tang, F.; Li, F.; Liao, Q.; Tang, D.; Peng, Z.; Jia, Y.; Gao, M.; et al. A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.; Kapfer, C.; Major, G.; Laurin, M.; Bertrand, C.; Kondo, K.; Kowyama, Y.; Matton, D.P. Molecular analysis of the stylar-expressed Solanum chacoense small asparagine-rich protein family related to the HT modifier of gametophytic self-incompatibility in Nicotiana. Plant J. 2002, 32, 985–996. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Peng, Z.; Tang, D.; Yang, Z.; Li, D.; Xu, Y.; Zhang, C.; Huang, S. Generation of self-compatible diploid potato by knockout of S-RNase. Nat. Plants 2018, 4, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Enciso-Rodriguez, F.; Manrique-Carpintero, N.C.; Nadakuduti, S.S.; Buell, C.R.; Zarka, D.; Douches, D. Overcoming self-incompatibility in diploid potato using CRISPR-cas9. Front. Plant Sci. 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Endelman, J.B.; Jansky, S.H. Genetic mapping with an inbred line—Derived F2 population in potato. Theor. Appl. Genet. 2016, 129, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Meijer, D.; Viquez-Zamora, M.; van Eck, H.J.; Hutten, R.C.B.; Su, Y.; Rothengatter, R.; Visser, R.G.F.; Lindhout, W.H.; van Heusden, A.W. QTL mapping in diploid potato by using selfed progenies of the cross S. tuberosum × S. chacoense. Euphytica 2018, 214, 121. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kaiser, N.R.; Billings, G.; Coombs, J.; Buell, C.R.; Enciso-Rodríguez, F.; Douches, D.S. Self-fertility and resistance to the Colorado potato beetle (Leptinotarsa decemlineata) in a diploid Solanum chacoense recombinant inbred line population. Crop. Sci. 2021, 61, 3392–3414. [Google Scholar] [CrossRef]
- van Eck, H.J.; Jacobs, J.M.E.; Stam, P.; Ton, J.; Stiekema, W.J.; Jacobsen, E. Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using RFLPs. Genetics 1994, 137, 303–309. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, B.; Keyhaninejad, N.; Rodríguez, G.R.; Kim, H.J.; Chakrabarti, M.; Illa-Berenguer, E.; Taitano, N.K.; Gonzalo, M.J.; Díaz, A.; et al. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat. Commun. 2018, 9, 4734. [Google Scholar] [CrossRef][Green Version]
- Korontzis, G.; Malosetti, M.; Zheng, C.; Maliepaard, C.; Mulder, H.A.; Lindhout, P.; Veerkamp, R.F.; van Eeuwijk, F.A. QTL detection in a pedigreed breeding population of diploid potato. Euphytica 2020, 216, 1–14. [Google Scholar] [CrossRef]
- van Lieshout, N.; van der Burgt, A.; de Vries, M.E.; ter Maat, M.; Eickholt, D.; Esselink, D.; van Kaauwen, M.P.W.; Kodde, L.P.; Visser, R.G.F.; Lindhout, P.; et al. Solyntus, the new highly contiguous reference genome for potato (Solanum tuberosum). Genes Genomes Genet. 2020, 10, 3489–3495. [Google Scholar] [CrossRef]
- Pham, G.M.; Hamilton, J.P.; Wood, J.C.; Burke, J.T.; Zhao, H.; Vaillancourt, B.; Ou, S.; Jiang, J.; Buell, C.R. Construction of a chromosome-scale long-read reference genome assembly for potato. Gigascience 2020, 9, 1–11. [Google Scholar] [CrossRef]
- Charles, D. Royal College of Physicians of Edinburgh. In The Effects of Cross and Self Fertilisation in the Vegetable Kingdom; John Murray: London, UK, 1876. [Google Scholar] [CrossRef]
- Charlesworth, D.; Willis, J.H. The genetics of inbreeding depression. Nat. Rev. Genet. 2009, 10, 783–796. [Google Scholar] [CrossRef]
- Leisner, C.P.; Hamilton, J.P.; Crisovan, E.; Manrique-Carpintero, N.C.; Marand, A.P.; Newton, L.; Pham, G.M.; Jiang, J.; Douches, D.S.; Jansky, S.H.; et al. Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J. 2018, 1967, 562–570. [Google Scholar] [CrossRef][Green Version]
- Zhang, C.; Wang, P.; Tang, D.; Yang, Z.; Lu, F.; Qi, J.; Tawari, N.R.; Shang, Y.; Li, C.; Huang, S. The genetic basis of inbreeding depression in potato. Nat. Genet. 2019, 51, 374–378. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Tang, D.; Zhu, Y.; Wang, P.; Li, D.; Zhu, G.; Xiong, X.; Shang, Y.; Li, C.; et al. Genome design of hybrid potato. Cell 2021, 184, 3873–3883.e12. [Google Scholar] [CrossRef]
- Hosaka, K.; Sanetomo, R. Creation of a highly homozygous diploid potato using the S locus inhibitor (Sli) gene. Euphytica 2020, 216, 1–16. [Google Scholar] [CrossRef]
- Alsahlany, M.; Enciso-Rodriguez, F.; Lopez-Cruz, M.; Coombs, J.; Douches, D.S. Developing self-compatible diploid potato germplasm through recurrent selection. Euphytica 2021, 217, 1–16. [Google Scholar] [CrossRef]
- Blossei, J.; Gäbelein, R.; Hammann, T.; Uptmoor, R. Late blight resistance in wild potato species—Resources for future potato (Solanum tuberosum) breeding. Plant Breed. 2022, 141, 314–331. [Google Scholar] [CrossRef]
- Gartner, U.; Hein, I.; Brown, L.H.; Chen, X.; Mantelin, S.; Sharma, S.K.; Dandurand, L.-M.; Kuhl, J.C.; Jones, J.T.; Bryan, G.J.; et al. Resisting Potato Cyst Nematodes with Resistance. Front. Plant Sci. 2021, 12, 483. [Google Scholar] [CrossRef]
- Prodhomme, C.; Vos, P.G.; Paulo, M.J.; Tammes, J.E.; Visser, R.G.F.; Vossen, J.H.; van Eck, H.J. Distribution of P1(D1) wart disease resistance in potato germplasm and GWAS identification of haplotype-specific SNP markers. Theor. Appl. Genet. 2020, 133, 1859–1871. [Google Scholar] [CrossRef][Green Version]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Arora, S.; Steuernagel, B.; Gaurav, K.; Chandramohan, S.; Long, Y.; Matny, O.; Johnson, R.; Enk, J.; Periyannan, S.; Singh, N.; et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 2019, 37, 139–143. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Boonekamp, P.M.; Hutten, R. Durable Late Blight Resistance in Potato Through Dynamic Varieties Obtained by Cisgenesis: Scientific and Societal Advances in the DuRPh Project. Potato Res. 2016, 59, 35–66. [Google Scholar] [CrossRef][Green Version]
- Su, Y.; Viquez-Zamora, M.; Uil, D.D.; Sinnige, J.; Kruyt, H.; Vossen, J.; Lindhout, P.; van Heusden, S. Introgression of Genes for Resistance against Phytophthora infestans in Diploid Potato. Am. J. Potato Res. 2020, 97, 33–42. [Google Scholar] [CrossRef]
- Mihovilovich, E.; Sanetomo, R.; Hosaka, K.; Ordoñez, B.; Aponte, M.; Bonierbale, M. Cytoplasmic diversity in potato breeding: Case study from the International Potato Center. Mol. Breed. 2015, 35, 1–10. [Google Scholar] [CrossRef]
- Anisimova, I.N.; Gavrilenko, T.A. Cytoplasmic male sterility and prospects for its utilization in potato breeding, genetic studies and hybrid seed production. Russ. J. Genet. Appl. Res. 2016, 7, 721–735. [Google Scholar] [CrossRef]
- Gavrilenko, A.; Klimenko, N.S.; Alpatieva, N.V.; Kostina, L.I.; Lebedeva, V.A.; Evdokimova, Z.Z.; Apalikova, O.V.; Novikova, L.Y.; Antonova, O.Y. Cytoplasmic genetic diversity of potato varieties bred in Russia and FSU countries. Vavilovskii Zhurnal Genet. Sel. 2019, 23, 753–764. [Google Scholar] [CrossRef][Green Version]
- Hosaka, K.; Sanetomo, R. Development of a rapid identification method for potato cytoplasm and its use for evaluating Japanese collections. Theor. Appl. Genet. 2012, 125, 1237–1251. [Google Scholar] [CrossRef]
- Sanetomo, R.; Akai, K.; Nashiki, A. Discovery of a novel mitochondrial DNA molecule associated with tetrad pollen sterility in potato. BMC Plant Biol. 2022, 22, 302. [Google Scholar] [CrossRef]
- Santayana, M.; Aponte, M.; Kante, M.; Gastelo, M. Cytoplasmic Male Sterility Incidence in Potato Breeding Populations with Late Blight Resistance and Identification of Breeding Lines with a Potential Fertility Restorer Mechanism. Plants 2022, 11, 3093. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, L.C.M.; Lommen, W.J.M.; de Vries, M.E.; Kacheyo, O.C.; Struik, P.C. Hilling of Transplanted Seedlings from Novel Hybrid True Potato Seeds Does Not Enhance Tuber Yield but Can Affect Tuber Size Distribution. Potato Res. 2021, 64, 353–374. [Google Scholar] [CrossRef]
- van Dijk, L.C.M.; Kacheyo, O.C.; de Vries, M.E.; Lommen, W.J.M.; Struik, P.C. Crop Cycle Length Determines Optimal Transplanting Date for Seedlings from Hybrid True Potato Seeds. Potato Res. 2022, 65, 435–460. [Google Scholar] [CrossRef]
- van Dijk, L.C.M.; de Vries, M.E.; Lommen, W.J.M.; Struik, P.C. Transplanting Hybrid Potato Seedlings at Increased Densities Enhances Tuber Yield and Shifts Tuber-Size Distributions. Potato Res. 2022, 65, 307–331. [Google Scholar] [CrossRef]
- Stockem, J.; de Vries, M.; van Nieuwenhuizen, E.; Lindhout, P.; Struik, P.C. Contribution and Stability of Yield Components of Diploid Hybrid Potato. Potato Res. 2020, 63, 345–366. [Google Scholar] [CrossRef]
- Witek, K.; Jupe, F.; Witek, A.I.; Baker, D.; Clark, M.D.; Jones, J.D.G. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nat. Biotechnol. 2016, 34, 656–660. [Google Scholar] [CrossRef][Green Version]
- Andersson, M.; Turesson, H.; Olsson, N.; Fält, A.-S.; Ohlsson, P.; Gonzalez, M.N.; Samuelsson, M.; Hofvander, P. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol. Plant 2018, 164, 378–384. [Google Scholar] [CrossRef][Green Version]
- Bessoltane, N.; Charlot, F.; Guyon-Debast, A.; Charif, D.; Mara, K.; Collonnier, C.; Perroud, P.-F.; Tepfer, M.; Nogué, F. Genome-wide specificity of plant genome editing by both CRISPR-Cas9 and TALEN. Sci. Rep. 2022, 12, 9330. [Google Scholar] [CrossRef]
- Richael, C.M. Development of the Genetically Modified Innate® Potato. Plant Breed Rev. 2020, 44, 57–78. [Google Scholar] [CrossRef]
- Möhring, J.; Melchinger, A.E.; Piepho, H.P. REML-Based Diallel Analysis. Crop Sci. 2011, 51, 470–478. [Google Scholar] [CrossRef]
- Adams, J.R.; de Vries, M.E.; Zheng, C.; van Eeuwijk, F.A. Little heterosis found in diploid hybrid potato: The genetic underpinnings of a new hybrid crop. G3 Genes|Genomes|Genet. 2022, 12, jkac076. [Google Scholar] [CrossRef]
- Struik, P.C.; Wiersema, S.G. Seed Potato Technology; Wageningen Press: Wageningen, The Netherlands, 1999. [Google Scholar] [CrossRef]
- Almekinders, C.J.M.; Chujoy, E.; Thiele, G. The use of true potato seed as pro-poor technology: The efforts of an international agricultural research institute to innovating potato production. Potato Res. 2009, 52, 275–293. [Google Scholar] [CrossRef][Green Version]
- Kacheyo, O.C.; van Dijk, L.C.M.; de Vries, M.E.; Struik, P.C. Augmented descriptions of growth and development stages of potato (Solanum tuberosum L.) grown from different types of planting material. Ann. Appl. Biol. 2020, 178, 549–566. [Google Scholar] [CrossRef]
- Stockem, J.E.; Korontzis, G.; Wilson, S.E.; de Vries, M.E.; van Eeuwijk, F.A.; Struik, P.C. Optimal Plot Dimensions for Performance Testing of Hybrid Potato in the Field. Potato Res. 2021, 65, 417–434. [Google Scholar] [CrossRef]
- Hack, H.; Gall, H.; Klamke, T.; Meier, U.; Stauss, R.; Witzenberg, A. Phänologische Entwicklungsstadien der Kartoffel (Solanum tuberosum L.). Nachr. Des Dtsch. Pflanzenschutzd. (Braunschw.) 1993, 45, 11–19. [Google Scholar]
- Wustman, R.; Struik, P.C. The canon of potato science: 35. Seed and ware potato storage. Potato Res. 2007, 50, 351–355. [Google Scholar] [CrossRef][Green Version]
- Marand, A.P.; Jansky, S.H.; Gage, J.L.; Hamernik, A.J.; de Leon, N.; Jiang, J. Residual heterozygosity and epistatic interactions underlie the complex genetic architecture of yield in diploid potato. Genetics 2019, 212, 317–332. [Google Scholar] [CrossRef]
- Brown, J.; Caligari, D.S. An Introduction to Plant Breeding; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Edelenbosch, R.; Munnichs, G. De Aardappel Heeft de Toekomst–Drie Scenario’s over de Hybride Aardappel en de Wereldvoedselvoorziening; Rathenau Institute: The Hague, The Netherlands, 2020. [Google Scholar]
- Beumer, K.; Edelenbosch, R. Hybrid potato breeding: A framework for mapping contested socio-technical futures. Futures 2019, 109, 227–239. [Google Scholar] [CrossRef]
- Beumer, K.; Stemerding, D. A breeding consortium to realize the potential of hybrid diploid potato for food security. Nat. Plants 2021, 7, 1530–1532. [Google Scholar] [CrossRef]
- Bethke, P.C.; Halterman, D.A.; Francis, D.M.; Jiang, J.; Douches, D.S.; Charkowski, A.O.; Parsons, J. Diploid Potatoes as a Catalyst for Change in the Potato Industry. Am. J. Potato Res. 2022, 99, 337–357. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Vries, M.E.; Adams, J.R.; Eggers, E.-j.; Ying, S.; Stockem, J.E.; Kacheyo, O.C.; van Dijk, L.C.M.; Khera, P.; Bachem, C.W.; Lindhout, P.; et al. Converting Hybrid Potato Breeding Science into Practice. Plants 2023, 12, 230. https://doi.org/10.3390/plants12020230
de Vries ME, Adams JR, Eggers E-j, Ying S, Stockem JE, Kacheyo OC, van Dijk LCM, Khera P, Bachem CW, Lindhout P, et al. Converting Hybrid Potato Breeding Science into Practice. Plants. 2023; 12(2):230. https://doi.org/10.3390/plants12020230
Chicago/Turabian Stylede Vries, Michiel E., James R. Adams, Ernst-jan Eggers, Su Ying, Julia E. Stockem, Olivia C. Kacheyo, Luuk C. M. van Dijk, Pawan Khera, Christian W. Bachem, Pim Lindhout, and et al. 2023. "Converting Hybrid Potato Breeding Science into Practice" Plants 12, no. 2: 230. https://doi.org/10.3390/plants12020230