Early Sowing on Some Soybean Genotypes under Organic Farming Conditions
Abstract
:1. Introduction
2. Results
2.1. Climate Conditions
2.2. Effect of Sowing Time, Genotype on Soybean Yields
Yield Loss Due to Weeds
2.3. Plants Density and Cumulative Stress Index
3. Discussion
4. Materials and Methods
Measurements
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nget, R.; Aguilar, E.A.; Cruz, P.C.S.; Reaño, C.E.; Sanchez, P.B.; Reyes, M.R.; Prasad, P.V.V. Responses of Soybean Genotypes to Different Nitrogen and Phosphorus Sources: Impacts on Yield Components, Seed Yield, and Seed Protein. Plants 2022, 11, 298. [Google Scholar] [CrossRef] [PubMed]
- Duca, M.; Joiţa-Păcureanu, M.; Glijin, A. Effect of Orobanche cumana Wallr. on Fat Content in Different Sunflower (Helianthus Annuus L.) Genotzpes. In Proceedings of the Conservation of Plant Diversity, Kishinev, Moldova, 16–19 May 2012; pp. 96–102. [Google Scholar]
- Sinkovič, L.; Pipan, B.; Šibul, F.; Nemeš, I.; Tepić Horecki, A.; Meglič, V. Nutrients, Phytic Acid and Bioactive Compounds in Marketable Pulses. Plants 2023, 12, 170. [Google Scholar] [CrossRef]
- Divéky-Ertsey, A.; Gál, I.; Madaras, K.; Pusztai, P.; Csambalik, L. Contribution of Pulses to Agrobiodiversity in the View of EU Protein Strategy. Stresses 2022, 2, 90–112. [Google Scholar] [CrossRef]
- Thompson, S.J.; Koebernick, J.; Silva, L.S.; Mullenix, M.K.; Heaton, C.; Carrell, R.C.; Dillard, S.L. Forage Mass and Nutritive Value of Grain- and Forage-Type Soybean Cultivars Managed under Different Row Spacings and Clipping Heights. Agronomy 2023, 13, 487. [Google Scholar] [CrossRef]
- Țîței, V. The Biochemical Composition and the Nutritive Value of Fodders from Soybean, Glycine Max, in Moldova. Sci. Pap. Ser. D Anim. Sci. 2022, 65, 97–102. [Google Scholar]
- Nair, R.M.; Boddepalli, V.N.; Yan, M.-R.; Kumar, V.; Gill, B.; Pan, R.S.; Wang, C.; Hartman, G.L.; Silva e Souza, R.; Somta, P. Global Status of Vegetable Soybean. Plants 2023, 12, 609. [Google Scholar] [CrossRef]
- Sereikaite, V.; Navaruckiene, A.; Jaras, J.; Skliutas, E.; Ladika, D.; Gray, D.; Malinauskas, M.; Talacka, V.; Ostrauskaite, J. Functionalized Soybean Oil- and Vanillin-Based Dual Cure Photopolymerizable System for Light-Based 3D Structuring. Polymers 2022, 14, 5361. [Google Scholar] [CrossRef]
- Hu, S.; Liu, C.; Liu, X. The Beneficial Effects of Soybean Proteins and Peptides on Chronic Diseases. Nutrients 2023, 15, 1811. [Google Scholar] [CrossRef]
- Manea, A.; Muşat, I.B.; Eftene, A.; Muşat, M.; Răducu, D. The Public Goods and the Multi-Annual Variation of Biodiversity Associated to Soybean Crop. Rom. Agric. Res. 2020, 263–272. [Google Scholar] [CrossRef]
- Pachkin, A.; Kremneva, O.; Leptyagin, D.; Ponomarev, A.; Danilov, R. Light Traps to Study Insect Species Diversity in Soybean Crops. Agronomy 2022, 12, 2337. [Google Scholar] [CrossRef]
- De Oliveira, R.C.; de Souza e Silva, R.D. Increase of Agribusiness in the Brazilian Amazon: Development or Inequality? Earth 2021, 2, 1077–1100. [Google Scholar] [CrossRef]
- Karges, K.; Bellingrath-Kimura, S.D.; Watson, C.A.; Stoddard, F.L.; Halwani, M.; Reckling, M. Agro-Economic Prospects for Expanding Soybean Production beyond Its Current Northerly Limit in Europe. Eur. J. Agron. 2022, 133, 126415. [Google Scholar] [CrossRef]
- Boulch, G.; Elmerich, C.; Djemel, A.; Lange, B. Evaluation of Soybean (Glycine Max L.) Adaptation to Northern European Regions under Different Agro-Climatic Scenarios. In Silico Plants 2021, 3, diab008. [Google Scholar] [CrossRef]
- Sandu, M.; Popescu, G.; Paraschivescu, M.T. Study on the Crisis in the Pig Breeding Sector in Romania. In Proceedings of the 8th International Conference ESPERA, Bucharest, Romania, 9–10 December 2021; pp. 639–653. [Google Scholar]
- Leal, V.N.; Santos, D.D.; Paim, T.D.; Santos, L.P.; Alves, E.M.; Claudio, F.L.; Calgaro Junior, G.; Fernandes, P.B.; Salviano, P.A. Economic Results of Forage Species Choice in Crop—Livestock Integrated Systems. Agriculture 2023, 13, 637. [Google Scholar] [CrossRef]
- Chetroiu, R.; Cișmileanu, A.E.; Cofas, E.; Petre, I.L.; Rodino, S.; Dragomir, V.; Marin, A.; Turek-Rahoveanu, P.A. Assessment of the Relations for Determining the Profitability of Dairy Farms, A Premise of Their Economic Sustainability. Sustainability 2022, 14, 7466. [Google Scholar] [CrossRef]
- Toomer, O.T.; Oviedo, E.O.; Ali, M.; Patino, D.; Joseph, M.; Frinsko, M.; Vu, T.; Maharjan, P.; Fallen, B.; Mian, R. Current Agronomic Practices, Harvest & Post-Harvest Processing of Soybeans (Glycine max)—A Review. Agronomy 2023, 13, 427. [Google Scholar] [CrossRef]
- Dima, D.C. Soybean Crop in Romania, Bulgaria and the Republic of Moldova: Current Situation and Perspectives. Agric. Agric. Sci. Procedia 2015, 6, 3–8. [Google Scholar] [CrossRef]
- Antofie, M.-M.; Sand-Sava, C. Genetically Modified Crops in Romania before and after the Accession of the European Union. Agriculture 2022, 12, 458. [Google Scholar] [CrossRef]
- Petcu, V.; Dincă, L.; Toncea, I. The Effect of Crops and Farming Systems on Soil Quality. Sci. Pap. Ser. A Agron. 2014, 57, 58–63. [Google Scholar]
- Petcu, V.; Radu, I.; Grădilă, M.; Stanciu, V.; Bărbieru, A. Soybean Seed Scanning for Size, Genotype Color and Cercospora Blight Detection. Sci. Pap. Ser. A Agron. 2021, 64, 527–533. [Google Scholar] [CrossRef]
- Georgescu, E.; Cană, L.; Gărgăriță, R.; Râșnoveanu, L. Researches Concerning Two Spotted Spider Mite (Tetranychus urticae) Control, at Soybean Crop, in South-East of the Romania. An. Inst. Național Cercet. Dezvoltare Agric. Fundulea 2016, 84, 209–229. [Google Scholar]
- Chețan, F.; Chețan, C.; Bogdan, I.; Pop, A.I.; Moraru, P.I.; Rusu, T. The Effects of Management (Tillage, Fertilization, Plant Density) on Soybean Yield and Quality in a Three-Year Experiment under Transylvanian Plain Climate Conditions. Land 2021, 10, 200. [Google Scholar] [CrossRef]
- Toleikiene, M.; Slepetys, J.; Sarunaite, L.; Lazauskas, S.; Deveikyte, I.; Kadziuliene, Z. Soybean Development and Productivity in Response to Organic Management above the Northern Boundary of Soybean Distribution in Europe. Agronomy 2021, 11, 214. [Google Scholar] [CrossRef]
- Jarecki, W.; Bobrecka-Jamro, D. Effect of Sowing Date on the Yield and Seed Quality of Soybean (Glycine Max (L.) Merr.). J. Elem. 2021, 26, 7–18. [Google Scholar] [CrossRef]
- Borowska, M.; Prusiński, J. Effect of Soybean Cultivars Sowing Dates on Seed Yield and Its Correlation with Yield Parameters. Plant Soil Environ. 2021, 67, 360–366. [Google Scholar] [CrossRef]
- Feng, L.; Wang, H.; Ma, X.; Peng, H.; Shan, J. Modeling the Current Land Suitability and Future Dynamics of Global Soybean Cultivation under Climate Change Scenarios. Field Crop. Res. 2021, 263, 108069. [Google Scholar] [CrossRef]
- Matev, A.; Nikolova, M. Influence of the Irrigation Regime on the Soybeans (Glycine max) Root System. Rom. Agric. Res. 2022, 39, 259–267. [Google Scholar] [CrossRef]
- Matoša Kočar, M.; Josipović, M.; Sudarić, A.; Plavšić, H.; Beraković, I.; Atilgan, A.; Marković, M. Environment- and Genotype-Dependent Irrigation Effect on Soybean Grain Yield and Grain Quality. Appl. Sci. 2023, 13, 111. [Google Scholar] [CrossRef]
- Cohen, I.; Zandalinas, S.I.; Fritschi, F.B.; Sengupta, S.; Fichman, Y.; Azad, R.K.; Mittler, R. The Impact of Water Deficit and Heat Stress Combination on the Molecular Response, Physiology, and Seed Production of Soybean. Physiol. Plant. 2021, 172, 41–52. [Google Scholar] [CrossRef]
- Döttinger, C.A.; Hahn, V.; Leiser, W.L.; Würschum, T. Do We Need to Breed for Regional Adaptation in Soybean—Evaluation of Genotype-by-Location Interaction and Trait Stability of Soybean in Germany. Plants 2023, 12, 756. [Google Scholar] [CrossRef] [PubMed]
- Ciucă, M.; Cristina, D.; Petcu, V.; Toncea, I. Screening Soybean Germplasm for Presence of Cda1 Allele Involved in Low Cadmium Accumulation Using Molecular Markers. Rom. Agric. Res. 2023, 40, 13–18. [Google Scholar] [CrossRef]
- Kumagai, E.; Takahashi, T. Soybean (Glycine max (L.) Merr.) Yield Reduction Due to Late Sowing as a Function of Radiation Interception and Use in a Cool Region of Northern Japan. Agronomy 2020, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Bastidas, A.M.; Setiyono, T.D.; Dobermann, A.; Cassman, K.G.; Elmore, R.W.; Graef, G.L.; Specht, J.E. Soybean Sowing Date: The Vegetative, Reproductive, and Agronomic Impacts. Crop Sci. 2008, 48, 727–740. [Google Scholar] [CrossRef] [Green Version]
- Patterson, D.T.; Flint, E.P. Comparative Water Relations, Photosynthesis, and Growth of Soybean (Glycine Max) and Seven Associated Weeds. Weed Sci. 1983, 31, 318–323. [Google Scholar] [CrossRef]
- Essl, F.; Biró, K.; Brandes, D.; Broennimann, O.; Bullock, J.M.; Chapman, D.S.; Chauvel, B.; Dullinger, S.; Fumanal, B.; Guisan, A. Biological Flora of the British Isles: Ambrosia Artemisiifolia. J. Ecol. 2015, 103, 1069–1098. [Google Scholar] [CrossRef] [Green Version]
- Mang, T.; Essl, F.; Moser, D.; Dullinger, S. Climate Warming Drives Invasion History of Ambrosia Artemisiifolia in Central Europe. Prezlia 2018, 90, 59–81. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Wang, H.; Li, X.; Ji, H. Enhancement of Plant Cold Tolerance by Soybean RCC1 Family Gene GmTCF1a. BMC Plant Biol. 2021, 21, 369. [Google Scholar] [CrossRef] [PubMed]
- Cerezini, P.; Kuwano, B.H.; dos Santos, M.B.; Terassi, F.; Hungria, M.; Nogueira, M.A. Strategies to Promote Early Nodulation in Soybean under Drought. Field Crop. Res. 2016, 196, 160–167. [Google Scholar] [CrossRef]
- Liu, X.; Jin, J.; Wang, G.; Herbert, S.J. Soybean Yield Physiology and Development of High-Yielding Practices in Northeast China. Field Crop. Res. 2008, 105, 157–171. [Google Scholar] [CrossRef]
- Bărbieru, A. Variability of Yield and Chemical Composition in Some Romanian Soybean Genotypes. Rom. Agric. Res. 2021, 38, 141–146. [Google Scholar] [CrossRef]
- Rezi, R.; Mureşanu, E.; Paşc, D.; Urdă, C.; Haș, I. Influence of Plant Densities on Some Yield Elements in Several Local and Foreign Soybean Cultivars in Transylvania Plain Conditions. Rom. Agric. Res. 2019, 36, 155–164. [Google Scholar] [CrossRef]
- Petcu, V.; Stan, O.; Băduț, C.; Stanciu, V.; Bărbieru, A. Evaluarea Unor Genotipuri de Soia pentru Pretabilitatea la Semănat Timpuriu / Soybeans Genotypes Assessment for Early Sowing Possibility. Analele I.N.C.D.A. Fundulea 2020, 88, 187–199. [Google Scholar]
- Specht, J.; Rees, J.; Elmore, R.; Mueller, N.; Glewen, K. Crop Watch; Bayer CropScience: St. Louis, MO, USA, 2019. [Google Scholar]
- Ziska, L.H.; Blumenthal, D.M.; Franks, S.J. Understanding the Nexus of Rising CO2, Climate Change, and Evolution in Weed Biology. Invasive Plant Sci. Manag. 2019, 12, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Little, N.G.; DiTommaso, A.; Westbrook, A.S.; Ketterings, Q.M.; Mohler, C.L. Effects of Fertility Amendments on Weed Growth and Weed–Crop Competition: A Review. Weed Sci. 2021, 69, 132–146. [Google Scholar] [CrossRef]
- Braz, G.B.P.; Cruvinel, A.G.; Caneppele, A.B.; Takano, H.K.; Silva, A.G.; da Oliveira, R.S., Jr. Sourgrass Interference on Soybean Grown in Brazilian Cerrado. Rev. Caatinga 2021, 34, 350–358. [Google Scholar] [CrossRef]
- Robinson, A.P.; Conley, S.P.; Volenec, J.J.; Santini, J.B. Analysis of High Yielding, Early-planted Soybean in Indiana. Agron. J. 2009, 101, 131–139. [Google Scholar] [CrossRef]
- Dragomir, V.; Brumă, I.S.; Butu, A.; Petcu, V.; Tanasă, L.; Horhocea, D. An Overview of Global Maize Market Compared to Romanian Production. Rom. Agric. Res. 2022, 39, 535–544. [Google Scholar] [CrossRef]
- Wei, W.; Liu, T.; Shen, L.; Wang, X.; Zhang, S.; Zhang, W. Effect of Maize (Zeal mays) and Soybean (Glycine max) Intercropping on Yield and Root Development in Xinjiang, China. Agriculture 2022, 12, 996. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.; Ding, G.; Yang, F.; Yong, T.; Wang, X.; Yang, W. Analysis of Grain Yield Differences Among Soybean Cultivars under Maize–Soybean Intercropping. Agronomy 2020, 10, 110. [Google Scholar] [CrossRef] [Green Version]
- Căpățână, N.; Bolohan, C.; Oprea, C.A.; Marin, D.I. Influence of Soil Tillage Systems and Inoculation on Soybean Nodulation and Yield. Sci. Pap. Ser. A Agron. 2018, 61, 46–52. [Google Scholar]
- Sîrbu, C.; Cioroianu, T.M.; Ionescu, N.; Marin, N.; Grigore, A. Effectiveness of Biostimulants Applied to Wheat, Sunflower and Soybean Crops. Sci. Pap. Ser. A Agron. 2022, 1, 520–525. [Google Scholar]
- Hicks, D.R. 2—Growth and Development. In Soybean Physiology, Agronomy, and Utilization; Norman, A.G., Ed.; Academic Press: New York, NY, USA, 1978; pp. 17–44. ISBN 978-0-12-521160-4. [Google Scholar]
- European and Mediterranean Plant Protection Organization EPPO Global Database. Available online: https://gd.eppo.int (accessed on 25 April 2023).
- Koti, S.; Reddy, K.R.; Reddy, V.R.; Kakani, V.G.; Zhao, D. Interactive Effects of Carbon Dioxide, Temperature, and Ultraviolet-B Radiation on Soybean (Glycine max L.) Flower and Pollen Morphology, Pollen Production, Germination, and Tube Lengths. J. Exp. Bot. 2005, 56, 725–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceapoiu, N. Metode Statistice Aplicate în Experiențele Agricole și Biologice/Statistical Methods Applied in Agricultural and Biological Experiments; Editura Agro-Silvică: Bucharest, Romania, 1968. [Google Scholar]
Month | Year | Temperature (°C) | Rainfall (mm) |
---|---|---|---|
April | 60-years average | 11.3 | 45.1 |
2020 | 12.3 | 14 | |
2021 | 9.7 | 31 | |
2022 | 12.1 | 47.6 | |
May * | 60-years average | 17 | 62.5 |
2020 | 17 | 58 | |
2021 | 17.2 | 57.6 | |
2022 | 17.9 | 30.1 | |
June | 60-years average | 20.8 | 74.9 |
2020 | 21.7 | 68.4 | |
2021 | 21.1 | 135 | |
2022 | 22.6 | 59.6 | |
July | 60-years average | 22.7 | 71.1 |
2020 | 25.1 | 34.2 | |
2021 | 25.3 | 21.2 | |
2022 | 25.0 | 29.2 | |
August | 60-years average | 22.3 | 49.7 |
2020 | 25.5 | 5.4 | |
2021 | 24.2 | 24.4 | |
2022 | 25.6 | 14.4 | |
Total/Mean | 60-years average | 18.8 | 303.3 |
2020 | 20.3 | 180.0 | |
2021 | 19.5 | 269.2 | |
2022 | 20.6 | 180.9 |
Source of Variance | Factor F and Significance | ||
---|---|---|---|
2020 | 2021 | 2022 | |
Sowing time (Factor A) | 313.08 *** | 70.30 *** | 72.00 ** |
Genotypes (Factor B) | 50.14 *** | 52.52 *** | 12.06 *** |
Interaction A × B | 2.32 | 1.32 | 3.23 *** |
Genotype | Year | Yield (kg ha−1) Sown Early | Yield (kg ha−1) Sown Optimally | Yield Difference % | % Yield Difference (kg ha−1) |
---|---|---|---|---|---|
F10-1443 | 2020 | 732 | 602 | 21.6 | 130 |
2021 | 1148 | 1082 | 6.1 | 66 | |
2022 | 453 | 952 | −52.4 | −499 | |
F13-993 | 2020 | 1136 | 1056 | 7.6 | 80 |
2021 | 723 | 606 | 19.3 | 117 | |
2022 | 445 | 977 | −54.5 | −532 | |
F13-1174 | 2020 | 1413 | 1339 | 5.5 | 74 |
2021 | 889 | 710 | 25.2 | 179 | |
2022 | 388 | 984 | −60.6 | −596 | |
F14-878 | 2020 | 1183 | 1086 | 8.9 | 97 |
2021 | 762 | 688 | 10.8 | 74 | |
2022 | 354 | 981 | −63.9 | −627 | |
2020 | 953 | 884 | 7.8 | 69 | |
F14-918 | 2021 | 633 | 603 | 5 | 30 |
2022 | 379 | 989 | −61.7 | −610 | |
F13-1114 | 2020 | 1520 | 1390 | 9.4 | 130 |
2021 | 1007 | 1025 | −1.8 | −18 | |
2022 | 567 | 1041 | −45.5 | −474 | |
F13-1124 | 2020 | 1439 | 1329 | 8.3 | 110 |
2021 | 873 | 632 | 38.1 | 241 | |
2022 | 420 | 1035 | −59.4 | −615 | |
F13-908 | 2020 | 1573 | 1515 | 3.8 | 58 |
2021 | 1033 | 948 | 9 | 85 | |
2022 | 535 | 1018 | −47.4 | −483 | |
F15-749 | 2020 | 1333 | 1252 | 6.5 | 81 |
2021 | 885 | 862 | 2.7 | 23 | |
2022 | 468 | 973 | −51.9 | −505 | |
F15-792 | 2020 | 1750 | 1620 | 8 | 130 |
2021 | 1157 | 1167 | −0.9 | −10 | |
2022 | 565 | 1029 | −45.1 | −464 | |
Anduța F | 2020 | 1650 | 1548 | 6.6 | 102 |
2021 | 1088 | 1061 | 2.5 | 27 | |
2022 | 499 | 965 | −48.3 | −466 | |
Flavia | 2020 | 1283 | 1209 | 6.1 | 74 |
2021 | 867 | 880 | −1.5 | −13 | |
2022 | 593 | 1091 | −45.6 | −498 | |
Larisa TD | 2020 | 1343 | 1216 | 10.4 | 127 |
2021 | 919 | 1024 | −10.3 | −105 | |
2022 | 586 | 1098 | −46.6 | −512 | |
Teo TD | 2020 | 1668 | 1360 | 22.6 | 308 |
2021 | 1196 | 1112 | 7.6 | 84 | |
2022 | 521 | 844 | −38.3 | −323 |
Source of Variance | Factor F and Significance | |
---|---|---|
Sown Early | Sown Optimally | |
Year of experimentation (Factor A) | 227.98 *** | 112.46 *** |
Genotypes (Factor B) | 25.88 *** | 99.83 *** |
Interaction A × B | 19.87 *** | 29.15 *** |
Phase of Vegetation | Variants | Year | SETVIR | ECHCG | DIGSA | CONAR | POLCO | AMARE | POROL | SOLNI | AMBEL | CHEAL | TOTAL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trifoliate leaves | Early | 2020 | 96 | 3 | 36 | 25 | 160 | ||||||
2021 | 125 | 14 | 63 | 202 | |||||||||
2022 | 150 | 21 | 14 | 96 | 179 | 460 | |||||||
Optim | 2020 | 68 | 7 | 14 | 89 | ||||||||
2021 | 96 | 41 | 28 | 35 | 7 | 207 | |||||||
2022 | 115 | 50 | 40 | 10 | 215 | ||||||||
Full flowering and pod setting (R2) | Early | 2020 | 7 | 10 | 8 | 25 | |||||||
2021 | 28 | 12 | 10 | 13 | 7 | 15 | 10 | 95 | |||||
2022 | 30 | 15 | 15 | 14 | 10 | 20 | 15 | 119 | |||||
Optim | 2020 | 14 | 10 | 24 | |||||||||
2021 | 30 | 10 | 8 | 7 | 15 | 7 | 77 | ||||||
2022 | 35 | 18 | 11 | 8 | 20 | 15 | 107 | ||||||
Maturity start (R7) | Early | 2020 | 35 | 7 | 7 | 7 | 10 | 66 | |||||
2021 | 30 | 30 | 25 | 6 | 6 | 2 | 15 | 14 | 128 | ||||
2022 | 45 | 40 | 35 | 29 | 15 | 11 | 15 | 25 | 13 | 228 | |||
Optim | 2020 | 7 | 10 | 17 | |||||||||
2021 | 25 | 26 | 18 | 22 | 9 | 7 | 15 | 122 | |||||
2022 | 55 | 41 | 35 | 30 | 15 | 12 | 9 | 9 | 206 |
Source of Variance | Factor F and Significance | |
---|---|---|
Sown Early | Sown Optimally | |
Year of experimentation (Factor A) | 18.77 *** | 29.13 *** |
Genotypes (Factor B) | 56.21 *** | 69.58 *** |
Interaction A × B | 11.43 *** | 13.64 *** |
Genotype | Years | Early Sowing (Plants m−2) | Optimal Sowing (Plants m−2) | Cumulative Stress Index |
---|---|---|---|---|
2020 | 27 | 25 | ||
F10-1443 | 2021 | 37 | 35 | 0.83 |
2022 | 21 | 25 | ||
2020 | 25 | 32 | ||
F13-993 | 2021 | 31 | 29 | 0.91 |
2022 | 20 | 24 | ||
2020 | 37 | 33 | ||
F13-1174 | 2021 | 35 | 37 | 0.71 |
2022 | 26 | 33 | ||
2020 | 37 | 31 | ||
F14-878 | 2021 | 34 | 36 | 0.83 |
2022 | 24 | 29 | ||
2020 | 25 | 24 | ||
F14-918 | 2021 | 41 | 40 | 0.86 |
2022 | 23 | 26 | ||
2020 | 32 | 39 | ||
F13-1114 | 2021 | 45 | 40 | 0.44 |
2022 | 32 | 33 | ||
2020 | 40 | 41 | ||
F13-1124 | 2021 | 45 | 45 | 0.47 |
2022 | 26 | 36 | ||
2020 | 51 | 47 | ||
F13-908 | 2021 | 55 | 49 | 0.3 |
2022 | 28 | 30 | ||
2020 | 40 | 42 | ||
F15-749 | 2021 | 42 | 42 | 0.47 |
2022 | 34 | 36 | ||
2020 | 43 | 44 | ||
F15-792 | 2021 | 39 | 52 | 0.26 |
2022 | 31 | 32 | ||
2020 | 33 | 36 | ||
Anduța F | 2021 | 52 | 50 | 0.45 |
2022 | 34 | 34 | ||
2020 | 34 | 36 | ||
Flavia | 2021 | 52 | 52 | 0.43 |
2022 | 32 | 28 | ||
2020 | 47 | 39 | ||
Larisa TD | 2021 | 50 | 53 | 0.42 |
2022 | 36 | 39 | ||
2020 | 45 | 43 | ||
Teo TD | 2021 | 50 | 46 | 0.31 |
2022 | 33 | 36 |
Correlation Coefficient | Years | Early Sowing | Optimal Sowing |
---|---|---|---|
Crop density (plants m−2) × Cumulative Stress Index (CSI) | 2020 | −0.76 *** | −0.89 *** |
2021 | −0.75 *** | −0.84 *** | |
2022 | −0.81 *** | −0.67 ** | |
Crop density (plants m−2) × Weeds density (plants m−2) | 2020 | −0.51 * | −0.48 * |
2021 | −0.44 | −0.56 * | |
2022 | −0.56 * | −0.68 ** | |
Cumulative Stress Index (CSI) × Weeds density (plants m−2) | 2020 | 0.57 * | 0.64 ** |
2021 | 0.65 ** | 0.64 ** | |
2022 | 0.54 * | 0.86 *** | |
Yield × Crop density (plants m−2) | 2020 | 0.65 ** | 0.71 *** |
2021 | 0.48 * | 0.50 * | |
2022 | 0.71 *** | 0.36 |
N. | Soybean Genotype | Maturity Group | Stem Type | Maintainer |
---|---|---|---|---|
1 | F10-1443 | 0 | Det. | NARDI Fundulea |
2 | F13-908 | 00 | Det. | NARDI Fundulea |
3 | F13-993 | 00 | Det. | NARDI Fundulea |
4 | F13-1114 | 00 | Det. | NARDI Fundulea |
5 | F13-1124 | 0 | Det. | NARDI Fundulea |
6 | F13-1174 | 00 | Det. | NARDI Fundulea |
7 | F14-878 | 00 | Det. | NARDI Fundulea |
8 | F14-918 | 0 | Det. | NARDI Fundulea |
9 | F15-749 | 0 | Det. | NARDI Fundulea |
10 | F15-792 | 0 | Det. | NARDI Fundulea |
11 | Anduța F | 0 | Det. | NARDI Fundulea |
12 | Florina F | 0 | InDet. | NARDI Fundulea |
13 | Larisa TD | 0 | SemiDet. | SCDA Turda |
14 | Teo TD | 00 | SemiDet. | SCDA Turda |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petcu, V.; Bărbieru, A.; Popa, M.; Lazăr, C.; Ciornei, L.; Străteanu, A.G.; Todirică, I.C. Early Sowing on Some Soybean Genotypes under Organic Farming Conditions. Plants 2023, 12, 2295. https://doi.org/10.3390/plants12122295
Petcu V, Bărbieru A, Popa M, Lazăr C, Ciornei L, Străteanu AG, Todirică IC. Early Sowing on Some Soybean Genotypes under Organic Farming Conditions. Plants. 2023; 12(12):2295. https://doi.org/10.3390/plants12122295
Chicago/Turabian StylePetcu, Victor, Ancuța Bărbieru, Mihaela Popa, Cătălin Lazăr, Laurențiu Ciornei, Amalia Gianina Străteanu, and Ioana Claudia Todirică. 2023. "Early Sowing on Some Soybean Genotypes under Organic Farming Conditions" Plants 12, no. 12: 2295. https://doi.org/10.3390/plants12122295
APA StylePetcu, V., Bărbieru, A., Popa, M., Lazăr, C., Ciornei, L., Străteanu, A. G., & Todirică, I. C. (2023). Early Sowing on Some Soybean Genotypes under Organic Farming Conditions. Plants, 12(12), 2295. https://doi.org/10.3390/plants12122295