Efficient Genomic Prediction of Yield and Dry Matter in Hybrid Potato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Populations and Trials
2.2. Marker Processing and Analysis
2.3. Statistical Analysis
2.3.1. First Stage
2.3.2. Phenotypic Variance and Stability
2.3.3. Second Stage
2.4. Model Testing
3. Results
3.1. Trial and Phenotype Analysis
3.2. Marker Analysis
3.3. Genetic Modelling and Genomic Prediction
4. Discussion
4.1. Feasibility of Genomic Prediction in Hybrid Potato
4.2. Contribution of Non-Additive Effects in Prediction
4.3. Hybrid Prediction and Genotype-by-Environment Interactions
4.4. Genomic Prediction for Breeders
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO.STAT. Food and Agriculture Organization of the United Natons. 2023. Available online: http://www.fao.org/faostat. (accessed on 6 May 2023).
- Haverkort, A.J. Ecology of potato cropping systems in relation to latitude and altitude. Agric. Syst. 1990, 32, 251–272. [Google Scholar] [CrossRef]
- Douches, D.; Maas, D.; Science, K.J.C. Assessment of potato breeding progress in the USA over the last century. Crop Sci. 1996, 36, 1544–1552. [Google Scholar] [CrossRef]
- Lian, Q.; Tang, D.; Bai, Z.; Qi, J.; Lu, F.; Huang, S.; Zhang, C. Acquisition of deleterious mutations during potato polyploidization. J. Integr. Plant Biol. 2019, 61, 7–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebhardt, C. Bridging the gap between genome analysis and precision breeding in potato. Trends Genet. 2013, 29, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Gopal, J. Challenges and Way-forward in Selection of Superior Parents, Crosses and Clones in Potato Breeding. Potato Res. 2015, 58, 165–188. [Google Scholar] [CrossRef]
- Bradshaw, J.E. A Brief History of the Impact of Potato Genetics on the Breeding of Tetraploid Potato Cultivars for Tuber Propagation. Potato Res. 2022, 65, 461–501. [Google Scholar] [CrossRef]
- Lindhout, P.; Meijer, D.; Schotte, T.; Hutten, R.C.B.; Visser, R.G.F.; Van Eck, H.J.; Lindhout, P.; Meijer, D.; Hutten, R.C.B.; Visser, R.G.F.; et al. Towards F 1 Hybrid Seed Potato Breeding. Potato Res. 2011, 54, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Jansky, S.H.; Charkowski, A.O.; Douches, D.S.; Gusmini, G.; Richael, C.; Bethke, P.C.; Spooner, D.M.; Novy, R.G.; De Jong, H.; De Jong, W.S.; et al. Reinventing potato as a diploid inbred line-based crop. Crop Sci. 2016, 56, 1412–1422. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, L.; de Vries, M.; Lommen, W.; Struik, P. Transplanting hybrid potato seedlings at increased densities enhances tuber yield and shifts tuber-size distributions. Potato Res. 2021, 65, 307–331. [Google Scholar] [CrossRef]
- Technow, F.; Podlich, D.; Cooper, M. Back to the future: Implications of genetic complexity for the structure of hybrid breeding programs. G3 Genes Genomes Genet. 2021, 11, jkab153. [Google Scholar] [CrossRef]
- Technow, F.; Riedelsheimer, C.; Schrag, T.A.; Melchinger, A.E. Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects. Theor. Appl. Genet. 2012, 125, 1181–1194. [Google Scholar] [CrossRef] [PubMed]
- Pallais, N. True Potato Seed: Changing Potato Propagation from Vegetative to Sexual. HortScience 1991, 26, 239–241. [Google Scholar] [CrossRef]
- Eggers, E.J.; van der Burgt, A.; van Heusden, S.A.W.; de Vries, M.E.; Visser, R.G.F.; Bachem, C.W.B.; Lindhout, P. Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato. Nat. Commun. 2021, 12, 4141. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhang, C.; Zhang, B.; Tang, F.; Li, F.; Liao, Q.; Tang, D.; Peng, Z.; Jia, Y.; Gao, M.; et al. A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes. Nat. Commun. 2021, 12, 4142. [Google Scholar] [CrossRef] [PubMed]
- Lindhout, P.; de Vries, M.; ter Maat, M.; Ying, S.; Marcela, V.-Z.; van Deusden, S. Hybrid potato breeding for improved varieties. In Achieving Sustainable Cultivation of Potatoes Volume 1; Gefu, W.-P., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; pp. 119–142. [Google Scholar]
- Bethke, P.C.; Halterman, D.A.; Francis, D.M.; Jiang, J.; Douches, D.S.; Charkowski, A.O.; Parsons, J. Diploid Potatoes as a Catalyst for Change in the Potato Industry. Am. J. Potato Res. 2022, 99, 337–357. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Tang, D.; Zhu, Y.; Wang, P.; Li, D.; Zhu, G.; Xiong, X.; Shang, Y.; Li, C.; et al. Genome design of hybrid potato. Cell 2021, 184, 3873–3883.e12. [Google Scholar] [CrossRef]
- Labroo, M.R.; Studer, A.J.; Rutkoski, J.E. Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review. Front. Genet. 2021, 12, 234. [Google Scholar] [CrossRef]
- Zhao, Y.; Mette, M.F.; Reif, J.C. Genomic selection in hybrid breeding. Plant Breed. 2015, 134, 1–10. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Bernardo, R. Bandwagons I, too, have known. Theor. Appl. Genet. 2016, 129, 2323–2332. [Google Scholar] [CrossRef]
- Rembe, M.; Zhao, Y.; Jiang, Y.; Reif, J.C. Reciprocal recurrent genomic selection: An attractive tool to leverage hybrid wheat breeding. Theor. Appl. Genet. 2019, 132, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Gaynor, R.C.; Gorjanc, G.; Bentley, A.R.; Ober, E.S.; Howell, P.; Jackson, R.; Mackay, I.J.; Hickey, J.M. A Two-Part Strategy for Using Genomic Selection to Develop Inbred Lines. Crop Sci. 2017, 57, 2372–2386. [Google Scholar] [CrossRef] [Green Version]
- Heffner, E.L.; Lorenz, A.J.; Jannink, J.L.; Sorrells, M.E. Plant Breeding with Genomic Selection: Gain per Unit Time and Cost. Crop Sci. 2010, 50, 1681–1690. [Google Scholar] [CrossRef]
- Sverrisdóttir, E.; Sundmark, E.H.R.; Johnsen, H.∅.; Kirk, H.G.; Asp, T.; Janss, L.; Bryan, G.; Nielsen, K.L. The Value of Expanding the Training Population to Improve Genomic Selection Models in Tetraploid Potato. Front. Plant Sci. 2018, 9, 1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, J.; Scheuring, D.C.; Koym, J.W.; Endelman, J.B.; Vales, M.I. Genomic selection and genome-wide association studies in tetraploid chipping potatoes. The Plant Genome 2022, 16, e20297. [Google Scholar] [CrossRef]
- Enciso-Rodriguez, F.; Douches, D.; Lopez-Cruz, M.; Coombs, J.; de los Campos, G. Genomic Selection for Late Blight and Common Scab Resistance in Tetraploid Potato (Solanum tuberosum). G3 Genes Genomes Genet. 2018, 8, 2471–2481. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, R.; Crossa, J.; Reslow, F.; Perez-Rodriguez, P.; Cuevas, J. Genome-Based Genotype × Environment Prediction Enhances Potato (Solanum tuberosum L.) Improvement Using Pseudo-Diploid and Polysomic Tetraploid Modeling. Front. Plant Sci. 2022, 13, 785196. [Google Scholar] [CrossRef]
- Byrne, S.; Meade, F.; Mesiti, F.; Griffin, D.; Kennedy, C.; Milbourne, D. Genome-Wide Association and Genomic Prediction for Fry Color in Potato. Agronomy 2020, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Endelman, J.B.; Carley, C.A.S.; Bethke, P.C.; Coombs, J.J.; Clough, M.E.; da Silva, W.L.; De Jong, W.S.; Douches, D.S.; Frederick, C.M.; Haynes, K.G.; et al. Genetic Variance Partitioning and Genome-Wide Prediction with Allele Dosage Information in Autotetraploid Potato. Genetics 2018, 209, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.; Zheng, C.; Maliepaard, C.; Mulder, H.A.; Visser, R.G.F.; van der Burgt, A.; van Eeuwijk, F. Understanding the Effectiveness of Genomic Prediction in Tetraploid Potato. Front. Plant Sci. 2021, 12, 672417. [Google Scholar] [CrossRef]
- Cuevas, J.; Reslow, F.; Crossa, J.; Ortiz, R. Modeling genotype × environment interaction for single- and multi-trait genomic prediction in potato (Solanum tuberosum L.). Plant Biol. 2022, 13, jkac322. [Google Scholar] [CrossRef]
- Slater, A.T.; Cogan, N.O.; Forster, J.W.; Hayes, B.J.; Daetwyler, H.D. Improving Genetic Gain with Genomic Selection in Autotetraploid Potato. Plant Genome 2016, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.R.; de Vries, M.E.; Zheng, C.; van Eeuwijk, F.A. Little heterosis found in diploid hybrid potato: The genetic underpinnings of a new hybrid crop. G3 Genes Genomes Genet. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Z.; Xu, Y.; Li, P.; Zhang, X.; Xu, C. Using genomic data to improve the estimation of general combining ability based on sparse partial diallel cross designs in maize. Crop J. 2020, 8, 819–829. [Google Scholar] [CrossRef]
- Stockem, J.; de Vries, M.; van Nieuwenhuizen, E.; Lindhout, P.; Struik, P.C. Contribution and Stability of Yield Components of Diploid Hybrid Potato. Potato Res. 2020, 63, 345–366. [Google Scholar] [CrossRef]
- LGC. SeqSNP Targeted GBS as Alternative for Array Genotyping in Routine Breeding Programs [White Paper]. 2019. Available online: https://biosearch-cdn.azureedge.net/assetsv6/seqsnp-tgbs-alternative-genotyping-routine-breeding-programs.pdf (accessed on 20 November 2022).
- Mangin, B.; Siberchicot, A.; Nicolas, S.; Doligez, A.; This, P.; Cierco-Ayrolles, C. Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity 2012, 108, 285–291. [Google Scholar] [CrossRef] [Green Version]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [Green Version]
- Amadeu, R.R.; Cellon, C.; Olmstead, J.W.; Garcia, A.A.F.; Resende, M.F.R.; Muñoz, P.R. AGHmatrix: R Package to Construct Relationship Matrices for Autotetraploid and Diploid Species: A Blueberry Example. Plant Genome 2016, 9. [Google Scholar] [CrossRef]
- Su, G.; Christensen, O.F.; Ostersen, T.; Henryon, M.; Lund, M.S. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers. PLoS ONE 2012, 7, e45293. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.R-project.org/ (accessed on 11 December 2022).
- Müller, B.U.; Kleinknecht, K.; Möhring, J.; Piepho, H.P. Comparison of spatial models for sugar beet and barley trials. Crop Sci. 2010, 50, 794–802. [Google Scholar] [CrossRef]
- Butler, D.G.; Cullis, B.R.; Gilmour, A.R.; Gogel, B.J.; Thompson, R. ASReml-R Reference Manual Version 4; Technical Report; VSN International Ltd.: Hemel Hempstead, UK, 2017. [Google Scholar]
- Frensham, A.; Cullis, B.; Verbyla, A. Genotype by Environment Variance Heterogeneity in a Two-Stage Analysis. Biometrics 1997, 53, 1373. [Google Scholar] [CrossRef]
- Möhring, J.; Piepho, H.P. Comparison of Weighting Methods in Two-Stage Analysis of Plant Breeding Trials. Crop Sci. 2009, 49, 1977–1988. [Google Scholar] [CrossRef]
- Schrag, T.A.; Möhring, J.; Maurer, H.P.; Dhillon, B.S.; Melchinger, A.E.; Piepho, H.P.; Sørensen, A.P.; Frisch, M. Molecular marker-based prediction of hybrid performance in maize using unbalanced data from multiple experiments with factorial crosses. Theor. Appl. Genet. 2009, 118, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Covarrubias-Pazaran, G. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer. PLoS ONE 2016, 11, e0156744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, R.; Davis, C. A Better Bound on the Variance. Am. Math. Mon. 2000, 107, 353–357. [Google Scholar] [CrossRef]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetics 2003, 164, 1567–1587. [Google Scholar] [CrossRef]
- Gianola, D.; van Kaam, J.B.C.H.M. Reproducing Kernel Hilbert Spaces Regression Methods for Genomic Assisted Prediction of Quantitative Traits. Genetics 2008, 178, 2289–2303. [Google Scholar] [CrossRef] [Green Version]
- Crossa, J.; Martini, J.W.; Gianola, D.; Pérez-Rodríguez, P.; Jarquin, D.; Juliana, P.; Montesinos-López, O.; Cuevas, J. Deep Kernel and Deep Learning for Genome-Based Prediction of Single Traits in Multienvironment Breeding Trials. Front. Genet. 2019, 10, 1168. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, R. Reinventing quantitative genetics for plant breeding: Something old, something new, something borrowed, something BLUE. Heredity 2020, 125, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.E. Statistical Considerations for Applying Genomic Prediction to Potato. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2023. [Google Scholar] [CrossRef]
Trait | Est Field Trial | Heelsum Field Trial | ||
---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |
DM | (1) + (6) | (1) + (6) | (2) + (3) | (1) + (5) |
TN | (1) + (6) | (1) + (6) | (1) + (6) | (1) + (6) |
TV | (1) + (6) | (1) + (4) | (1) + (6) | (1) + (6) |
TY | (1) + (6) | (1) + (6) | (1) + (6) | (1) + (6) |
DM | TN | TV | TY | |
---|---|---|---|---|
0.68 | 0.49 | 0.73 | 0.47 | |
0.55 | 0.73 | 0.82 | 0.81 | |
11.06 | 23.57 | 24.82 | 28.33 | |
9.19 | 27.77 | 27.81 | 35.91 | |
7.91 | 19.74 | 14.00 | 22.11 |
Trait | Variance Components: | |||||||
---|---|---|---|---|---|---|---|---|
DM | GCA | 1.1 | 0.5 | 0.4 | 0.84 | 0.16 | ||
GCA+SCA | 0.3 | 0.3 | 0.80 | 0.09 | 0.11 | |||
TN | GCA | 368.9 | 287.7 | 341.0 | 0.68 | 0.32 | ||
GCA+SCA | 195.2 | 232.2 | 0.63 | 0.17 | 0.20 | |||
TV | GCA | 11.8 | 2.7 | 7.2 | 0.76 | 0.24 | ||
GCA+SCA | 5.5 | 4.4 | 0.71 | 0.16 | 0.13 | |||
TY | GCA | 7.4 | 7.8 | 5.3 | 0.74 | 0.26 | ||
GCA+SCA | 3.0 | 3.6 | 0.69 | 0.14 | 0.17 |
Phenotype | 0 Evaluated Parents Set | 1 Evaluated Parent Set | ||
---|---|---|---|---|
GCA | GCA+SCA | GCA | GCA+SCA | |
DM | 0.49 (8.0) | 0.49 (8.0) | 0.58 (7.4) | 0.58 (7.4) |
TN | 0.36 (20.3) | 0.36 (20.2) | 0.50 (19.2) | 0.51 (19.2) |
TV | 0.61 (20.7) | 0.61 (20.7) | 0.68 (19.0) | 0.68 (18.9) |
TY | 0.46 (26.4) | 0.46 (26.4) | 0.58 (24.5) | 0.58 (24.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, J.; de Vries, M.; van Eeuwijk, F. Efficient Genomic Prediction of Yield and Dry Matter in Hybrid Potato. Plants 2023, 12, 2617. https://doi.org/10.3390/plants12142617
Adams J, de Vries M, van Eeuwijk F. Efficient Genomic Prediction of Yield and Dry Matter in Hybrid Potato. Plants. 2023; 12(14):2617. https://doi.org/10.3390/plants12142617
Chicago/Turabian StyleAdams, James, Michiel de Vries, and Fred van Eeuwijk. 2023. "Efficient Genomic Prediction of Yield and Dry Matter in Hybrid Potato" Plants 12, no. 14: 2617. https://doi.org/10.3390/plants12142617
APA StyleAdams, J., de Vries, M., & van Eeuwijk, F. (2023). Efficient Genomic Prediction of Yield and Dry Matter in Hybrid Potato. Plants, 12(14), 2617. https://doi.org/10.3390/plants12142617