The Impact of Growth Years on the Medicinal Material Characteristics and Metabolites of Stellaria dichotoma L. var. lanceolata Bge. Reveals the Optimal Harvest Age
Abstract
:1. Introduction
2. Results
2.1. Effect of Growth Years on Medicinal Materials Characteristics of SDL
2.2. Effect of Growth Years on Drying Rate and Methanol Extract, and Total Sterols and Total Flavonoids Contents of SDL
2.3. SDL Metabolites’ Testing Quality Control and Composition Identification
2.4. Analysis of SDL Co-Expression Metabolites in Different Growth Years
2.5. Analysis of SDM for SDL of Different Growth Years
2.6. KEGG Pathway Enrichment Analysis of Different Metabolite Clusters
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Determination of the Characteristics, Methanol Extract, and Total Flavonoids and Total Sterols Contents
4.3. Metabolomics Analysis
4.4. Data Statistics and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Song, L.; Lei, Y.; Liang, W.; Wang, H.; Peng, L. Advances in Biology, Chemical Constituents and Pharmacological Activities of Stellaria Dichotoma var. Lanceolata. J. Nanjing Univ. Chin. Med. 2020, 36, 136–140. [Google Scholar] [CrossRef]
- National Pharmacopoeia Committee. Chinese Pharmacopoeia (2020 Edition); China Pharmaceutical Science and Technology Press: Beijing, China, 2020; p. 317. [Google Scholar]
- Chu, S.; Tan, L.; Liu, C.; Peng, H.; Duan, H.; Huang, L. Growth rings in roots of medicinal perennial dicotyledonous herbs from temperate and subtropical zones in China. Microsc. Res. Tech. 2018, 81, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xin, B.; Tong, K.; Tian, M. Medicinal Material Quality Analysis and Evaluation of Paris Plant. Adv. Mater. Res. 2014, 926, 1152–1158. [Google Scholar] [CrossRef]
- Cheng, C.; Yuan, Q.; Zhou, H.; Huang, L. Nondestructive estimation of growth year in ginseng cultivars using the means of mathematical modeling on the basis of allometry. Microsc. Res. Tech. 2016, 79, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Hua, G.; Hao, Q.; Ge, X.; He, Y.; Kang, L.; Guo, L. Review the Factors Affecting Quality of Chinese Herbal Medicine. Mod. Chin. Med. 2014, 16, 510–515. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.Z.; Yang, M.Q.; Yang, W.Z.; Yang, S.B.; Zhang, J.Y. Identification and evaluation of Polygonatum kingianum with different growth ages based on data fusion strategy. Microchem. J. 2021, 160, 105662. [Google Scholar] [CrossRef]
- Yip, K.M.; Xu, J.; Zhou, S.S.; Lau, Y.M.; Chen, Q.L.; Tang, Y.C.; Yang, Z.J.; Yao, Z.P.; Ding, P.; Zhao, Z.Z.; et al. Characterization of Chemical Component Variations in Different Growth Years and Tissues of Morindae Officinalis Radix by Integrating Metabolomics and Glycomics. J. Agric. Food Chem. 2019, 67, 7304–7314. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q.; Yang, R.; Shang, X.P.; Wang, J.Y.; Du, J.; Wei, F.; Ma, S. Determination and multivariate statistical analysis of chemical components in Glycyrrhizae Radix et Rhizoma with different growth years. Chin. J. Pharm. Anal. 2020, 40, 1185–1196. [Google Scholar] [CrossRef]
- Mudge, E.; Applequist, W.L.; Finley, J.; Lister, P.; Townesmith, A.K.; Walker, K.M.; Brown, P.N. Variation of Select Flavonols and Chlorogenic Acid Content of Elderberry Collected Throughout the Eastern United States. J. Food Compos. Anal. 2016, 47, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Cui, Y.; Qin, X. Challenge of quality evaluation of traditional Chinese medicinal materials and application progress on metabolomic approach in its quality valuation. Chin. Herb. Med. 2018, 49, 2221–2229. [Google Scholar]
- Tan, L.L.; Cai, X.; Hu, Z.H.; Ni, X.L. Localization and dynamic change of saikosaponin in root of Bupleurum chinense. J. Integr. Plant Biol. 2008, 50, 951–957. [Google Scholar] [CrossRef]
- Li, J.; Hu, Z. Accumulation and dynamic trends of triterpenoid saponin in vegetative organs of Achyranthus bidentata. J. Integr. Plant Biol. 2009, 51, 122–129. [Google Scholar] [CrossRef]
- Zhou, L.; Yi, W.; Qi, J.; Sun, P.; Li, X. Effect of varieties and growth years on root yield and bioactive components accumulation dynamics of Salvia miltiorrhizae. Chin. Wild Plant Resour. 2012, 31, 8–11+17. [Google Scholar]
- Wang, Z.; Zheng, Q.; Xiao, C.; Li, K.; Liu, Y. Study on standard of Callicarpa kwangtungensis. J. South-Cent. Minzu Univ. 2019, 38, 562–565. [Google Scholar]
- Lin, Y.K.; Zhu, Y.Q.; Si, J.P.; Qin, L.; Zhu, Y.; Wu, L.S.; Liu, J.J. Effects of cultivation environments on Dendrobium catenatum. China J. Chin. Mater. Med. 2017, 42, 3084–3089. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Fang, X.; Wu, J. Study on the correlation between the growth years and the quality of Stellaria Dichotoma var. Lanceolata. in Ningxia. Lishizhen Med. Mater. Med. Res. 2021, 32, 1992–1995. [Google Scholar]
- Zhang, X.; Zhao, D.; Zhang, W.; Wang, Y. Methodology study on qualification of total sterol in Stellaria dichotoma L. var. lanceolata Bge by ultraviolet spectrophotometry. Ningxia Med. J. 2012, 34, 126–127. [Google Scholar]
- Katam, R.; Lin, C.; Grant, K.; Katam, C.S.; Chen, S. Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. Int. J. Mol. Sci. 2022, 23, 6985. [Google Scholar] [CrossRef]
- Yang, Z.R.; Mao, X.; Li, R.Z. Research progress in genetic engineering of plant secondary metabolism. Physiol. Mol. Biol. Plants 2005, 31, 11–18. [Google Scholar]
- Cun, Z.; Zhang, L.; Zhang, J.; Wu, H.; Shuang, S.; Chen, J. Effects of the harvest month and year on the agronomic traits and saponins of Panax notoginseng (Burk.) F. H.Chen. Chin. J. Appl. Environ. Biol. 2022, 28, 645–654. [Google Scholar] [CrossRef]
- Yuan, Y.; Yu, M.; Zhang, B.; Liu, X.; Zhang, J. Comparative nutritional characteristics of the three major Chinese Dendrobium species with different growth years. PLoS ONE 2019, 14, e0222666. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Li, X.; Li, Z.; Zeng, Z.; Zhang, F.; Li, A.; Qin, X.; Peng, B. UPLC/Q-TOF MS and NMR plant metabolomics approach in studying the effect of growth year on the quality of Polygala tenuifolia. Acta Pharm. Sin. 2015, 50, 340–347. [Google Scholar] [CrossRef]
- Shi, W.; Wang, Y.T.; Quan, X.J.; Bai, L.F.; Zhang, H.R.; Chen, X.D.; Ding, L.; Zhang, H.Q. Determination of Ginsenosides in the Root of Radix Ginseng by High Performance Liquid Chromatography/Evaporative Light Scattering Detection. Chin. J. Anal. Chem. 2006, 34, 243–246. [Google Scholar]
- Bai, X.; Zhao, Y.; Liu, H.; Zhu, L.; Sun, M. A Comparative Study on Sugar Content in Different Varieties of Ginseng Grown for Different Years. J. Anhui Agric. Sci. 2012, 40, 152–153. [Google Scholar] [CrossRef]
- Chen, L.; Qu, D.; Hua, M.; Gao, K.; Sun, Y. A Comparative Study of Effective Components in Ginseng Samples from Different Parts and Ages. Food Sci. 2019, 40, 124–129. [Google Scholar]
- Schmidt, F.; De Bona, F.D.; Monteiro, F.A. Sulfur limitation increases nitrate and amino acid pools in tropical forages. Crop Pasture Sci. 2013, 64, 51–60. [Google Scholar] [CrossRef]
- Peng, Z.; Guo, X.; Xu, Y.; Liu, D.; Wang, H.; Guo, L.; Zhang, Y. Advances in interaction between medicinal plants and rhizosphere microorganisms. China J. Chin. Mater. Med. 2020, 45, 2023–2030. [Google Scholar] [CrossRef]
- Kopriva, S.; Mugford, S.G.; Matthewman, C.; Koprivova, A. Plant sulfate assimilation genes: Redundancy versus specialization. Plant Cell Rep. 2009, 28, 1769–1780. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X. Research progress on mechanism of nitrogen metabolism involved in plant stress resistance. Guihaia 2020, 40, 583–591. [Google Scholar] [CrossRef]
- Hildebrandt, T.M.; Nunes Nesi, A.; Araújo, W.L.; Braun, H.P. Amino Acid Catabolism in Plants. Mol. Plant 2015, 8, 1563–1579. [Google Scholar] [CrossRef] [Green Version]
- Omena-Garcia, R.P.; Araújo, W.L.; Gibon, Y.; Fernie, A.R.; Nunes-Nesi, A. Measurement of Tricarboxylic Acid Cycle Enzyme Activities in Plants. Methods Mol. Biol. 2017, 1670, 167–182. [Google Scholar]
- Wang, D.; Ye, W.; Wang, J.; Song, L.; Fan, W.; Cui, Y. Construction of SSH Library and Its Analyses of Cotton Drought Associated Genes under Drought Stress. Acta Agron. Sin. 2010, 36, 2035–2044. [Google Scholar] [CrossRef]
- Zhang, L.F.; Rui, Q.; Xu, L.L. Degradation of the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase in wheat leaves. J. Integr. Plant Biol. 2005, 47, 60–66. [Google Scholar] [CrossRef]
- Haruna, A.; Yahaya, S.M. Recent advances in the chemistry of bioactive compounds from plants and soil microbes: A review. Chem. Afr. 2021, 4, 231–248. [Google Scholar] [CrossRef]
- Ma, X.; Liu, J.; Chen, X.; Li, W.; Jiang, C.; Wu, M.; Liu, M.; Li, Z. Bacterial diversity and community composition changes in paddy soils that have different parent materials and fertility levels. J. Integr. Agric. 2021, 20, 2797–2806. [Google Scholar] [CrossRef]
- Ju, J.; Fu, X.; Jiao, H.; Meng, Y.; Lu, H.; Wang, X.; Guo, L.; Liu, W. Rhizosphere Exudate-mediated Synergistic Harm of Soil Microorganisms to Medicinal Plants in Continuous Cropping. Chin. J. Exp. Tradit. Med. Formulae 2022, 28, 92–99. [Google Scholar] [CrossRef]
- Mu, M.; Zhang, D.; Zhang, H.; Yang, M.; Guo, D.; Zhou, N. Correlation between rhizospheric microorganisms distribution and alkaloid content of Fritillaria taipaiensis. China J. Chin. Mater. Med. 2019, 44, 2213. [Google Scholar]
- Tang, B.; Dong, Y.; He, M.; Liu, J.; Wu, K.; Guan, H.; Zhao, L.; Yi, F.; Zhang, W.; Gong, M. Effects of different planting years of healthy Panax notoginseng on the rhizosphere microbial community in Wenshan of Yunnan province. Microbiol. China 2020, 47, 2857–2866. [Google Scholar] [CrossRef]
- Chen, L.J.; Wu, X.Q.; Xu, Y.; Wang, B.L.; Liu, S.; Niu, J.F.; Wang, Z.Z. Microbial diversity and community structure changes in the rhizosphere soils of Atractylodes lancea from different planting years. Plant Signal. Behav. 2021, 16, 1854507. [Google Scholar] [CrossRef]
- Merlin, E.; Melato, E.; Lourenço, E.L.B.; Jacomassi, E.; Junior, A.G.; da Cruz, R.M.S.; Otênio, J.K.; da Silva, C.; Alberton, O. Inoculation of arbuscular mycorrhizal fungi and phosphorus addition increase coarse mint (Plectranthus amboinicus Lour.) plant growth and essential oil content. Rhizosphere 2020, 15, 100217. [Google Scholar] [CrossRef]
- Babalola, O.O.; Osir, E.O.; Sanni, A.I.; Odhiambo, G.D.; Bulimo, W.D. Amplification of 1-amino-cyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil. Afr. J. Biotechnol. 2003, 2, 157–160. [Google Scholar] [CrossRef]
- Zhao, Q.; Wu, Y.N.; Fan, Q.; Han, Q.Q.; Paré, P.W.; Xu, R.; Wang, Y.Q.; Wang, S.M.; Zhang, J.L. Improved Growth and Metabolite Accumulation in Codonopsis pilosula (Franch.) Nannf. by Inoculation of Bacillus amyloliquefaciens GB03. J. Agric. Food Chem. 2016, 64, 8103–8108. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Tan, J.; Jie, H.; Zeng, R. Effects of inoculating arbuscular mycorrhizal fungi on Artemisia annua growth and its officinal components. Chin. J. Appl. Ecol. 2011, 22, 1443. [Google Scholar] [CrossRef]
- He, X.; Li, J.; He, C. Effects of AM Fungi on the Chemical Components of Salvia miltiorrhiza Bge. under Different N-applied Levels. Chin. Agric. Sci. Bull. 2009, 25, 182. [Google Scholar]
- Fan, J.; Yang, G.; Mu, L.; Zhou, J. Effect of AMF on the Content of Berberine, Jatrorrhizine and Palmatine of Phellodendron amurense Seedlings. Prot. For. Sci. Technol. 2006, 5, 24–26. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Feng, L.; Song, L.; Lu, Y.; Li, H.; Li, Y.; Tian, G.; Yang, Y.; Peng, L.; et al. Comparative Metabolomics provides novel insights into correlation between dominant habitat factors and constituents of Stellaria Radix (Stellaria dichotoma L. var. lanceolata Bge.). Front. Plant Sci. 2022, 13, 4768. [Google Scholar] [CrossRef]
No. | Class | Sub-Class |
---|---|---|
1 | Lipids and lipid-like molecules (331) | Fatty acyls (112), glycerophospholipids (81), prenol lipids (78), steroids and steroid derivatives (48), sphingolipids (7), glycerolipids (5) |
2 | Organic acids and derivatives (327) | Carboxylic acids and derivatives (282), hydroxy acids and derivatives (15), peptidomimetics (8), keto acids and derivatives (7), organic phosphoric acids and derivatives (5), organic sulfonic acids and derivatives (5), others (5) |
3 | Organoheterocyclic compounds (201) | Indoles and derivatives (43), pyridines and derivatives (19), benzopyrans (15), imidazopyrimidines (14), azoles (13), quinolines and derivatives (12), diazines (11), others (74) |
4 | Phenylpropanoids and polyketides (170) | Flavonoids (86), cinnamic acids and derivatives (24), isoflavonoids (15), coumarins and derivatives (17), diarylheptanoids (8), linear 1,3-diarylpropanoids (7), stilbenes (5), tannins (5), phenylpropanoic acids (3) |
5 | Benzenoids (168) | Benzene and substituted derivatives (108), phenols (44), naphthalenes (9), anthracenes (4), indenes and isoindenes(2), pyrenes (1) |
6 | Nucleosides, nucleotides, and analogues (49) | Purine nucleosides (9), pyrimidine nucleotides (10), purine nucleotides (11), pyrimidine nucleosides (7), others (12) |
7 | Alkaloids and derivatives (31) | Pyrrole alkaloid (13), isoquinoline alkaloid (8), indole alkaloids (2), quaternary ammonium hydroxide (3), ergot alkaloid (2), others (3) |
8 | Lignans, neolignans, and related compounds (11) | Furanoid lignans (6), dibenzylbutane lignans (2), lignan lactones (3) |
9 | Organometallic compounds (2) | Organometalloid compounds (1), organo-post-transition metal compounds (1) |
10 | Organic oxygen compounds (169) | Organic oxygen compounds (169) |
11 | Organic nitrogen compounds (23) | Organic nitrogen compounds (23) |
12 | Hydrocarbon derivatives (1) | Hydrocarbon derivatives (1) |
13 | Unidentified (103) | Unidentified (103) |
14 | Total (1586) | Total (1586) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Feng, L.; Wang, H.; Zhang, L.; Li, H.; Li, Y.; Niu, P.; Tian, G.; Yang, Y.; Mei, X.; et al. The Impact of Growth Years on the Medicinal Material Characteristics and Metabolites of Stellaria dichotoma L. var. lanceolata Bge. Reveals the Optimal Harvest Age. Plants 2023, 12, 2286. https://doi.org/10.3390/plants12122286
Li Z, Feng L, Wang H, Zhang L, Li H, Li Y, Niu P, Tian G, Yang Y, Mei X, et al. The Impact of Growth Years on the Medicinal Material Characteristics and Metabolites of Stellaria dichotoma L. var. lanceolata Bge. Reveals the Optimal Harvest Age. Plants. 2023; 12(12):2286. https://doi.org/10.3390/plants12122286
Chicago/Turabian StyleLi, Zhenkai, Lu Feng, Hong Wang, Lin Zhang, Haishan Li, Yanqing Li, Pilian Niu, Gege Tian, Yan Yang, Xiangui Mei, and et al. 2023. "The Impact of Growth Years on the Medicinal Material Characteristics and Metabolites of Stellaria dichotoma L. var. lanceolata Bge. Reveals the Optimal Harvest Age" Plants 12, no. 12: 2286. https://doi.org/10.3390/plants12122286
APA StyleLi, Z., Feng, L., Wang, H., Zhang, L., Li, H., Li, Y., Niu, P., Tian, G., Yang, Y., Mei, X., & Peng, L. (2023). The Impact of Growth Years on the Medicinal Material Characteristics and Metabolites of Stellaria dichotoma L. var. lanceolata Bge. Reveals the Optimal Harvest Age. Plants, 12(12), 2286. https://doi.org/10.3390/plants12122286