Alternative Ecological Products for Aphid Control on Plum
Abstract
:1. Introduction
2. Results
2.1. Laboratory Testing of Ecological and Chemical Products against Aphids
2.2. Field Testing of Ecological Products against Aphids
2.3. Data Analysis Results
3. Discussion
4. Materials and Methods
4.1. The Pedoclimatic Conditions in Which the Experiments Took Place
4.2. Sampling Material and Ecological/Chemical Products’ Origin and Use
4.3. Laboratory Testing of the Ecological and Chemical Products
4.4. Field Testing of the Ecological and Chemical Products
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant Capacities, Phenolic Compounds, Carotenoids, and Vitamin C Contents of Nectarine, Peach, and Plum Cultivars from California. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar] [CrossRef] [PubMed]
- Wills, R.B.; Scriven, F.M.; Greenfield, H. Nutrient composition of stone fruit (Prunus spp.) cultivars: Apricot, cherry, nectarine, peach and plum. J. Sci. Food Agric. 1983, 31, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAOSTAT). Available online: https://www.fao.org/faostat/en/#data (accessed on 28 July 2022).
- Botu, I.; Botu, M.; Achim, G.; Baciu, A. Plum culture in Romania: Present situation and perspectives. In: IX International Symposium on Plum and Prune Genetics. Breed. Pomol. 2008, 874, 365–372. [Google Scholar]
- Maxim, A. Ecologie Generală și Aplicată; Risoprint: Cluj-Napoca, Romania, 2008; pp. 211–237. [Google Scholar]
- Ghena, N.; Braniște, N.; Raniște, N.; Stănică, F. Pomicultură Generală; Invel Multimedia: București, România, 2010; pp. 516–520. [Google Scholar]
- Gullan, P.J.; Cranston, P.S. The Insects: An Outline of Entomology; John Wiley & Sons: New York, NY, USA, 2014; pp. 510–513. [Google Scholar]
- Rakhshani, E. Aphid parasitoids (Hymenoptera: Braconidae, Aphidiinae) associated with pome and stone fruit trees in Iran. J. Crop Prot. 2012, 1, 81–95. [Google Scholar]
- Rakauskas, R. Orchard aphids (Hemiptera: Sternorrhyncha, Aphidoidea) of Lithuania: A century of research. Pol. J. Entomol. 2015, 84, 311. [Google Scholar] [CrossRef]
- Nemeth, M. Virus, Mycoplasma and Rickettsia Diseases of Fruit Trees. Akad. Kiado 1986, 10, 36–167. [Google Scholar]
- Labonne, G.; Yvon, M.; Quiot, J.B.; Avinet, L.; Llacer, G. Aphids as potential vectors of plum pox virus: Comparison of methods of testing and epidemiological consequences. Acta Hortic 1995, 386, 207–218. [Google Scholar] [CrossRef]
- Maxim, A.; Isac, M.; Zagrai, I. Virusologie Pomicola; Ceres: București, Romania, 2002; pp. 65–67. [Google Scholar]
- Gildow, F.E.; Levy, L.; Damsteegt, V.D.; Stone, A.L.; Schneider, W.L.; Luster, D.G. Transmission of Three North American Isolates of Plum Pox Virus: Identification of Aphid Vectors And Species-Specific Transmission From Infected Stone Fruits. Acta Hortic 2004, 657, 207–211. [Google Scholar] [CrossRef]
- Cambra, M.; Capote, N.; Myrta, A.; Llácer, G. Plum pox virus and the estimated costs associated with sharka disease. EPPO Bull. 2006, 36, 202–204. [Google Scholar] [CrossRef]
- Zagrai, L.; Zagrai, I.; Festila, A. Monitoring of Aphid Species Landing in Prunus Nursery Plot from Bistrita Area. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2010, 67, 489. [Google Scholar]
- Vidal, E.; Zagrai, L.; Milusheva, S.; Bozhkova, V.; Tasheva-Terzieva, E.; Kamenova, I.; Zagrai, I.; Cambra, M. Horticultural mineral oil treatments in nurseries during aphid flights reduce Plum pox virus incidence under different cological conditions. Ann. Appl. Biol. 2013, 162, 299–308. [Google Scholar] [CrossRef]
- Gantner, M.; Najda, A.; Piesik, D. Effect of phenolic acid content on acceptance of hazel cultivars by filbert aphid. Plant Prot. Sci. 2019, 55, 116–122. [Google Scholar] [CrossRef]
- Piesik, D.; Wenda-Piesik, A. Sitophilus granarius responses to blends of five groups of cereal kernels and one group of plant volatiles. J. Stored Prod. Res. 2015, 62, 36–39. [Google Scholar] [CrossRef]
- Jhariya, M.K.; Banerjee, A.; Meena, R.S.; Yadav, D.K. Sustainable Agriculture, Forest and Environmental Management; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef]
- Sumedrea, M.; Marin, C.F.; Călinescu, M.; Chivu, M. Biological tools for controlling the main pests of sweet cherry. J. Fruit Grow. Res. 2022, XXXVI, 22. [Google Scholar] [CrossRef]
- Soares, M.A.; Campos, M.R.; Passos, L.C.; Carvalho, G.A.; Haro, M.M.; Lavoir, A.V.; Biondi, A.; Zappalà, L.; Desneux, N. Botanical insecticide and natural enemies: A potential combination for pest management against Tuta absoluta. J. Pest Sci. 2019, 92, 1433–1443. [Google Scholar] [CrossRef]
- Braham, M.; Glida-Gnidez, H.; Hajji, L. Management of the tomato borer, Tuta absoluta in Tunisia with novel insecticides and plant extracts. EPPO Bull. 2012, 42, 291–296. [Google Scholar] [CrossRef]
- Arici, Ş.E.; Özkaya, R. Evaluation of Biofungicides in the Control against Powdery Mildew Disease [Leveillula taurica (Lev.) Arm.] in Pepper. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Doğa Derg. 2022, 25, 274–281. [Google Scholar] [CrossRef]
- Pârlici, R.M.; Maxim, A.; Mang, S.M.; Camele, I.; Mihalescu, L.; Stoian, V. Alternative Control of Phragmidium rubi-idaei Infecting Two Rubus Species. Plants 2021, 10, 1452. [Google Scholar] [CrossRef]
- Braham, M.; Abbes, A.; Benchehla, D. Evaluation of four organically-acceptable insecticide against the mealy aphids of the Hyalopterus pruni complex in almond orchard. J. Agric. Crop Res. 2014, 2, 211–217. [Google Scholar]
- AbdAllah, A.; Abdel Hamid, H.F.M.; Sobhy, M.A. Comparative Effect of Some Bio Insecticides with Chlorpyrifos on Cotton Leafworm. Egypt. Acad. J. Biol. Sci. F. Toxicol. Pest Control. 2021, 13, 217–223. [Google Scholar] [CrossRef]
- Ahmad, S.F.; Gulzar, A.; Tariq, M.; Asad, M.J. Field evolved resistance in Earias vittella (Lepidoptera: Noctuidae) from Punjab, Pakistan against commercial formulations of Bacillus thuringiensis kurstaki. J. Econ. Entomol. 2021, 114, 2204–2213. [Google Scholar] [CrossRef]
- Varga, K.; Fehér, J.; Trugly, B.; Drexler, D.; Leiber, F.; Verrastro, V.; Magid, J.; Chylinski, C.; Athanasiadou, S.; Thuerig, B.; et al. The state of play of copper, mineral oil, external nutrient input, anthelmintics, antibiotics and vitamin usage and available reduction strategies in organic farming across Europe. Sustainability 2022, 14, 3182. [Google Scholar] [CrossRef]
- Rawlings, A.V.; Lombard, K.J. A review on the extensive skin benefits of mineral oil. Int. J. Cosmet. Sci. 2012, 34, 511–518. [Google Scholar] [CrossRef]
- Fernandez, D.E.; Beers, E.H.; Brunner, J.F.; Doerr, M.D.; Dunley, J.E. Effects of seasonal mineral oil applications on the pest and natural enemy complexes of apple. J. Econ. Entomol. 2005, 98, 1630–1640. [Google Scholar] [CrossRef]
- Al-Antary, T.M.; Ateyyat, M.A.; Belghasem, I.H.; Alaraj, S.A. Aphicidal Activity of Orange Oil to the Green Peach Aphid Myzus Persicae Sulzer (Homoptera: Aphididae). Fresenius Environ. Bull. 2018, 27, 1038–1042. [Google Scholar]
- Addinsoft. XLSTAT Statistical and Data Analysis Solution; Addinsoft: New York, NY, USA, 2022; Available online: https://www.xlstat.com/en/solutions/basic (accessed on 15 July 2022).
- Fisher, R.A. Statistical Methods for Research Workers; Oliver & Boyd: Edinburgh, UK, 1925. [Google Scholar]
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- William, S.G. The Probable Error of a Mean. Biometrika 1908, 6, 1–25. [Google Scholar]
Products | Mortality Laboratory | Mortality Field |
---|---|---|
Ovipron Top | 96.333 ± 1.25 a | 96.000 ± 1.41 a |
Prev-Am | 86.667 ± 4.92 a | 85.000 ± 7.07 a |
Canelys | 16.333 ± 9.74 b | 16.000 ± 13.49 b |
Konflic | 16.333 ± 3.30 b | 14.333 ± 4.92 b |
Algasil | 14.667 ± 8,81 b | 14.333 ± 11.15 b |
Oleorgan | 12.333 ± 5.25 b | 11.667 ± 4.71 b |
Deffort | 8.667 ± 3.77 b | 8.333 ± 4.71 b |
BactoSpeine DF | 7.000 ± 2.36 b | 6.667 ± 2.36 b |
Pr > F(Model) | <0.0001 | <0.0001 |
Significant | Yes | Yes |
Contrast | Difference | Standardized Difference | Critical Value | Pr > Diff | Alpha (Modified) | Significant |
---|---|---|---|---|---|---|
Actara vs. Calypso | 1.745 | 0.964 | 3.526 | 0.865 | 0.039 | No |
Actara vs. KarateZeon | 0.856 | 0.473 | 3.469 | 0.963 | 0.030 | No |
Actara vs. Mospilan | 0.698 | 0.386 | 3.385 | 0.922 | 0.020 | No |
Actara vs. Movento | 0.689 | 0.381 | 3.250 | 0.712 | 0.010 | No |
Movento vs. Calypso | 1.056 | 0.583 | 3.469 | 0.935 | 0.030 | No |
Movento vs. KarateZeon | 0.167 | 0.092 | 3.385 | 0.995 | 0.020 | No |
Movento vs. Mospilan | 0.009 | 0.005 | 3.250 | 0.996 | 0.010 | No |
Mospilan vs. Calypso | 1.047 | 0.578 | 3.385 | 0.835 | 0.020 | No |
Mospilan vs. KarateZeon | 0.158 | 0.087 | 3.250 | 0.932 | 0.010 | No |
KarateZeon vs. Calypso | 0.889 | 0.491 | 3.250 | 0.635 | 0.010 | No |
Summar Statistics | Data |
---|---|
Difference | −5.625 |
t (Observed value) | −0.315 |
|t| (Critical value) | 2.145 |
DF | 14 |
p-value (Two-tailed) | 0.757 |
Alpha | 0.05 |
Products | Mortality |
---|---|
Actara | 97.333 ± 2.35 a |
Mospilan | 96.667 ± 1.24 a |
Movento | 96.667 ± 1.88 a |
KarateZeon | 96.333 ± 1.24 a |
Ovipron Top | 96.000 ± 1.41 a |
Calypso | 95.667 ± 1.24 a |
Prev-Am | 85.000 ± 7.07 a |
Canelys | 16.000 ± 13.45 b |
Konflic | 14.333 ± 4.92 b |
Algasil | 14.333 ± 11.15 b |
Oleorgan | 11.667 ± 4.71 b |
Deffort | 8.333 ± 4.71 b |
BactoSpeine DF | 6.667 ± 2.36 b |
Pr > F(Model) | <0.0001 |
Significant | Yes |
Treatment/Product | Concentration (%) | Active Substance |
---|---|---|
V1/Konflic | 0.3% | (50%) Potassium Salt and (50)% Quassia extract |
V2/Prev-Am | 0.8% | Mineral orange oil 60 g/L |
V3/Oleorgan | 0.3% | Neem extract 400 g/L |
V4/Algasil | 0.5% | Algae extract plus K2O 90 g/L and SiO2 200 g/L |
V5/Canelys | 0.3% | Cinnamon extract (70%) |
V6/Ovipron Top | 2.5% | Mineral paraffinic oil 96.5 g/kh |
V7/Deffort | 0.3% | Fabaceae family extract 8 g/L |
V8/BactoSpeine DF | 0.1% | 54% Bacillus thuringiensis, subsp Kurstaki ABTS 351 |
Treatment/Product | Concentration (%) | Active Substance |
---|---|---|
V1/Calypso | 0.02% | Thiacloprid 480 g/L |
V2/Mospilan | 0.02% | Acetamiprid 200 g/kg |
V3/Actara | 0.01% | Acetamiprid 200 g/kg |
V4/Movento | 0.19% | Spirotetramat 100 g/L |
V5/Karate Zeon | 0.015% | Lambda-cyhalothrin 50 g/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moldovan, C.; Zagrai, I.; Guzu, G.M.; Jakab-Ilyefalvi, Z.; Zagrai, L.A.; Mang, S.M.; Maxim, A. Alternative Ecological Products for Aphid Control on Plum. Plants 2023, 12, 3316. https://doi.org/10.3390/plants12183316
Moldovan C, Zagrai I, Guzu GM, Jakab-Ilyefalvi Z, Zagrai LA, Mang SM, Maxim A. Alternative Ecological Products for Aphid Control on Plum. Plants. 2023; 12(18):3316. https://doi.org/10.3390/plants12183316
Chicago/Turabian StyleMoldovan, Claudiu, Ioan Zagrai, Georgeta Maria Guzu, Zsolt Jakab-Ilyefalvi, Luminita Antonela Zagrai, Stefania Mirela Mang, and Aurel Maxim. 2023. "Alternative Ecological Products for Aphid Control on Plum" Plants 12, no. 18: 3316. https://doi.org/10.3390/plants12183316