Identification and Genome-Wide Gene Expression Perturbation of a Trisomy in Chinese Kale (Brassica oleracea var. alboglabra)
Abstract
:1. Introduction
2. Results
2.1. Cytological Analysis and Characteristics of the Trisomy Plant
2.2. Determination of the Genotype of the Trisomy Plant Using RNA-Seq
2.3. DEGs Determination in Trisomy Plants and qRT–PCR Validation
2.4. Cis- and Trans-Effect DEGs in TC2
2.5. GO Analysis of Cis- and Trans-Effect DEGs
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Cytological Analysis
4.3. RNA Extraction, c-DNA Library Construction, and RNA Sequencing
4.4. Differentially Expressed Genes (DEGs) Determination
4.5. Real-Time PCR (qRT–PCR) Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Birchler, J.A.; Veitia, R.A. Gene balance hypothesis: Connecting issues of dosage sensitivity across biological disciplines. Proc. Natl. Acad. Sci. USA 2012, 109, 14746–14753. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.M.; Williams, B.R.; Tang, Y.C.; Amon, A. Thoughts on Aneuploidy. Cold Spring Harbor Symp. Quant. Biol. 2010, 75, 445. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, S.; Li, K.; Zhang, Y.; Huang, X.; Li, T.; Wu, S.; Wang, Y.; Carey, L.B.; Qian, W. Overdosage of Balanced Protein Complexes Reduces Proliferation Rate in Aneuploid Cells. Cell Syst. 2019, 9, 129–142.e125. [Google Scholar] [CrossRef] [PubMed]
- Blakeslee, A.F.; Belling, J.; Farnham, M.E. Chromosomal Duplication and Mendelian Phenomena in Datura Mutants. Science 1920, 52, 388–390. [Google Scholar] [CrossRef]
- Siegel, J.J.; Amon, A. New insights into the troubles of aneuploidy. Annu. Rev. Cell. Dev. Biol. 2012, 28, 189–214. [Google Scholar] [CrossRef]
- Sang, Y.; Kong, B.; Do, P.U.; Ma, L.; Du, J.; Li, L.; Cheng, X.; Zhao, Y.; Zhou, Q.; Wu, J. Microsporogenesis in the triploid hybrid ‘Beilinxiongzhu 1#’and detection of primary trisomy in 2× 3× Populus hybrids. BMC Plant Biol. 2023, 23, 177. [Google Scholar] [CrossRef]
- Cregan, P.; Kollipara, K.; Xu, S.; Singh, R.; Fogarty, S.; Hymowitz, T. Primary trisomics and SSR markers as tools to associate chromosomes with linkage groups in soybean. Crop Sci. 2001, 41, 1262–1267. [Google Scholar] [CrossRef]
- Zou, J.; Singh, R.; Lee, J.; Xu, S.; Cregan, P.; Hymowitz, T. Assignment of molecular linkage groups to soybean chromosomes by primary trisomics. Theor. Appl. Genet. 2003, 107, 745–750. [Google Scholar] [CrossRef]
- Gardner, M.; Hymowitz, T.; Xu, S.; Hartman, G. Physical map location of the Rps1-k allele in soybean. Crop Sci. 2001, 41, 1435–1438. [Google Scholar] [CrossRef]
- Wagenvoort, M. Spontaneous structural rearrangements in Solanum phureja Juz. et Buk. 2. Meiotic behaviour and identification of interchange chromosomes using primary trisomics. Genome 1995, 38, 140–147. [Google Scholar] [CrossRef]
- Miura, H.; Sugawara, A. Dosage effects of the three Wx genes on amylose synthesis in wheat endosperm. Theor. Appl. Genet. 1996, 93, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Xu, S.S. Meiosis-driven genome variation in plants. Curr. Genomics 2007, 8, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Henry, I.M.; Dilkes, B.P.; Young, K.; Watson, B.; Wu, H.; Comai, L. Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics 2005, 170, 1979–1988. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liu, K.; Xue, C.; Hu, Y.; Yu, H.; Qi, G.; Chen, J.; Li, X.; Zhao, X.; Gong, Z. Genome-Wide Effects on Gene Expression Between Parental and Filial Generations of Trisomy 11 and 12 of Rice. Rice 2023, 16, 17. [Google Scholar] [CrossRef]
- Blakeslee, A.F. Variations in Datura due to changes in chromosome number. Am. Nat. 1922, 56, 16–31. [Google Scholar] [CrossRef]
- Auger, D.; Birchler, J. Maize tertiary trisomic stocks derived from BA translocations. J. Hered. 2002, 93, 42–47. [Google Scholar] [CrossRef]
- Baomin, H.; Tianzhen, Z.; Jiaju, P. Studies of trisomic plants in upland cotton I. origin, cytological identification and their phenotypes. Zuo Wu Xue Bao 1996, 22, 147–151. [Google Scholar]
- Xu, S.; Singh, R.; Kollipara, K.; Hymowitz, T. Primary trisomics in soybean: Origin, identification, breeding behavior, and use in linkage mapping. Crop Sci. 2000, 40, 1543–1551. [Google Scholar] [CrossRef]
- Sharma, P.; Koul, A. Genetic diversity among Plantagos III. Primary trisomy in Plantago lagopus L. Genetica 1984, 64, 135–138. [Google Scholar] [CrossRef]
- Qiren, C.; Zhenhua, Z.; Yuanhua, G. Cytogenetical analysis on aneuploids obtained from pollenclones of rice (Oryza sativa L.). Theor. Appl. Genet. 1985, 71, 506–512. [Google Scholar] [CrossRef]
- Chu, Q.; Zhang, C.; Zheng, Z. Anther culture of rice tetraploid pollen plants and chromosome variation in regenerated plants. Chin. Bull. Bot 1985, 3, 40–43. [Google Scholar]
- Sree Ramulu, K.; Carluccio, F.; De Nettancourt, D.; Devreux, M. Trisomics from triploid-diploid crosses in self-incompatible Lycopersicum peruvianum: I. Essential features of aneuploids and of self-compatible trisomics. Theor. Appl. Genet. 1977, 50, 105–119. [Google Scholar] [CrossRef]
- Yan, X.; Cheng, M.; Li, Y.; Wu, Z.; Li, Y.; Li, X.; He, R.; Yang, C.; Zhao, Y.; Li, H. Tripsazea, a novel trihybrid of Zea mays, Tripsacum dactyloides, and Zea perennis. G3 Genes Genomes Genet. 2020, 10, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Khun, L.H.; Miyaji, S.; Motomura, K.; Murayama, S.; Adaniya, S.; Nose, A. Trisomic analysis of new gene for late heading in rice, Oryza sativa L. Euphytica 2006, 151, 235–241. [Google Scholar] [CrossRef]
- Dhar, M.; Koul, A.; Langer, A. Genetic diversity among Plantagos: 17. A novel trisomic in Plantago lagopus. Theor. Appl. Genet. 1990, 79, 216–218. [Google Scholar] [CrossRef]
- Sharma, P.; Langer, A.; Koul, A. Genetic diversity among Plantagos V. Transmission of the additional chromosome in a triplo-4 individual of Plantago lagopus L. Genetica 1985, 67, 131–135. [Google Scholar] [CrossRef]
- Birchler, J.A.; Veitia, R.A. The gene balance hypothesis: From classical genetics to modern genomics. The Plant Cell 2007, 19, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Huettel, B.; Kreil, D.P.; Matzke, M.; Matzke, A.J. Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana. PLoS Genet. 2008, 4, e1000226. [Google Scholar] [CrossRef]
- Malone, J.H.; Cho, D.-Y.; Mattiuzzo, N.R.; Artieri, C.G.; Jiang, L.; Dale, R.K.; Smith, H.E.; McDaniel, J.; Munro, S.; Salit, M. Mediation of Drosophilaautosomal dosage effects and compensation by network interactions. Genome Biol. 2012, 13, R28. [Google Scholar] [CrossRef]
- Zhu, B.; Shao, Y.; Pan, Q.; Ge, X.; Li, Z. Genome-wide gene expression perturbation induced by loss of C2 chromosome in allotetraploid Brassica napus L. Front. Plant Sci. 2015, 6, 763. [Google Scholar] [CrossRef]
- Zhu, B.; Xiang, Y.; Zeng, P.; Cai, B.; Huang, X.; Ge, X.; Weng, Q.; Li, Z. Genome-wide gene expression disturbance by single A1/C1 chromosome substitution in Brassica rapa restituted from natural B. napus. Front. Plant Sci. 2018, 9, 377. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Pan, Q.; Huo, D.; Zeng, P.; Cai, B.; Ge, X.; Li, Z. Transcriptional aneuploidy responses of Brassica rapa-oleracea monosomic alien addition lines (MAALs) derived from natural allopolyploid B. napus. Front. Genet. 2019, 10, 67. [Google Scholar]
- Hou, J.; Shi, X.; Chen, C.; Islam, M.S.; Johnson, A.F.; Kanno, T.; Huettel, B.; Yen, M.-R.; Hsu, F.-M.; Ji, T. Global impacts of chromosomal imbalance on gene expression in Arabidopsis and other taxa. Proc. Natl. Acad. Sci. USA 2018, 115, E11321–E11330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Li, N.; Gong, L.; Gou, X.; Wang, B.; Deng, X.; Li, C.; Dong, Q.; Zhang, H.; Liu, B. Global analysis of gene expression in response to whole-chromosome aneuploidy in hexaploid wheat. Plant Physiol. 2017, 175, 828–847. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.L.; Birchler, J.A. Developmental impact on trans-acting dosage effects in maize aneuploids. Genesis 2001, 31, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Do, C.; Xing, Z.; Yu, Y.E.; Tycko, B. Trans-acting epigenetic effects of chromosomal aneuploidies: Lessons from Down syndrome and mouse models. Epigenomics 2017, 9, 189–207. [Google Scholar] [CrossRef]
- Torres, E.M.; Sokolsky, T.; Tucker, C.M.; Chan, L.Y.; Boselli, M.; Dunham, M.J.; Amon, A. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 2007, 317, 916–924. [Google Scholar] [CrossRef]
- Nagaharu, U.; Nagaharu, N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot 1935, 7, 389–452. [Google Scholar]
- Cheng, F.; Wu, J.; Cai, C.; Fu, L.; Liang, J.; Borm, T.; Zhuang, M.; Zhang, Y.; Zhang, F.; Bonnema, G. Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection. Sci. Data 2016, 3, 160119. [Google Scholar] [CrossRef]
- Mageney, V.; Neugart, S.; Albach, D.C. A guide to the variability of flavonoids in Brassica oleracea. Molecules 2017, 22, 252. [Google Scholar] [CrossRef]
- Yu, J.; Lei, S.; Fang, S.; Tai, N.; Yu, W.; Yang, Z.; Gu, L.; Wang, H.; Du, X.; Zhu, B. Identification, Characterization, and Cytological Analysis of Several Unexpected Hybrids Derived from Reciprocal Crosses between Raphanobrassica and Its Diploid Parents. Plants 2023, 12, 1875. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Lelivelt, C.; Wijnker, E.; de Jong, H. Is partial desynapsis in cauliflower (Brassica oleracea L. var. botrytis) pollen mother cells linked to aneuploidy in the crop? Euphytica 2022, 218, 79. [Google Scholar] [CrossRef]
- Griffiths, J.A.; Scialdone, A.; Marioni, J.C. Mosaic autosomal aneuploidies are detectable from single-cell RNAseq data. BMC Genom. 2017, 18, 904. [Google Scholar] [CrossRef] [PubMed]
- Henry, I.M.; Dilkes, B.P.; Miller, E.S.; Burkart-Waco, D.; Comai, L. Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics 2010, 186, 1231–1245. [Google Scholar] [CrossRef]
- Lorke, D. Developmental characteristics of trisomy 19 mice. Cells Tissues Organs 1994, 150, 159–169. [Google Scholar] [CrossRef]
- Aivazidis, S.; Coughlan, C.M.; Rauniyar, A.K.; Jiang, H.; Liggett, L.A.; Maclean, K.N.; Roede, J.R. The burden of trisomy 21 disrupts the proteostasis network in Down syndrome. PLoS ONE 2017, 12, e0176307. [Google Scholar] [CrossRef]
- Mowery, C.T.; Reyes, J.M.; Cabal-Hierro, L.; Higby, K.J.; Karlin, K.L.; Wang, J.H.; Kimmerling, R.J.; Cejas, P.; Lim, K.; Li, H. Trisomy of a Down syndrome critical region globally amplifies transcription via HMGN1 overexpression. Cell Rep. 2018, 25, 1898–1911.e1895. [Google Scholar] [CrossRef] [PubMed]
- Cejas, R.B.; Tamano-Blanco, M.; Blanco, J.G. Analysis of the intracellular traffic of IgG in the context of Down syndrome (trisomy 21). Sci. Rep. 2021, 11, 10981. [Google Scholar] [CrossRef]
- Chen, H.-F.; Wang, H.; Li, Z.-Y. Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa-pastoris. Plant Cell Rep. 2007, 26, 1791–1800. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Gaeta, R.T.; Pires, J.C. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc. Natl. Acad. Sci. USA 2011, 108, 7908–7913. [Google Scholar] [CrossRef]
- Birchler, J.A.; Veitia, R.A. The Gene Balance Hypothesis: Dosage Effects in Plants. In Plant Epigenetics and Epigenomics: Methods and Protocols; Springer: Cham, Switzerland, 2014; pp. 25–32. [Google Scholar]
- Shi, X.; Yang, H.; Chen, C.; Hou, J.; Ji, T.; Cheng, J.; Birchler, J.A. Effect of aneuploidy of a non-essential chromosome on gene expression in maize. Plant J. 2022, 110, 193–211. [Google Scholar] [CrossRef] [PubMed]
- Oleszczuk, S.; Rabiza-Swider, J.; Zimny, J.; Lukaszewski, A.J. Aneuploidy among androgenic progeny of hexaploid triticale (X Triticosecale Wittmack). Plant Cell Rep. 2011, 30, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, H.; Luo, P. Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor. Appl. Genet. 1995, 91, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Parkin, I.A.; Koh, C.; Tang, H.; Robinson, S.J.; Kagale, S.; Clarke, W.E.; Town, C.D.; Nixon, J.; Krishnakumar, V.; Bidwell, S.L. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 2014, 15, R77. [Google Scholar] [CrossRef] [PubMed]
DEGs Groups | Up DEGs (%) | Down DEGs (%) | Total (%) |
---|---|---|---|
cis-effect DEGs | 557 (97.21) | 16 (2.79) | 573 (30.13) |
trans-effect DEGs | 662 (49.81) | 667 (50.19) | 1329 (69.87) |
Chromosome | Total Genes | DEGs | Ratio (%) | Up DEGs | Ratio (%) | Down DEGs | Ratio (%) |
---|---|---|---|---|---|---|---|
C1 | 5056 | 179 a | 3.54 | 108 | 60.34 | 71 ** | 39.66 |
C3 | 8016 | 224 b | 2.79 | 116 | 51.79 | 108 | 48.21 |
C4 | 5996 | 185 ab | 3.09 | 78 | 42.16 | 107 * | 57.84 |
C5 | 5538 | 119 c | 2.15 | 62 | 52.10 | 57 | 47.90 |
C6 | 4413 | 116 bc | 2.74 | 66 | 54.55 | 50 | 45.45 |
C7 | 5441 | 191 a | 3.51 | 83 | 43.46 | 108 | 56.54 |
C8 | 5272 | 127 bc | 2.41 | 65 | 51.18 | 62 | 48.82 |
C9 | 6222 | 188 ab | 3.02 | 84 | 44.68 | 104 | 55.32 |
Gene Expression Groups | EGs | DEGs | Ratio | Up DEGs | Down DEGs |
---|---|---|---|---|---|
Low | 21,428 | 922 | 4.30% | 494 * | 428 |
Medium | 9433 | 322 | 3.41% | 110 | 212 ** |
High | 1269 | 47 | 3.70% | 20 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Q.; Yu, J.; Yu, J.; Hu, M.; Gu, L.; Wang, H.; Du, X.; Zhu, B.; Cai, M. Identification and Genome-Wide Gene Expression Perturbation of a Trisomy in Chinese Kale (Brassica oleracea var. alboglabra). Plants 2023, 12, 3199. https://doi.org/10.3390/plants12183199
Feng Q, Yu J, Yu J, Hu M, Gu L, Wang H, Du X, Zhu B, Cai M. Identification and Genome-Wide Gene Expression Perturbation of a Trisomy in Chinese Kale (Brassica oleracea var. alboglabra). Plants. 2023; 12(18):3199. https://doi.org/10.3390/plants12183199
Chicago/Turabian StyleFeng, Qun, Junxing Yu, Jie Yu, Mingyang Hu, Lei Gu, Hongcheng Wang, Xuye Du, Bin Zhu, and Mengxian Cai. 2023. "Identification and Genome-Wide Gene Expression Perturbation of a Trisomy in Chinese Kale (Brassica oleracea var. alboglabra)" Plants 12, no. 18: 3199. https://doi.org/10.3390/plants12183199
APA StyleFeng, Q., Yu, J., Yu, J., Hu, M., Gu, L., Wang, H., Du, X., Zhu, B., & Cai, M. (2023). Identification and Genome-Wide Gene Expression Perturbation of a Trisomy in Chinese Kale (Brassica oleracea var. alboglabra). Plants, 12(18), 3199. https://doi.org/10.3390/plants12183199