First Approach to the Aroma Characterization of Monovarietal Red Wines Produced from Varieties Better Adapted to Abiotic Stresses
Abstract
:1. Introduction
2. Results and Discussion
2.1. Basic Monovarietal Wines Chemical Composition
2.2. Sensory Profile
2.3. Probable Odor Active Compounds Selection and Quantification
Quantification of the Probable Odor Active Compounds
Id α | Compound | Odor Descriptors (Threshold in mg/L) | Monovarietal Red Wines | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PV | MA | AB | ME | SY | TF | VI | B | PM | TR | |||
Alcohols | ||||||||||||
AL1 | 1-Propanol | Fruity, alcohol, sweet (306) δ | 5.076 | 3.951 | 5.668 | 6.213 | 7.379 | 4.597 | 1.655 | 5.928 | 4.693 | 3.776 |
±0.702 | ±1.023 | ±3.686 | ±2.914 | ±1.120 | ±2.673 | ±0.034 | ±0.966 | ±0.248 | ±0.527 | |||
AL2 | Isobutanol * | Cocoa, coffee, banana, cooked potatoes (40.0) δ | 68.845 b,c | 55.724 b,c | 84.300 a,b | 45.144 b,c | 86.381 a,b | 71.435 b,c | 36.639 c | 125.585 a | 119.982 a | 59.150 b,c |
±3.570 | ±12.921 | ±46.537 | ±1.246 | ±2.669 | ±35.992 | ±0.039 | ±12.644 | ±5.888 | ±13.514 | |||
AL3 | Isoamyl alcohols *** | Cocoa, banana, chocolate, pungent, oily (30) φ | 646.974 c | 560.381 c | 737.609 b,c | 634.252 c | 1179.224 a,b | 798.104 b,c | 456.168 c | 1432.651 a | 1192.340 a,b | 694.749 b,c |
±45.970 | ±106.383 | ±192.191 | ±11.859 | ±120.689 | ±237.967 | ±0.792 | ±47.219 | ±35.060 | ±93.014 | |||
AL4 | 3-Methyl-1-pentanol *** | Cheese, herbaceous, sour (0.5) λ | 0.104 b | 0.085 b | 0.099 b | 0.065 b | 0.219 a | 0.120 b | 0.086 b | 0.117 b | 0.225 a | 0.096 b |
±0.014 | ±0.020 | ±0.026 | ±0.002 | ±0.017 | ±0.036 | ±0.002 | ±0.019 | ±0.001 | ±0.014 | |||
AL5 | 3-Ethoxy-1-propanol | Sweet, tropical fruit (0.1) μ | 0.173 | 0.098 | 0.137 | 0.088 | 0.205 | 0.064 | 0.035 | 0.201 | 0.100 | 0.074 |
±0.012 | ±0.031 | ±0.107 | ±0.001 | ±0.013 | ±0.029 | ±0.001 | ±0.022 | ±0.003 | ±0.020 | |||
AL6 | 2,3-Butanediol ** | Cooked potatoes, soil dust (120) δ | 4.443 a,b | 7.711 a,b | 9.348 a | 5.209 b | 4.733 a | 6.235 a,b | 2.091 b | 2.601 a,b | 6.873 a | 3.935 a,b |
±0.456 | ±1.519 | ±0.542 | ±0.171 | ±1.388 | ±2.157 | ±0.161 | ±1.215 | ±0.506 | ±0.524 | |||
AL7 | 1,2-Propanediol ** | Toast, sweet (80) ρ | 1.746 b,c | 1.629 a,b | 1.902 a | 1.235 a,b,c | 1.156 a,b,c | 1.374 a,b,c | 0.941 c | 1.567 c | 2.719 a,b,c | 0.960 b,c |
±0.214 | ±0.365 | ±0.596 | ±0.025 | ±0.073 | ±0.551 | ±0.002 | ±0.410 | ±0.029 | ±0.141 | |||
AL8 | 1,3-Propanediol ** | Green, oily, peppery (N.A.) | 0.032 a,b | 0.039 a,b | 0.046 a,b | nd | 0.050 b | 0.035 a,b | nd | 0.041 a,b | 0.051 a | 0.042 b |
±0.001 | ±0.009 | ±0.001 | ±0.016 | ±0.002 | ±0.007 | ±0.017 | ±0.017 | |||||
AL9 | 3-Mercaptohexanol ** | Herbaceous, oily, not good (0.00006) ν | 0.013 b | 0.013 b | 0.028 a,b | 0.012 b | 0.050 a | 0.026 a,b | 0.017 b | 0.029 a,b | 0.035 a,b | 0.021 b |
±0.008 | ±0.003 | ±0.004 | ±0.001 | ±0.012 | ±0.001 | ±0.001 | ±0.010 | ±0.001 | ±0.001 | |||
AL10 | Benzyl alcohol *** | Flowery, banana, oily (200) δ | 0.592 b,c | 1.265 b | 0.877 b,c | 0.804 b,c | 2.344 a | 0.758 b,c | 0.388 c | 0.620 b,c | 0.715 | 0.766 b,c |
±0.051 | ±0.219 | ±0.153 | ±0.005 | ±0.306 | ±0.200 | ±0.002 | ±0.061 | ±0.026 | ±0.161 | |||
AL11 | 2-Phenylethanol ** | Floral, tobacco, banana (10) φ | 216.097 a,b,c | 181.421 c | 198.238 b,c | 218.695 a,b,c | 350.514 a | 232.402 a,b,c | 231.457 a,b,c | 341.619 a,b | 325.962 a,b,c | 192.019 c |
±59.496 | ±30.282 | ±9.790 | ±2.800 | ±68.624 | ±35.101 | ±3.090 | ±14.156 | ±0.853 | ±0.308 | |||
AL12 | Glycerol * | Roses, sweet, good (N.A.) | 1.549 c | 1.507 c | 0.690 c | 0.922 c | 2.375 b,c | 0.794 c | 1.197 c | 3.999 a,b | 4.506 a | 0.917 c |
±0.359 | ±0.171 | ±0.288 | ±0.486 | ±0.049 | ±0.683 | ±0.033 | ±1.386 | ±2.405 | ±0.092 | |||
Acids | ||||||||||||
A1 | Acetic acid ** | Vinegar, floral, pungent, herbaceous (200) δ | 9.210 a,b | 8.460 a,b | 8.787 a,b | 5.531 b | 6.438 a,b | 3.734 b | 4.962 b | 4.353 b | 12.479 a | 3.342 b |
±1.994 | ±2.156 | ±2.721 | ±0.012 | ±0.201 | ±1.547 | ±0.072 | ±1.206 | ±0.103 | ±1.029 | |||
Acids | ||||||||||||
A2 | Propanoic acid ** | Vinegar, flowery, soap (8.1) η | 0.008 a,b | 0.012 a | 0.010 a | 0.008 a,b | 0.012 a | 0.010 a,b | 0.009 a,b | nd | 0.013 a | 0.006 a,b |
±0.002 | ±0.003 | ±0.001 | ±0.002 | ±0.003 | ±0.005 | ±0.001 | ±0.002 | ±0.001 | ||||
A3 | Isobutyric acid *** | Sweet, fruity, fresh (200) δ | 0.872 b,c | 1.387 a,b | 1.768 a | 1.022 a,b,c | 1.135 a,b,c | 1.098 a,b,c | 0.427 c | 0.485 c | 1.649 a,b | 0.790 b,c |
±0.243 | ±0.166 | ±0.023 | ±0.021 | ±0.309 | ±0.329 | ±0.025 | ±0.237 | ±0.159 | ±0.098 | |||
A4 | Butanoic acid ** | Oily, not good (0.23) η | 0.218 b | 0.301 a,b | 0.490 a,b | 0.275 a,b | 0.601 a | 0.467 a,b | 0.279 a,b | 0.319 a,b | 0.486 a,b | 0.307 a,b |
±0.033 | ±0.077 | ±0.139 | ±0.005 | ±0.044 | ±0.179 | ±0.006 | ±0.006 | ±0.016 | ±0.003 | |||
A5 | Isovaleric acid *** | Toast, pastry, butter, cheese (0.0334) η | 2.861 a,b | 3.312 a | 3.128 a,b | 2.361 a,b,c | 1.037 c | 3.260 a | 3.287 a | 1.592 b,c | 1.969 a,b,c | 1.836 a,b,c |
±0.697 | ±0.717 | ±0.323 | ±0.017 | ±0.238 | ±0.298 | ±0.043 | ±0.007 | ±0.012 | ±0.320 | |||
A6 | Octanoic acid | Toasted bread (0.5) δ | 1.770 | 1.320 | 1.808 | 1.432 | 2.114 | 2.012 | 1.869 | 3.007 | 1.847 | 1.744 |
±0.856 | ±0.217 | ±0.491 | ±0.061 | ±0.667 | ±0.029 | ±0.034 | ±0.237 | ±0.134 | ±0.280 | |||
Aldehydes | ||||||||||||
AD1 | Hexanalβ | Herbaceous, grass (0.0045) ϕ | Nd | nd | nd | 0.008 | 0.018 | 0.024 | 0.009 | 0.028 | 0.047 | 0.022 |
±0.001 | ±0.001 | ±0.011 | ±0.001 | ±0.005 | ±0.009 | ±0.013 | ||||||
AD2 | (Z)-3-Hexenal β ** | Grass, green (0.00025) π | 0.033 a,b | 0.010 a,b | 0.014 a,b | 0.007 a,b | 0.015 a,b | 0.012 a,b | nd | nd | 0.043 a | 0.015 a,b |
±0.011 | ±0.001 | ±0.003 | ±0.001 | ±0.002 | ±0.008 | ±0.021 | ±0.006 | |||||
AD3 | Methional *** | Fruity, sour, boiled vegetables (0.0005) ξ | 0.092 c | 0.134 b,c | 0.195 a,b | 0.126 b,c | 0.217 a | 0.152 a,b,c | 0.137 b,c | 0.187 a,b | 0.137 b,c | 0.095 c |
±0.009 | ±0.031 | ±0.006 | ±0.001 | ±0.032 | ±0.016 | ±0.002 | ±0.014 | ±0.003 | ±0.013 | |||
Dioxanes | ||||||||||||
D1 | 2,5-Dimethyl-1,4-dioxane β ** | Green, grass (2.5) σ | 0.094 a,b,c | 0.027 c | 0.043 c | 0.049 b,c | 0.060 a,b,c | 0.094 a,b,c | 0.046 c | 0.151 a | 0.104 a,b,c | 0.143 a,b |
±0.053 | ±0.002 | ±0.002 | ±0.007 | ±0.006 | ±0.022 | ±0.006 | ±0.012 | ±0.026 | ±0.014 | |||
Esters | ||||||||||||
E1 | Ethyl propanoate * | Fruity, toasted, sweet (0.55) ϕ | 1.398 c,d | 1.317 c,d | 1.469 b,c,d | 1.311 c,d | 1.783 a,b,c | 1.411 b,c,d | 0.998 d | 2.293 a | 2.142 a,b | 1.161 |
±0.268 | ±0.353 | ±0.396 | ±0.044 | ±0.186 | ±0.732 | ±0.098 | ±0.398 | ±0.113 | ±0.024 c,d | |||
E2 | Ethyl isobutyrate | Fruity, strawberry, lactic (0.015) ϕ | 1.438 | 1.289 | 1.275 | 1.118 | 1.123 | 1.054 | 1.034 | 1.423 | 1.634 | 0.874 |
±0.257 | ±0.252 | ±0.225 | ±0.142 | ±0.028 | ±0.434 | ±0.062 | ±0.136 | ±0.012 | ±0.044 | |||
E3 | Isobutyl acetate ** | Alcohol, oily, fruity (1.6) μ | 0.125 b,c | 0.107 c | 0.169 a,b,c | 0.111 b,c | 0.210 a,b,c | 0.366 a | 0.274 a,b,c | 0.311 a,b | 0.270 a,b,c | 0.262 a,b,c |
±0.070 | ±0.030 | ±0.033 | ±0.005 | ±0.025 | ±0.097 | ±0.014 | ±0.034 | ±0.021 | ±0.031 | |||
E4 | Ethyl butyrate *** | Fruity, strawberry, soil (0.02) γ | 0.278 a | 0.039 b,c | 0.042 b,c | 0.082 b,c | 0.151 b | 0.105 b,c | 0.020 c | 0.042 b,c | nd | 0.057 b,c |
±0.061 | ±0.014 | ±0.027 | ±0.035 | ±0.012 | ±0.031 | ±0.009 | ±0.001 | ±0.007 | ||||
E5 | Ethyl 2-methylbutyrate *** | Fruity, strawberry, sweet (0.018) γ | 0.057 b,c | 0.048 b,c | 0.042 c | 0.054 b,c | 0.034 c | 0.040 c | 0.075 a,b | 0.053 b,c | 0.098 a | 0.035 c |
±0.011 | ±0.007 | ±0.004 | ±0.001 | ±0.003 | ±0.005 | ±0.001 | ±0.001 | ±0.007 | ±0.009 | |||
E6 | Ethyl isovalerate ** | Fruity, rubbish, jam (0.003) γ | 0.111 a | 0.073 a,b | 0.094 a,b | 0.088 a,b | 0.036 b | 0.086 a,b | 0.124 a | 0.137 a | 0.129 a | 0.071 a,b |
±0.017 | ±0.012 | ±0.033 | ±0.003 | ±0.004 | ±0.013 | ±0.001 | ±0.014 | ±0.018 | ±0.019 | |||
E7 | Isoamyl acetate *** | Banana, solvent (0.03) γ | 1.542 b,c,d | 1.068 d | 1.731 b,c,d | 1.509 c,d | 2.529 b | 4.768 a | 2.366 b,c | 4.687 a | 2.435 b,c | 4.385 a |
±0.179 | ±0.223 | ±0.018 | ±0.030 | ±0.459 | ±0.393 | ±0.015 | ±0.218 | ±0.020 | ±0.005 | |||
E8 | Ethyl 3-methylpentanoate β | Cooked fruit, apple (0.08) χ | Nd | nd | nd | nd | 0.010 | 0.007 | 0.003 | 0.009 | 0.015 | nd |
±0.002 | ±0.002 | ±0.001 | ±0.003 | ±0.003 | ||||||||
E9 | Ethyl hexanoate ** | Butter, cocoa powder, fruity (0.005) γ | 0.555 a,b,c | 0.455 c | 0.575 a,b,c | 0.526 a,b,c | 0.697 a,b,c | 0.726 a,b | 0.547 a,b,c | 0.758 a | 0.578 a,b,c | 0.496 b,c |
±0.052 | ±0.083 | ±0.003 | ±0.007 | ±0.136 | ±0.034 | ±0.002 | ±0.011 | ±0.010 | ±0.029 | |||
E10 | Ethyl octanoate ** | Floral, sweet, charred wood (0.002) γ | 0.465 a,b | 0.285 b | 0.495 a,b | 0.384 a,b | 0.521 a,b | 0.595 a,b | 0.390 a,b | 0.678 a | 0.425 a,b | 0.429 a,b |
±0.139 | ±0.050 | ±0.052 | ±0.001 | ±0.116 | ±0.040 | ±0.001 | ±0.025 | ±0.001 | ±0.089 | |||
E11 | Ethyl decanoate ** | Floral, sweet, iodine (0.2) γ | 0.032 c | 0.052 b | 0.041 b,c | 0.080 c | 0.052 b,c | 0.042 c | 0.043 c | 0.048 c | 0.163 a | 0.037 c |
±0.002 | ±0.008 | ±0.009 | ±0.003 | ±0.003 | ±0.014 | ±0.001 | ±0.007 | ±0.006 | ±0.005 | |||
E12 | Ethyl 4-hydroxybutanoate *** | Alcohol, fruity (40) Ψ | 3.618 c | 4.163 bc | 7.304 a,b,c | 5.305 b,c | 10.762 a | 7.429 a,b,c | 3.033 c | 5.172 b,c | 8.803 a,b | 5.307 b,c |
±0.978 | ±0.731 | ±0.539 | ±0.224 | ±1.409 | ±2.710 | ±0.008 | ±1.233 | ±0.044 | ±0.676 | |||
E13 | Phenethyl acetate *** | Wood, spiced, floral (0.25) η | 0.238 c | 0.163 c | 0.188 c | 0.202 c | 0.330 b,c | 0.465 b | 0.338 b,c | 0.718 a | 0.326 b,c | 0.506 b |
±0.059 | ±0.029 | ±0.005 | ±0.004 | ±0.064 | ±0.019 | ±0.017 | ±0.008 | ±0.010 | ±0.091 | |||
E14 | Ethyl dodecanoate | Sweet, peppery, foot smell (0.5) ϕ | nd | nd | 0.020 | 0.016 | nd | 0.033 | 0.021 | 0.030 | nd | 0.026 |
±0.002 | ±0.001 | ±0.008 | ±0.001 | ±0.005 | ±0.001 | |||||||
E15 | Ethyl hydrogen succinate ** | Fruity, moss, charred wood (1000) φ | 36.990 a,b | 50.923 a | 42.683 a,b | 31.943 a,b | 19.520 b | 33.334 a,b | 23.676 a,b | 21.518 a,b | 37.467 a,b | 19.986 b |
±11.046 | ±9.238 | ±8.604 | ±0.463 | ±1.726 | ±11.666 | ±0.570 | ±4.323 | ±0.116 | ±3.594 | |||
Furans | ||||||||||||
F1 | Furfural ** | Pastry, toast (14.1) γ | 0.228 a | 0.144 a,b | 0.142 a,b | 0.191 a,b | 0.107 a,b | 0.065 b | 0.082 a,b | 0.106 a,b | 0.227 a | 0.078 a,b |
±0.089 | ±0.010 | ±0.040 | ±0.014 | ±0.023 | ±0.019 | ±0.013 | ±0.019 | ±0.038 | ±0.004 | |||
Ketones | ||||||||||||
K1 | 2,3-Butanedione * | Toffee, caramel, lactic, butter (0.1) η | 0.767 c | 0.528 c | 0.797 b,c | 0.672 c | 1.542 a | 1.781 a | 0.659 c | 1.142 a,b,c | 1.085 a,b,c | 1.489 a,b |
±0.310 | ±0.133 | ±0.031 | ±0.084 | ±0.380 | ±0.777 | ±0.091 | ±0.332 | ±0.150 | ±0.047 | |||
K2 | 2,3-Pentanedione*** | Caramel, sweet, butter, brown sugar (0.03) Ω | 0.089 c,d | 0.040 d | 0.100 c,d | 0.208 b,c | 0.355 b | 0.567 a | 0.189 c,d | 0.220 b,c | 0.174 c,d | 0.344 b |
±0.080 | ±0.016 | ±0.020 | ±0.007 | ±0.105 | ±0.142 | ±0.008 | ±0.045 | ±0.029 | ±0.067 | |||
Phenols | ||||||||||||
Ph1 | Eugenol ** | Clove, spiced, floral (0.006) γ | 0.265 c,d,e | 0.549 a | 0.296 c,d,e | 0.308 b,c,d | 0.158 e | 0.250 d,e | 0.442 a,b | 0.390 b,c | 0.253 c,d,e | 0.282 c,d,e |
±0.120 | ±0.120 | ±0.047 | ±0.014 | ±0.046 | ±0.006 | ±0.008 | ±0.001 | ±0.021 | ±0.066 | |||
Pyrazines | ||||||||||||
Py1 | 2,3-Diethyl-5-methylpyrazine β | Vinegar, meaty, toast (0.018) ω | 0.031 | nd | 0.072 | nd | 0.084 | 0.024 | 0.010 | nd | nd | 0.017 |
±0.003 | ±0.047 | ±0.004 | ±0.001 | ±0.001 | ±0.005 | |||||||
Py2 | 2-Ethyl-3,5-dimethylpyrazine β * | Herbaceous, acetic (0.0075) ω | 0.030 c,d | 0.080 a | 0.064 a,b | 0.029 c,d | nd | 0.029 c,d | 0.012 d | 0.047 a,b,c | 0.030 b,c,d | 0.021 c,d |
±0.004 | ±0.029 | ±0.018 | ±0.002 | ±0.019 | ±0.001 | ±0.029 | ±0.003 | ±0.002 | ||||
Unknown | ||||||||||||
Un1 | Vinegar, grass, oily | 0.010 | nd | nd | 0.037 | 0.060 | 0.031 | 0.025 | 0.081 | 0.089 | 0.048 | |
±0.008 | ±0.001 | ±0.001 | ±0.013 | ±0.003 | ±0.028 | ±0.009 | ±0.001 | |||||
Un2 | Metallic, not good, foot smell | 0.039 | nd | nd | 0.031 | nd | nd | 0.018 | 0.072 | 0.085 | 0.047 | |
±0.032 | ±0.006 | ±0.001 | ±0.022 | ±0.013 | ±0.008 | |||||||
Un3 | ** | Smoke, burning | 0.026 b,c | nd | nd | 0.022 b,c | 0.024 b,c | 0.019 b,c | 0.016 c | 0.042 a | 0.032 a,b | 0.022 b,c |
±0.007 | ±0.002 | ±0.004 | ±0.008 | ±0.002 | ±0.014 | ±0.011 | ±0.002 | |||||
Un4 | * | Floral, herbal, sweet | 0.074 d | 0.117 a,b,c | 0.128 a,b | 0.091 b,c,d | 0.090 c,d | 0.092 b,c,d | 0.098 b,c,d | 0.146 a | 0.150 a | 0.094 b,c,d |
±0.027 | ±0.033 | ±0.007 | ±0.001 | ±0.014 | ±0.022 | ±0.014 | ±0.003 | ±0.006 | ±0.009 | |||
Un5 | Spiced, soap, chocolate | Nd | nd | nd | nd | 0.068 | 0.213 | nd | 0.130 | 0.254 | 0.121 | |
±0.002 | ±0.092 | ±0.006 | ±0.012 | ±0.001 | ||||||||
Un6 | Wet stone, fermenting fruit | Nd | nd | 0.812 | 0.554 | 0.718 | 0.621 | 0.305 | 0.533 | 0.483 | 0.278 | |
±0.416 | ±0.026 | ±0.063 | ±0.265 | ±0.007 | ±0.094 | ±0.002 | ±0.030 |
2.4. Odor Active Compounds
2.5. Aromatic Characterization
3. Materials and Methods
3.1. Vineyard and Wine Production
3.2. Wine General Analysis
3.3. Sensory Analysis
3.4. Volatile Odorous Compounds Analysis
3.4.1. Reagents
3.4.2. Gas Chromatography Olfactometry Analysis
Liquid–Liquid Extraction Procedure
Gas-Chromatography Olfactometry Procedure
3.4.3. Identification of the Probable Odor Active Compounds
3.4.4. Quantification of the Probable Odour Active Compounds
Liquid–Liquid Micro-Extraction Procedure
Gas Chromatography Flame Ionization Detector Procedure
3.4.5. Odor Activity Values
3.4.6. Data and Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antonaros, A. La Grande Storia del Vino: Tra Mito e Realtà, l’Evoluzione della Bevanda Più Antica del Mondo; Edizioni Pendragon: Bologna, Italy, 2006. [Google Scholar]
- Sáenz-Navajas, M.P.; Ballester, J.; Pêcher, C.; Peyron, D.; Valentin, D. Sensory drivers of intrinsic quality of red wines. Effect of culture and level of expertise. Food Res. Int. 2013, 54, 1506–1518. [Google Scholar] [CrossRef]
- Parr, W.V.; Mouret, M.; Blackmore, S.; Pelquest-Hunt, T.; Urdapilleta, I. Representation of complexity in wine: Influence of expertise. Food Qual. Prefer. 2011, 22, 647–660. [Google Scholar] [CrossRef]
- Picard, M.; Tempere, S.; de Revel, G.; Marchand, S. A sensory study of the ageing bouquet of red Bordeaux wines: A three-step approach for exploring a complex olfactory concept. Food Qual. Prefer. 2015, 42, 110–122. [Google Scholar] [CrossRef]
- De-la-Fuente-Blanco, A.; Ferreira, V. Gas chromatography olfactometry (GC-O) for the (semi)quantitative screening of wine aroma. Foods 2020, 9, 1892. [Google Scholar] [CrossRef]
- Arrizabalaga-Arriazu, M.; Gomès, E.; Morales, F.; Irigoyen, J.J.; Pascual, I.; Hilbert, G. Impact of 2100-Projected Air Temperature, Carbon Dioxide, and Water Scarcity on Grape Primary and Secondary Metabolites of Different Vitis vinifera cv. Tempranillo Clones. J. Agric. Food Chem. 2021, 69, 6172–6185. [Google Scholar] [CrossRef] [PubMed]
- Rienth, M.; Vigneron, N.; Walker, R.P.; Castellarin, S.D.; Sweetman, C.; Burbidge, C.A.; Bonghi, C.; Famiani, F.; Darriet, P. Modifications of Grapevine Berry Composition Induced by Main Viral and Fungal Pathogens in a Climate Change Scenario. Front. Plant Sci. 2021, 12, 717223. [Google Scholar] [CrossRef] [PubMed]
- Torres, N.; Yu, R.; Martinez-Luscher, J.; Girardello, R.C.; Kostaki, E.; Oberholster, A.; Kaan Kurtural, S. Shifts in the phenolic composition and aromatic profiles of Cabernet Sauvignon (Vitis vinifera L.) wines are driven by different irrigation amounts in a hot climate. Food Chem. 2022, 371, 131163. [Google Scholar] [CrossRef]
- Li, Y.; Bardají, I. Adapting the wine industry in China to climate change: Challenges and opportunities. OENO One 2017, 51, 71–89. [Google Scholar] [CrossRef]
- Blank, M.; Hofmann, M.; Stoll, M. Seasonal differences in Vitis vinifera L. cv. Pinot noir fruit and wine quality in relation to climate. OENO One 2019, 53, 189–203. [Google Scholar] [CrossRef]
- Martinez de Toda, F. Técnicas Vitícolas Frente al Cambio Climático; Mundi-Prensa: Madrid, Spain, 2019. [Google Scholar]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Viticulture in Portugal: A review of recent trends and climate change projections. OENO One 2017, 51, 61–69. [Google Scholar] [CrossRef]
- Palai, G.; Caruso, G.; Gucci, R.; D’Onofrio, C. Rootstock and irrigation modify berry aroma characteristics in ‘Merlot’ and ‘Sangiovese’ grapevines. In Proceedings of the Acta Horticulturae 1346, XII International Symposium on Integrating Canopy, Rootstock and Environmental Physiology in Orchard Systems, Wenatchee, WA, USA, 26–30 July 2022; pp. 611–618. [Google Scholar]
- Bai, H.; Gambetta, G.A.; Wang, Y.; Kong, J.; Long, Q.; Fan, P.; Duan, W.; Liang, Z.; Dai, Z. Historical long-term cultivar×climate suitability data to inform viticultural adaptation to climate change. Sci. Data 2022, 9, 271. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.; Guindal, A.M.; Tronchoni, J.; Morales, P. Biotechnological approaches to lowering the ethanol yield during wine fermentation. Biomolecules 2021, 11, 1569. [Google Scholar] [CrossRef] [PubMed]
- Romano, P.; Braschi, G.; Siesto, G.; Patrignani, F.; Lanciotti, R. Role of Yeasts on the Sensory Component of Wines. Foods 2022, 11, 1921. [Google Scholar] [CrossRef] [PubMed]
- Origone, A.C.; del Mónaco, S.M.; Ávila, J.R.; González Flores, M.; Rodríguez, M.E.; Lopes, C.A. Tolerance to winemaking stress conditions of Patagonian strains of Saccharomyces eubayanus and Saccharomyces uvarum. J. Appl. Microbiol. 2017, 123, 450–463. [Google Scholar] [CrossRef]
- García-Carpintero, E.G.; Sánchez-Palomo, E.; González-Viñas, M.A. Aroma characterization of red wines from cv. Bobal grape variety grown in La Mancha region. Food Res. Int. 2011, 44, 61–70. [Google Scholar] [CrossRef]
- Gómez Gallego, M.A.; Gómez García-Carpintero, E.; Sánchez-Palomo, E.; González Viñas, M.A.; Hermosín-Gutiérrez, I. Oenological potential, phenolic composition, chromatic characteristics and antioxidant activity of red single-cultivar wines from Castilla-La Mancha. Food Res. Int. 2012, 48, 7–15. [Google Scholar] [CrossRef]
- Del Barrio Galán, R.; Bueno-Herrera, M.; de la Cuesta, P.L.; Pérez-Magariño, S. Volatile composition of Spanish red wines: Effect of origin and aging time. Eur. Food Res. Technol. 2022, 248, 1903–1916. [Google Scholar] [CrossRef]
- Yoncheva, T. Influence of Meteorological conditions on the Quality of grapes and Aroma-Releasing enzyme addition on the chemical composition, aromatic complex and organoleptic profile of red wines. Carpathian J. Food Sci. Technol. 2022, 14, 72–88. [Google Scholar] [CrossRef]
- Botelho, G.; Caldeira, I.; Mendes-Faia, A.; Clímaco, M.C. Evaluation of two quantative gas chromatography-olfactometry methods for clonal red wines differentiation. Flavour Fragr. J. 2007, 22, 414–420. [Google Scholar] [CrossRef]
- Bonada, M.; Jeffery, D.W.; Petrie, P.R.; Moran, M.A.; Sadras, V.O. Impact of elevated temperature and water deficit on the chemical and sensory profiles of Barossa Shiraz grapes and wines. Aust. J. Grape Wine Res. 2015, 21, 240–253. [Google Scholar] [CrossRef]
- Rauhut, D.; Kiene, F. Chapter 19—Aromatic Compounds in Red Varieties. In Red Wine Technology; Morata, A., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 273–282. [Google Scholar]
- Jiang, B.; Xi, Z.; Luo, M.; Zhang, Z. Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Res. Int. 2013, 51, 482–489. [Google Scholar] [CrossRef]
- Gómez-Míguez, M.J.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile components of Zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- Piras, S.; Brazão, J.; Ricardo-Da-Silva, J.M.; Anjos, O.; Caldeira, I. Volatile and sensory characterization of white wines from three minority Portuguese grapevine varieties. Ciênc. Téc. Vitiviníc. 2020, 35, 49–62. [Google Scholar] [CrossRef]
- Ge, Q.; Guo, C.; Zhang, J.; Yan, Y.; Zhao, D.; Li, C.; Sun, X.; Ma, T.; Yue, T.; Yuan, Y. Effects of simultaneous co-fermentation of five indigenous non-saccharomyces strains with S. cerevisiae on vidal icewine aroma quality. Foods 2021, 10, 1452. [Google Scholar] [CrossRef] [PubMed]
- Bellincontro, A.; Matarese, F.; D’Onofrio, C.; Accordini, D.; Tosi, E.; Mencarelli, F. Management of postharvest grape withering to optimise the aroma of the final wine: A case study on Amarone. Food Chem. 2016, 213, 378–387. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, L. Intensity prediction of typical aroma characters of cabernet sauvignon wine in Changli County (China). LWT 2010, 43, 1550–1556. [Google Scholar] [CrossRef]
- Alexander, H.C.; McCarty, W.M.; Bartlett, E.A.; Syverud, A.N. Aqueous odor and taste threshold values of industrial chemicals. J. Am. Water Works Assoc. 1982, 74, 595–599. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R. The actual and potential aroma of winemaking grapes. Biomolecules 2019, 9, 818. [Google Scholar] [CrossRef]
- Rodríguez-Bencomo, J.J.; Schneider, R.; Lepoutre, J.P.; Rigou, P. Improved method to quantitatively determine powerful odorant volatile thiols in wine by headspace solid-phase microextraction after derivatization. J. Chromatogr. A 2009, 1216, 5640–5646. [Google Scholar] [CrossRef]
- López, R.; Ferreira, V.; Hernández, P.; Cacho, J.F. Identification of impact odorants of young red wines made with Merlot, Cabernet Sauvignon and Grenache grape varieties: A comparative study. J. Sci. Food Agric. 1999, 79, 1461–1467. [Google Scholar] [CrossRef]
- Campo, E.; Ferreira, V.; López, R.; Escudero, A.; Cacho, J. Identification of three novel compounds in wine by means of a laboratory-constructed multidimensional gas chromatographic system. J. Chromatogr. A 2006, 1122, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Selli, S.; Canbas, A.; Cabaroglu, T.; Erten, H.; Günata, Z. Aroma components of cv. Muscat of Bornova wines and influence of skin contact treatment. Food Chem. 2006, 94, 319–326. [Google Scholar] [CrossRef]
- Ma, R.; Liu, X.; Tian, H.; Han, B.; Li, Y.; Tang, C.; Zhu, K.; Li, C.; Meng, Y. Odor-active volatile compounds profile of triploid rainbow trout with different marketable sizes. Aquac. Rep. 2020, 17, 100312. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, S.; Nie, Y.; Xu, Y. Quantitative Analysis of Pyrazines and Their Perceptual Interactions in Soy Sauce Aroma Type Baijiu. Foods 2021, 10, 441. [Google Scholar] [CrossRef]
- Escudero, A.; Hernández-Orte, P.; Cacho, J.; Ferreira, V. Clues about the role of methional as character impact odorant of some oxidized wines. J. Agric. Food Chem. 2000, 48, 4268–4272. [Google Scholar] [CrossRef] [PubMed]
- Francis, I.L.; Newton, J.L. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Pavez, C.; González-Muñoz, B.; O’Brien, J.A.; Laurie, V.F.; Osorio, F.; Núñez, E.; Vega, R.E.; Bordeu, E.; Brossard, N. Red wine astringency: Correlations between chemical and sensory features. LWT 2022, 154, 112656. [Google Scholar] [CrossRef]
- Martins, P.; Caldeira, I.; Baoshan, S.; Damásio, M.; Egipto, R.; Silvestre, J. Anthocyanin composition and sensory properties of wines from Portuguese and international varieties cultivated in a hot and dry region of Portugal. In Proceedings of the In Vino Analytica Scientia, Neustadt, Germany, 3–7 July 2022. [Google Scholar]
- Martins, V.; Lopez, R.; Garcia, A.; Teixeira, A.; Gerós, H. Vineyard calcium sprays shift the volatile profile of young red wine produced by induced and spontaneous fermentation. Food Res. Int. 2020, 131, 108983. [Google Scholar] [CrossRef]
- Lyu, J.; Ma, Y.; Xu, Y.; Nie, Y.; Tang, K. Characterization of the key aroma compounds in Marselan wine by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission tests. Molecules 2019, 24, 2978. [Google Scholar] [CrossRef]
- Aith Barbará, J.; Primieri Nicolli, K.; Souza-Silva, É.A.; Camarão Telles Biasoto, A.; Welke, J.E.; Alcaraz Zini, C. Volatile profile and aroma potential of tropical Syrah wines elaborated in different maturation and maceration times using comprehensive two-dimensional gas chromatography and olfactometry. Food Chem. 2020, 308, 125552. [Google Scholar] [CrossRef]
- Botelho, G. Characterisation of the Aroma Components of Clonal Grapes and Wines from Aragonez and Trincadeira Vitis vinifera L. Cultivars. Ph.D. Thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2008. [Google Scholar]
- Cabrita, M.J.; Costa Freitas, A.M.; Laureano, O.; Borsa, D.; Di Stefano, R. Aroma compounds in varietal wines from Alentejo, Portugal. J. Food Compos. Anal. 2007, 20, 375–390. [Google Scholar] [CrossRef]
- Gonçalves, B.; Falco, V.; Moutinho-Pereira, J.; Bacelar, E.; Peixoto, F.; Correia, C. Effects of elevated CO2 on grapevine (Vitis vinifera L.): Volatile composition, phenolic content, and in vitro antioxidant activity of red wine. J. Agric. Food Chem. 2009, 57, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evaporation: Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 56. [Google Scholar]
- OIV. Compendium of International Methods of Wine and Must Analysis; OIV: Paris, France, 2022. [Google Scholar]
- OSRM. Annual Report; Office of Standard Reference Materials, U.S. Department of Commerce: Washington, DC, USA, 1981; p. 78. [Google Scholar]
- Macfie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to balance the Effect of Order of Presentation and First-Order carry-over effects in Hall tests J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Cocito, C.; Gaetano, G.; Delfini, C. Rapid extraction of aroma compounds in must and wine by means of ultrasound. Food Chem. 1995, 52, 311–320. [Google Scholar] [CrossRef]
- Kovats, E. Gas-Chromatographische Charakterisierung Organischer Verbindungen—Teil 1: Retentionsindices Aliphatischer Halogenide, Alkohole, Aldehyde Und Ketone. Helv. Chim. Acta 2004, 41, 1915–1932. [Google Scholar] [CrossRef]
- Botelho, G.; Clímaco, M.C. The human nose as a detector: Importance to wine aroma study. In The Biology of Odors: Sources, Olfaction and Response; Weiss, L.E., Atwood, J.M., Eds.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2011; pp. 97–130. [Google Scholar]
- Gao, P.; Peng, S.; Sam, F.E.; Zhu, Y.; Liang, L.; Li, M.; Wang, J. Indigenous Non-Saccharomyces Yeasts with β-Glucosidase Activity in Sequential Fermentation with Saccharomyces cerevisiae: A Strategy to Improve the Volatile Composition and Sensory Characteristics of Wines. Front. Microbiol. 2022, 13, 845837. [Google Scholar] [CrossRef]
- Botelho, G.; Mendes-Faia, A.; Clímaco, M.C. Differences in odor-active compounds of Trincadeira wines obtained from five different clones. J. Agric. Food Chem. 2008, 56, 7393–7398. [Google Scholar] [CrossRef]
- Gürbüz, O.; Rouseff, J.M.; Rouseff, R.L. Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography-olfactometry and gas chromatography-mass spectrometry. J. Agric. Food Chem. 2006, 54, 3990–3996. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Masa, A.; Oliveira, J.M. Correlation between volatile composition and sensory properties in Spanish Albariño wines. Microchem. J. 2010, 95, 240–246. [Google Scholar] [CrossRef]
Monovarietal Red Wines | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Analytical Determination | PV | MA | AB | ME | SY | TF | VI | B | PM | TR |
Density (ρ20) (g/cm3) *** | 0.9926 b,c,d ±0.0001 | 0.9933 b,c ±0.0013 | 0.9930 b,c,d ±0.0008 | 0.9922 b,c,d ±0.0002 | 0.9911 c,d ±0.0001 | 0.9939 a,b ±0.0001 | 0.9956 a ±0.0001 | 0.9936 a,b ±0.0001 | 0.9927 b,c,d ±0.0001 | 0.9911 d ±0.0001 |
Alcoholic strength (% vol) *** | 14.3 d ±0.1 | 16.1 a,b ±0.6 | 16.9 a ±0.1 | 16.2 a,b ±0.7 | 15.8 a,b,c ±0.1 | 14.7 c,d ±0.1 | 14.8 c,d ±0.1 | 11.6 e ±0.1 | 14.4 d ±0.1 | 15.0 b,c,d ±0.1 |
Total Acidity (g Tartaric acid/L) *** | 6.57 a ±0.02 | 5.68 c ±0.05 | 5.37 d ±0.15 | 5.28 d ±0.01 | 4.93 e ±0.01 | 4.68 e ±0.02 | 6.20 b ±0.11 | 4.83 e ±0.06 | 5.52 c,d ±0.04 | 4.24 f ±0.01 |
Volatile Acidity (g Acetic acid/L) *** | 0.99 a ±0.06 | 0.68 b ±0.01 | 0.70 b ±0.01 | 0.72 b ±0.01 | 0.43 c ±0.01 | 0.69 b ±0.01 | 1.00 a ±0.02 | 0.40 c ±0.01 | 0.90 a ±0.01 | 0.42 c ±0.01 |
Fixed Acidity (g Tartaric acid/L) *** | 5.33 a ±0.06 | 4.84 b ±0.04 | 4.50 c ±0.16 | 4.39 c ±0.01 | 4.40 c ±0.01 | 3.82 d ±0.02 | 4.97 b ±0.09 | 4.33 c ±0.05 | 4.40 c ±0.04 | 3.71 d ±0.01 |
Reducing substances (g/L) *** | 4.61 c,d,e ±0.93 | 10.03 a,b ±1.94 | 9.40 a,b ±1.68 | 8.24 b,c ±0.95 | 3.53 d,e ±0.01 | 3.35 d,e ±0.05 | 12.85 a ±0.07 | 2.22 e ±0.01 | 6.65 b,c,d ±0.08 | 3.75 d,e ±0.11 |
Free sulfur dioxide (mg/L) | 15 ±2 | 14 ±1 | 12 ±1 | 15 ±1 | 20 ±5 | 23 ±6 | 17 ±3 | 19 ±5 | 18 ±1 | 17 ±1 |
pH *** | 3.74 f ±0.04 | 3.65 g ±0.01 | 3.94 b,c ±0.01 | 3.87 c,d ±0.01 | 3.96 b ±0.02 | 4.28 a ±0.03 | 3.74 f ±0.02 | 3.77 e,f ±0.01 | 3.84 d,e ±0.01 | 3.93 b,c ±0.01 |
Sensory Attribute | Monovarietal Red Wines | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
PV | MA | AB | ME | SY | TF | VI | B | PM | TR | |
Limpidity | 8.8 | 8.5 | 9.0 | 8.2 | 9.0 | 9.1 | 8.8 | 9.4 | 9.2 | 9.2 |
Color intensity | 8.9 | 9.4 | 9.2 | 9.2 | 9.2 | 9.0 | 9.4 | 7.9 | 6.8 | 8.1 |
Color quality | 9.1 | 9.2 | 9.4 | 9.0 | 9.3 | 9.2 | 9.4 | 8.3 | 7.0 | 8.8 |
Red fruit/Berries | 4.2 | 5.0 | 4.9 | 5.1 | 3.8 | 4.2 | 4.7 | 3.6 | 3.0 | 3.9 |
Dried fruits | 1.3 | 2.1 | 1.7 | 1.7 | 1.5 | 1.2 | 1.7 | 1.2 | 1.5 | 1.7 |
Cooked fruits/Jam * | 3.5 a,b | 3.4 a,b | 3.5 a,b | 4.0 a | 2.4 b,c | 3.2 a,b,c | 2.9 a,b,c | 2.5 b,c | 2.1 c | 2.1 c |
Vegetal/Herbaceous | 0.7 | 1.0 | 1.0 | 1.0 | 1.4 | 1.8 | 1.6 | 2.1 | 1.9 | 2.2 |
Spiced | 1.4 | 1.8 | 1.2 | 2.2 | 1.6 | 1.1 | 1.5 | 1.3 | 1.7 | 1.3 |
Chocolate | 1.1 | 1.2 | 1.3 | 1.2 | 1.0 | 0.9 | 0.8 | 0.4 | 0.4 | 0.6 |
Smoke/Toasted | 0.3 | 0.5 | 1.2 | 1.2 | 1.0 | 0.7 | 0.5 | 0.6 | 1.3 | 0.9 |
Floral | 0.5 | 1.1 | 1.1 | 0.4 | 0.9 | 0.9 | 1.0 | 1.3 | 1.0 | 1.1 |
Odor Intensity | 6.2 | 6.9 | 6.3 | 7.4 | 5.8 | 6.0 | 7.3 | 5.7 | 5.5 | 5.6 |
Acidity ** | 4.7 a | 2.9 c | 3.7 a,b,c | 3.0 b,c | 4.5 a,b | 3.8 a,b,c | 3.7 a,b,c | 3.8 a,b,c | 3.9 a,b,c | 3.5 a,b,c |
Sweetness ** | 3.2 a,b | 4.4 a | 3.5 a,b | 3.7 a,b | 2.5 a,b | 2.3 b | 3.6 a,b | 2.1 b | 2.2 b | 2.4 a,b |
Bitterness | 3.1 | 2.8 | 3.4 | 2.4 | 3.3 | 3.4 | 2.9 | 3.1 | 3.2 | 3.6 |
Astringency | 5.4 | 4.3 | 5.3 | 3.9 | 4.6 | 5.5 | 5.1 | 4.5 | 4.3 | 4.0 |
Body *** | 5.5 a,b,c | 6.2 a,b | 6.3 a | 6.3 a | 5.8 a,b,c | 6.1 a,b | 6.2 a,b | 5.2 b,c | 4.8 c | 5.5 a,b,c |
Complexity ** | 5.5 c,d | 6.9 a | 6.5 a,b | 6.8 a | 5.7 b,c,d | 6.1 a,b,c | 7.0 a | 5.0 d | 5.2 c,d | 5.5 c,d |
Length/Finish ** | 5.8 c | 7.1 a | 6.8 a,b | 7.1 a | 6.0 b,c | 6.1 b,c | 7.1 a | 5.5 c | 5.6 c | 5.9 b,c |
General Appreciation *** | 13.0 b,c,d | 14.8 a,b,c | 14.5 a,b,c | 15.0 a,b | 12.9 c,d | 13.6 a,b,c,d | 15.2 a | 12.3 d | 12.3 d | 13.2 a,b,c,d |
Chemical Species | Id a | Compound Name | Odor Series | Monovarietal Red Wines | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PV | MA | AB | ME | SY | TF | VI | B | PM | TR | ||||
Acids | |||||||||||||
A4 | Butanoic acid | Fatty | 0.9 | 1.3 | 2.1 | 1.2 | 2.6 | 2.0 | 1.2 | 1.4 | 2.1 | 1.3 | |
A5 | Isovaleric acid | Pastry | 85.7 | 99.2 | 93.7 | 70.7 | 31 | 97.6 | 98.4 | 47.7 | 59 | 55 | |
A6 | Octanoic acid | Roasting | 3.5 | 2.6 | 3.6 | 2.9 | 4.2 | 4.0 | 3.7 | 6.0 | 3.7 | 3.5 | |
Alcohols | |||||||||||||
AL2 | Isobutanol | Roasting | 1.7 | 1.4 | 2.1 | 1.1 | 2.2 | 1.8 | 0.9 | 3.1 | 3.0 | 1.5 | |
AL3 | Isoamyl alcohols | Fruity | 21.6 | 18.7 | 24.6 | 21.1 | 39.3 | 26.6 | 15.2 | 47.8 | 39.7 | 23.2 | |
AL5 | 3-Ethoxy-1-propanol | Sweet | 1.7 | 1.0 | 1.4 | 0.9 | 2.1 | 0.6 | 0.4 | 2.0 | 1.0 | 0.7 | |
AL9 | 3-Mercaptohexanol | Fatty | 216.7 | 216.7 | 466.7 | 200 | 833.3 | 433.3 | 283.3 | 483.3 | 583.3 | 350 | |
AL11 | 2-Phenylethanol | Floral | 21.6 | 18.1 | 19.8 | 21.9 | 35.1 | 23.2 | 23.1 | 34.2 | 32.6 | 19.2 | |
Aldehydes | |||||||||||||
AD1 | Hexanal b | Herbaceous | 0.0 | 0.0 | 0.0 | 1.8 | 4.0 | 5.3 | 2.0 | 6.2 | 10.4 | 4.9 | |
AD2 | (Z)-3-Hexenal b | Herbaceous | 132.0 | 40.0 | 56.0 | 28.0 | 60.0 | 48.0 | 0.0 | 0.0 | 172.0 | 60.0 | |
AD3 | Methional | Pungent | 184.0 | 268.0 | 390.0 | 252.0 | 434.0 | 304.0 | 274.0 | 374.0 | 274.0 | 190.0 | |
Esters | |||||||||||||
E1 | Ethyl propanoate | Sweet | 2.5 | 2.4 | 2.7 | 2.4 | 3.2 | 2.6 | 1.8 | 4.2 | 3.9 | 2.1 | |
E2 | Ethyl isobutyrate | Fruity | 95.9 | 85.9 | 85.0 | 74.5 | 74.9 | 70.3 | 68.9 | 94.9 | 108.9 | 58.3 | |
E4 | Ethyl butyrate | Fruity | 13.9 | 2.0 | 2.1 | 4.1 | 7.6 | 5.3 | 1.0 | 2.1 | 0-0 | 2.9 | |
E5 | Ethyl 2-methylbutyrate | Fruity | 3.2 | 2.7 | 2.3 | 3.0 | 1.9 | 2.2 | 4.2 | 2.9 | 5.4 | 1.9 | |
E6 | Ethyl isovalerate | Sweet | 37.0 | 24.3 | 31.3 | 29.3 | 12.0 | 28.7 | 41.3 | 45.7 | 43.0 | 23.7 | |
E7 | Isoamyl acetate | Chemical | 51.4 | 35.6 | 57.7 | 50.3 | 84.3 | 158.9 | 78.9 | 156.2 | 81.2 | 146.2 | |
E9 | Ethyl hexanoate | Roasting | 111.0 | 91.0 | 115.0 | 105.2 | 139.4 | 145.2 | 109.4 | 151.6 | 115.6 | 99.2 | |
E10 | Ethyl octanoate | Roasting | 232.5 | 142.5 | 247.5 | 192.0 | 260.5 | 297.5 | 195.0 | 339.0 | 212.5 | 214.5 | |
E13 | Phenethyl acetate | Spicy | 1.0 | 0.7 | 0.8 | 0.8 | 1.3 | 1.9 | 1.4 | 2.9 | 1.3 | 2.0 | |
Ketones | |||||||||||||
K1 | 2,3-Butanedione | Sweet | 7.7 | 5.3 | 8.0 | 6.7 | 15.4 | 17.8 | 6.6 | 11.4 | 10.9 | 14.9 | |
K2 | 2,3-Pentanedione | Sweet | 3.0 | 1.3 | 3.3 | 6.9 | 11.8 | 18.9 | 6.3 | 7.3 | 5.8 | 11.5 | |
Phenols | |||||||||||||
Ph1 | Eugenol | Spicy | 44.2 | 91.5 | 49.3 | 51.3 | 26.3 | 41.7 | 73.7 | 65.0 | 42.2 | 47 | |
Pyrazines | |||||||||||||
Py1 | 2,3-Diethyl-5-methylpyrazine b | Pungent | 1.7 | 0.0 | 4.0 | 0.0 | 4.7 | 1.3 | 0.6 | 0.0 | 0.0 | 0.9 | |
Py2 | 2-Ethyl-3,5-dimethylpyrazine b | Herbaceous | 4.0 | 10.7 | 8.5 | 3.9 | 0.0 | 3.9 | 1.6 | 6.3 | 4.0 | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agostinelli, F.; Caldeira, I.; Ricardo-da-Silva, J.M.; Damásio, M.; Egipto, R.; Silvestre, J. First Approach to the Aroma Characterization of Monovarietal Red Wines Produced from Varieties Better Adapted to Abiotic Stresses. Plants 2023, 12, 2063. https://doi.org/10.3390/plants12102063
Agostinelli F, Caldeira I, Ricardo-da-Silva JM, Damásio M, Egipto R, Silvestre J. First Approach to the Aroma Characterization of Monovarietal Red Wines Produced from Varieties Better Adapted to Abiotic Stresses. Plants. 2023; 12(10):2063. https://doi.org/10.3390/plants12102063
Chicago/Turabian StyleAgostinelli, Francesco, Ilda Caldeira, Jorge M. Ricardo-da-Silva, Miguel Damásio, Ricardo Egipto, and José Silvestre. 2023. "First Approach to the Aroma Characterization of Monovarietal Red Wines Produced from Varieties Better Adapted to Abiotic Stresses" Plants 12, no. 10: 2063. https://doi.org/10.3390/plants12102063