Identification and Genome-Wide Gene Expression Perturbation of a Trisomy in Chinese Kale (Brassica oleracea var. alboglabra)
Abstract
1. Introduction
2. Results
2.1. Cytological Analysis and Characteristics of the Trisomy Plant
2.2. Determination of the Genotype of the Trisomy Plant Using RNA-Seq
2.3. DEGs Determination in Trisomy Plants and qRT–PCR Validation
2.4. Cis- and Trans-Effect DEGs in TC2
2.5. GO Analysis of Cis- and Trans-Effect DEGs
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Cytological Analysis
4.3. RNA Extraction, c-DNA Library Construction, and RNA Sequencing
4.4. Differentially Expressed Genes (DEGs) Determination
4.5. Real-Time PCR (qRT–PCR) Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Birchler, J.A.; Veitia, R.A. Gene balance hypothesis: Connecting issues of dosage sensitivity across biological disciplines. Proc. Natl. Acad. Sci. USA 2012, 109, 14746–14753. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.M.; Williams, B.R.; Tang, Y.C.; Amon, A. Thoughts on Aneuploidy. Cold Spring Harbor Symp. Quant. Biol. 2010, 75, 445. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, S.; Li, K.; Zhang, Y.; Huang, X.; Li, T.; Wu, S.; Wang, Y.; Carey, L.B.; Qian, W. Overdosage of Balanced Protein Complexes Reduces Proliferation Rate in Aneuploid Cells. Cell Syst. 2019, 9, 129–142.e125. [Google Scholar] [CrossRef] [PubMed]
- Blakeslee, A.F.; Belling, J.; Farnham, M.E. Chromosomal Duplication and Mendelian Phenomena in Datura Mutants. Science 1920, 52, 388–390. [Google Scholar] [CrossRef]
- Siegel, J.J.; Amon, A. New insights into the troubles of aneuploidy. Annu. Rev. Cell. Dev. Biol. 2012, 28, 189–214. [Google Scholar] [CrossRef]
- Sang, Y.; Kong, B.; Do, P.U.; Ma, L.; Du, J.; Li, L.; Cheng, X.; Zhao, Y.; Zhou, Q.; Wu, J. Microsporogenesis in the triploid hybrid ‘Beilinxiongzhu 1#’and detection of primary trisomy in 2× 3× Populus hybrids. BMC Plant Biol. 2023, 23, 177. [Google Scholar] [CrossRef]
- Cregan, P.; Kollipara, K.; Xu, S.; Singh, R.; Fogarty, S.; Hymowitz, T. Primary trisomics and SSR markers as tools to associate chromosomes with linkage groups in soybean. Crop Sci. 2001, 41, 1262–1267. [Google Scholar] [CrossRef]
- Zou, J.; Singh, R.; Lee, J.; Xu, S.; Cregan, P.; Hymowitz, T. Assignment of molecular linkage groups to soybean chromosomes by primary trisomics. Theor. Appl. Genet. 2003, 107, 745–750. [Google Scholar] [CrossRef]
- Gardner, M.; Hymowitz, T.; Xu, S.; Hartman, G. Physical map location of the Rps1-k allele in soybean. Crop Sci. 2001, 41, 1435–1438. [Google Scholar] [CrossRef]
- Wagenvoort, M. Spontaneous structural rearrangements in Solanum phureja Juz. et Buk. 2. Meiotic behaviour and identification of interchange chromosomes using primary trisomics. Genome 1995, 38, 140–147. [Google Scholar] [CrossRef]
- Miura, H.; Sugawara, A. Dosage effects of the three Wx genes on amylose synthesis in wheat endosperm. Theor. Appl. Genet. 1996, 93, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Xu, S.S. Meiosis-driven genome variation in plants. Curr. Genomics 2007, 8, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Henry, I.M.; Dilkes, B.P.; Young, K.; Watson, B.; Wu, H.; Comai, L. Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics 2005, 170, 1979–1988. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liu, K.; Xue, C.; Hu, Y.; Yu, H.; Qi, G.; Chen, J.; Li, X.; Zhao, X.; Gong, Z. Genome-Wide Effects on Gene Expression Between Parental and Filial Generations of Trisomy 11 and 12 of Rice. Rice 2023, 16, 17. [Google Scholar] [CrossRef]
- Blakeslee, A.F. Variations in Datura due to changes in chromosome number. Am. Nat. 1922, 56, 16–31. [Google Scholar] [CrossRef][Green Version]
- Auger, D.; Birchler, J. Maize tertiary trisomic stocks derived from BA translocations. J. Hered. 2002, 93, 42–47. [Google Scholar] [CrossRef]
- Baomin, H.; Tianzhen, Z.; Jiaju, P. Studies of trisomic plants in upland cotton I. origin, cytological identification and their phenotypes. Zuo Wu Xue Bao 1996, 22, 147–151. [Google Scholar]
- Xu, S.; Singh, R.; Kollipara, K.; Hymowitz, T. Primary trisomics in soybean: Origin, identification, breeding behavior, and use in linkage mapping. Crop Sci. 2000, 40, 1543–1551. [Google Scholar] [CrossRef]
- Sharma, P.; Koul, A. Genetic diversity among Plantagos III. Primary trisomy in Plantago lagopus L. Genetica 1984, 64, 135–138. [Google Scholar] [CrossRef]
- Qiren, C.; Zhenhua, Z.; Yuanhua, G. Cytogenetical analysis on aneuploids obtained from pollenclones of rice (Oryza sativa L.). Theor. Appl. Genet. 1985, 71, 506–512. [Google Scholar] [CrossRef]
- Chu, Q.; Zhang, C.; Zheng, Z. Anther culture of rice tetraploid pollen plants and chromosome variation in regenerated plants. Chin. Bull. Bot 1985, 3, 40–43. [Google Scholar]
- Sree Ramulu, K.; Carluccio, F.; De Nettancourt, D.; Devreux, M. Trisomics from triploid-diploid crosses in self-incompatible Lycopersicum peruvianum: I. Essential features of aneuploids and of self-compatible trisomics. Theor. Appl. Genet. 1977, 50, 105–119. [Google Scholar] [CrossRef]
- Yan, X.; Cheng, M.; Li, Y.; Wu, Z.; Li, Y.; Li, X.; He, R.; Yang, C.; Zhao, Y.; Li, H. Tripsazea, a novel trihybrid of Zea mays, Tripsacum dactyloides, and Zea perennis. G3 Genes Genomes Genet. 2020, 10, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Khun, L.H.; Miyaji, S.; Motomura, K.; Murayama, S.; Adaniya, S.; Nose, A. Trisomic analysis of new gene for late heading in rice, Oryza sativa L. Euphytica 2006, 151, 235–241. [Google Scholar] [CrossRef]
- Dhar, M.; Koul, A.; Langer, A. Genetic diversity among Plantagos: 17. A novel trisomic in Plantago lagopus. Theor. Appl. Genet. 1990, 79, 216–218. [Google Scholar] [CrossRef]
- Sharma, P.; Langer, A.; Koul, A. Genetic diversity among Plantagos V. Transmission of the additional chromosome in a triplo-4 individual of Plantago lagopus L. Genetica 1985, 67, 131–135. [Google Scholar] [CrossRef]
- Birchler, J.A.; Veitia, R.A. The gene balance hypothesis: From classical genetics to modern genomics. The Plant Cell 2007, 19, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Huettel, B.; Kreil, D.P.; Matzke, M.; Matzke, A.J. Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana. PLoS Genet. 2008, 4, e1000226. [Google Scholar] [CrossRef]
- Malone, J.H.; Cho, D.-Y.; Mattiuzzo, N.R.; Artieri, C.G.; Jiang, L.; Dale, R.K.; Smith, H.E.; McDaniel, J.; Munro, S.; Salit, M. Mediation of Drosophilaautosomal dosage effects and compensation by network interactions. Genome Biol. 2012, 13, R28. [Google Scholar] [CrossRef]
- Zhu, B.; Shao, Y.; Pan, Q.; Ge, X.; Li, Z. Genome-wide gene expression perturbation induced by loss of C2 chromosome in allotetraploid Brassica napus L. Front. Plant Sci. 2015, 6, 763. [Google Scholar] [CrossRef]
- Zhu, B.; Xiang, Y.; Zeng, P.; Cai, B.; Huang, X.; Ge, X.; Weng, Q.; Li, Z. Genome-wide gene expression disturbance by single A1/C1 chromosome substitution in Brassica rapa restituted from natural B. napus. Front. Plant Sci. 2018, 9, 377. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Pan, Q.; Huo, D.; Zeng, P.; Cai, B.; Ge, X.; Li, Z. Transcriptional aneuploidy responses of Brassica rapa-oleracea monosomic alien addition lines (MAALs) derived from natural allopolyploid B. napus. Front. Genet. 2019, 10, 67. [Google Scholar]
- Hou, J.; Shi, X.; Chen, C.; Islam, M.S.; Johnson, A.F.; Kanno, T.; Huettel, B.; Yen, M.-R.; Hsu, F.-M.; Ji, T. Global impacts of chromosomal imbalance on gene expression in Arabidopsis and other taxa. Proc. Natl. Acad. Sci. USA 2018, 115, E11321–E11330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Li, N.; Gong, L.; Gou, X.; Wang, B.; Deng, X.; Li, C.; Dong, Q.; Zhang, H.; Liu, B. Global analysis of gene expression in response to whole-chromosome aneuploidy in hexaploid wheat. Plant Physiol. 2017, 175, 828–847. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.L.; Birchler, J.A. Developmental impact on trans-acting dosage effects in maize aneuploids. Genesis 2001, 31, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Do, C.; Xing, Z.; Yu, Y.E.; Tycko, B. Trans-acting epigenetic effects of chromosomal aneuploidies: Lessons from Down syndrome and mouse models. Epigenomics 2017, 9, 189–207. [Google Scholar] [CrossRef]
- Torres, E.M.; Sokolsky, T.; Tucker, C.M.; Chan, L.Y.; Boselli, M.; Dunham, M.J.; Amon, A. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 2007, 317, 916–924. [Google Scholar] [CrossRef]
- Nagaharu, U.; Nagaharu, N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot 1935, 7, 389–452. [Google Scholar]
- Cheng, F.; Wu, J.; Cai, C.; Fu, L.; Liang, J.; Borm, T.; Zhuang, M.; Zhang, Y.; Zhang, F.; Bonnema, G. Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection. Sci. Data 2016, 3, 160119. [Google Scholar] [CrossRef]
- Mageney, V.; Neugart, S.; Albach, D.C. A guide to the variability of flavonoids in Brassica oleracea. Molecules 2017, 22, 252. [Google Scholar] [CrossRef]
- Yu, J.; Lei, S.; Fang, S.; Tai, N.; Yu, W.; Yang, Z.; Gu, L.; Wang, H.; Du, X.; Zhu, B. Identification, Characterization, and Cytological Analysis of Several Unexpected Hybrids Derived from Reciprocal Crosses between Raphanobrassica and Its Diploid Parents. Plants 2023, 12, 1875. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Lelivelt, C.; Wijnker, E.; de Jong, H. Is partial desynapsis in cauliflower (Brassica oleracea L. var. botrytis) pollen mother cells linked to aneuploidy in the crop? Euphytica 2022, 218, 79. [Google Scholar] [CrossRef]
- Griffiths, J.A.; Scialdone, A.; Marioni, J.C. Mosaic autosomal aneuploidies are detectable from single-cell RNAseq data. BMC Genom. 2017, 18, 904. [Google Scholar] [CrossRef] [PubMed]
- Henry, I.M.; Dilkes, B.P.; Miller, E.S.; Burkart-Waco, D.; Comai, L. Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics 2010, 186, 1231–1245. [Google Scholar] [CrossRef]
- Lorke, D. Developmental characteristics of trisomy 19 mice. Cells Tissues Organs 1994, 150, 159–169. [Google Scholar] [CrossRef]
- Aivazidis, S.; Coughlan, C.M.; Rauniyar, A.K.; Jiang, H.; Liggett, L.A.; Maclean, K.N.; Roede, J.R. The burden of trisomy 21 disrupts the proteostasis network in Down syndrome. PLoS ONE 2017, 12, e0176307. [Google Scholar] [CrossRef]
- Mowery, C.T.; Reyes, J.M.; Cabal-Hierro, L.; Higby, K.J.; Karlin, K.L.; Wang, J.H.; Kimmerling, R.J.; Cejas, P.; Lim, K.; Li, H. Trisomy of a Down syndrome critical region globally amplifies transcription via HMGN1 overexpression. Cell Rep. 2018, 25, 1898–1911.e1895. [Google Scholar] [CrossRef] [PubMed]
- Cejas, R.B.; Tamano-Blanco, M.; Blanco, J.G. Analysis of the intracellular traffic of IgG in the context of Down syndrome (trisomy 21). Sci. Rep. 2021, 11, 10981. [Google Scholar] [CrossRef]
- Chen, H.-F.; Wang, H.; Li, Z.-Y. Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa-pastoris. Plant Cell Rep. 2007, 26, 1791–1800. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Gaeta, R.T.; Pires, J.C. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc. Natl. Acad. Sci. USA 2011, 108, 7908–7913. [Google Scholar] [CrossRef]
- Birchler, J.A.; Veitia, R.A. The Gene Balance Hypothesis: Dosage Effects in Plants. In Plant Epigenetics and Epigenomics: Methods and Protocols; Springer: Cham, Switzerland, 2014; pp. 25–32. [Google Scholar]
- Shi, X.; Yang, H.; Chen, C.; Hou, J.; Ji, T.; Cheng, J.; Birchler, J.A. Effect of aneuploidy of a non-essential chromosome on gene expression in maize. Plant J. 2022, 110, 193–211. [Google Scholar] [CrossRef] [PubMed]
- Oleszczuk, S.; Rabiza-Swider, J.; Zimny, J.; Lukaszewski, A.J. Aneuploidy among androgenic progeny of hexaploid triticale (X Triticosecale Wittmack). Plant Cell Rep. 2011, 30, 575–586. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Li, Z.; Liu, H.; Luo, P. Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor. Appl. Genet. 1995, 91, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Parkin, I.A.; Koh, C.; Tang, H.; Robinson, S.J.; Kagale, S.; Clarke, W.E.; Town, C.D.; Nixon, J.; Krishnakumar, V.; Bidwell, S.L. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 2014, 15, R77. [Google Scholar] [CrossRef] [PubMed]
DEGs Groups | Up DEGs (%) | Down DEGs (%) | Total (%) |
---|---|---|---|
cis-effect DEGs | 557 (97.21) | 16 (2.79) | 573 (30.13) |
trans-effect DEGs | 662 (49.81) | 667 (50.19) | 1329 (69.87) |
Chromosome | Total Genes | DEGs | Ratio (%) | Up DEGs | Ratio (%) | Down DEGs | Ratio (%) |
---|---|---|---|---|---|---|---|
C1 | 5056 | 179 a | 3.54 | 108 | 60.34 | 71 ** | 39.66 |
C3 | 8016 | 224 b | 2.79 | 116 | 51.79 | 108 | 48.21 |
C4 | 5996 | 185 ab | 3.09 | 78 | 42.16 | 107 * | 57.84 |
C5 | 5538 | 119 c | 2.15 | 62 | 52.10 | 57 | 47.90 |
C6 | 4413 | 116 bc | 2.74 | 66 | 54.55 | 50 | 45.45 |
C7 | 5441 | 191 a | 3.51 | 83 | 43.46 | 108 | 56.54 |
C8 | 5272 | 127 bc | 2.41 | 65 | 51.18 | 62 | 48.82 |
C9 | 6222 | 188 ab | 3.02 | 84 | 44.68 | 104 | 55.32 |
Gene Expression Groups | EGs | DEGs | Ratio | Up DEGs | Down DEGs |
---|---|---|---|---|---|
Low | 21,428 | 922 | 4.30% | 494 * | 428 |
Medium | 9433 | 322 | 3.41% | 110 | 212 ** |
High | 1269 | 47 | 3.70% | 20 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Q.; Yu, J.; Yu, J.; Hu, M.; Gu, L.; Wang, H.; Du, X.; Zhu, B.; Cai, M. Identification and Genome-Wide Gene Expression Perturbation of a Trisomy in Chinese Kale (Brassica oleracea var. alboglabra). Plants 2023, 12, 3199. https://doi.org/10.3390/plants12183199
Feng Q, Yu J, Yu J, Hu M, Gu L, Wang H, Du X, Zhu B, Cai M. Identification and Genome-Wide Gene Expression Perturbation of a Trisomy in Chinese Kale (Brassica oleracea var. alboglabra). Plants. 2023; 12(18):3199. https://doi.org/10.3390/plants12183199
Chicago/Turabian StyleFeng, Qun, Junxing Yu, Jie Yu, Mingyang Hu, Lei Gu, Hongcheng Wang, Xuye Du, Bin Zhu, and Mengxian Cai. 2023. "Identification and Genome-Wide Gene Expression Perturbation of a Trisomy in Chinese Kale (Brassica oleracea var. alboglabra)" Plants 12, no. 18: 3199. https://doi.org/10.3390/plants12183199
APA StyleFeng, Q., Yu, J., Yu, J., Hu, M., Gu, L., Wang, H., Du, X., Zhu, B., & Cai, M. (2023). Identification and Genome-Wide Gene Expression Perturbation of a Trisomy in Chinese Kale (Brassica oleracea var. alboglabra). Plants, 12(18), 3199. https://doi.org/10.3390/plants12183199