Understanding Cannabis sativa L.: Current Status of Propagation, Use, Legalization, and Haploid-Inducer-Mediated Genetic Engineering
Abstract
:1. Introduction
2. Cannabis Taxonomy
2.1. Monotypic and Polytypic Models of Cannabis Classification
- Cannabis sativa subsp. sativa var. sativa (hemp variety with domesticated characteristics);
- Cannabis sativa subsp. sativa var. spontanea (hemp variety with wild characteristics);
- Cannabis sativa subsp. indica var. indica (marijuana variety with domesticated characteristics);
- Cannabis sativa subsp. indica var. kafiristanica (marijuana variety with wild characteristics).
2.2. Identification of Cannabis
3. Origin and Distribution
4. Cannabis Cultivation
4.1. Methods of Cannabis Propagation
4.2. In vitro Cannabis Regeneration
5. Cannabis Use
5.1. A Multipurpose Plant
5.2. Cannabis as Therapeutic Agent
5.3. Side Effects of Cannabis Use
6. Legal Status of Cannabis
6.1. History of Cannabis Prohibition
6.2. Current Legal Status in the World
7. Phytocannabinoids
7.1. Types and Biosynthesis
7.2. Heterologous Biosynthesis of Phytocannabinoids
8. Genetic Engineering
8.1. Genome Modification/Editing Studies in Cannabis
8.2. Doubled Haploid
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McPartland, J.M. Cannabis Systematics at the Levels of Family, Genus, and Species. Cannabis Cannabinoid Res. 2018, 3, 203–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillig, K.W. Genetic evidence for speciation in Cannabis (Cannabaceae). Genet. Resour. Crop Evol. 2005, 52, 161–180. [Google Scholar] [CrossRef]
- McPartland, J.M.; Hegman, W.; Long, T. Cannabis in Asia: Its center of origin and early cultivation, based on a synthesis of subfossil pollen and archaeobotanical studies. Veg. Hist. Archaeobotany 2019, 28, 691–702. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Guo, H.; Trindade, L.M.; Salentijn, E.M.J.; Guo, R.; Guo, M.; Xu, Y.; Yang, M. Latitudinal Adaptation and Genetic Insights Into the Origins of Cannabis sativa L. Front. Plant Sci. 2018, 9, 1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, G.; Zhang, X.; Li, Y.; Ridout, K.; Serrano-Serrano, M.L.; Yang, Y.; Liu, A.; Ravikanth, G.; Nawaz, M.A.; Mumtaz, A.S.; et al. Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Sci. Adv. 2021, 7, eabg2286. [Google Scholar] [CrossRef]
- Deitch, R. Hemp-American History Revisited: The Plant with a Divided History; Algora Publishing: New York, NY, USA, 2003. [Google Scholar]
- Schultes, R.E.; Hofmann, A.; Ratsch, C. Plants of the Gods-Their Sacred, Healing and Hallucinogenic Powers; Healing Arts Press: Rochester, VT, USA, 2001. [Google Scholar]
- Seddon, T.; Floodgate, W. Regulating Cannabis: A Global Review and Future Directions; Palgrave Macmillan: Cham, Switzerland, 2020. [Google Scholar]
- Gülck, T.; Booth, J.K.; Carvalho, A.; Khakimov, B.; Crocoll, C.; Motawia, M.S.; Møller, B.L.; Bohlmann, J.; Gallage, N.J. Synthetic Biology of Cannabinoids and Cannabinoid Glucosides in Nicotiana benthamiana and Saccharomyces cerevisiae. J. Nat. Prod. 2020, 83, 2877–2893. [Google Scholar] [CrossRef]
- Adhikary, D.; Kulkarni, M.; El-Mezawy, A.; Mobini, S.; Elhiti, M.; Gjuric, R.; Ray, A.; Polowick, P.; Slaski, J.J.; Jones, M.P.; et al. Medical Cannabis and Industrial Hemp Tissue Culture: Present Status and Future Potential. Front. Plant Sci. 2021, 12, 627240. [Google Scholar] [CrossRef]
- Galán-Ávila, A.; Gramazio, P.; Ron, M.; Prohens, J.; Herraiz, F.J. A novel and rapid method for Agrobacterium-mediated production of stably transformed Cannabis sativa L. plants. Ind. Crops Prod. 2021, 170, 113691. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, G.; Cheng, C.; Lei, L.; Sun, J.; Xu, Y.; Deng, C.; Dai, Z.; Yang, Z.; Chen, X.; et al. Establishment of an Agrobacterium -mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in Hemp (Cannabis sativa L.). Plant Biotechnol. J. 2021, 19, 1979–1987. [Google Scholar] [CrossRef]
- Small, E.; Cronquist, A. A Practical and Natural Taxonomy for Cannabis. TAXON 1976, 25, 405–435. [Google Scholar] [CrossRef]
- McPartland, J.M.; Guy, G.W. A question of rank: Using DNA barcodes to classify Cannabis sativa and Cannabis indica. In Proceedings of the 24th Annual International Cannabinoid Research Society Symposium on the Cannabinoids, Baveno, Italy, 28 June–3 July 2004. [Google Scholar]
- Kress, W.J.; Erickson, D.L. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. PLoS ONE 2007, 6, e508. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.; Seo, B.; Lee, S.; Ahn, D.-H.; Jo, E.; Park, J.-K.; Min, G.-S. Two complete chloroplast genome sequences of Cannabis sativa varieties. Mitochondrial DNA Part A 2015, 27, 2835–2837. [Google Scholar] [CrossRef]
- Gilmore, S.; Peakall, R.; Robertson, J. Organelle DNA haplotypes reflect crop-use characteristics and geographic origins of Cannabis sativa. Forensic Sci. Int. 2007, 172, 179–190. [Google Scholar] [CrossRef]
- Lawrence, R.G. Pot in Pans: A History of Eating Cannabis; The Rowman & Littlefield Publishing Group: London, UK, 2019. [Google Scholar]
- Hillig, K.W.; Mahlberg, P.G. A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am. J. Bot. 2004, 91, 966–975. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.L. Leaf variation among Cannabis species from a controlled garden. Botanical Museum Leaflets 1980, 28, 61–69. [Google Scholar] [CrossRef]
- Cascini, F.; Farcomeni, A.; Migliorini, D.; Baldassarri, L.; Boschi, I.; Martello, S.; Amaducci, S.; Lucini, L.; Bernardi, J. Highly Predictive Genetic Markers Distinguish Drug-Type from Fiber-Type Cannabis sativa L. Plants 2019, 8, 496. [Google Scholar] [CrossRef] [Green Version]
- Fischedick, J.T.; Hazekamp, A.; Erkelens, T.; Choi, Y.H.; Verpoorte, R. Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry 2010, 71, 2058–2073. [Google Scholar] [CrossRef]
- Watts, S.; McElroy, M.; Migicovsky, Z.; Maassen, H.; van Velzen, R.; Myles, S. Cannabis labelling is associated with genetic variation in terpene synthase genes. Nat. Plants 2021, 7, 1330–1334. [Google Scholar] [CrossRef]
- Grassi, G.; McPartland, J.M. Chemical and morphological phenotypes in breeding of Cannabis sativa L. In Cannabis sativa L. Botany and Biotechnology; Chandra, S., Lata, H., ElSohly, M., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- McPartland, J.M.; Small, E. A classification of endangered high-THC Cannabis (Cannabis sativa subsp. indica) domesticates and their wild relatives. PhytoKeys 2020, 144, 81–112. [Google Scholar] [CrossRef] [Green Version]
- Fournier, G.; Richez-Dumanois, C.; Duvezin, J.; Mathieu, J.-P.; Paris, M. Identification of a New Chemotype in Cannabis sativa: Cannabigerol—Dominant Plants, Biogenetic and Agronomic Prospects. Planta Med. 1987, 53, 277–280. [Google Scholar] [CrossRef]
- De Meijer, E.P.M.; Hammond, K.M.; Sutton, A. The inheritance of chemical phenotype in Cannabis sativa L. (IV): Cannabinoid-free plants. Euphytica 2009, 168, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Pacifico, D.; Miselli, F.; Carboni, A.; Moschella, A.; Mandolino, G. Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica 2008, 160, 231–240. [Google Scholar] [CrossRef]
- Hesami, M.; Pepe, M.; Alizadeh, M.; Rakei, A.; Baiton, A.; Jones, A.M.P. Recent advances in cannabis biotechnology. Ind. Crops Prod. 2020, 158, 113026. [Google Scholar] [CrossRef]
- Faeti, V.; Mandolino, G.; Ranalli, P. Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant Breed. 1996, 115, 367–370. [Google Scholar] [CrossRef]
- Forapani, S.; Carboni, A.; Paoletti, C.; Moliterni, V.M.C.; Ranalli, P.; Mandolino, G. Comparison of Hemp Varieties Using Random Amplified Polymorphic DNA Markers. Crop Sci. 2001, 41, 1682–1689. [Google Scholar] [CrossRef] [Green Version]
- Datwyler, S.L.; Weiblen, G.D. Genetic Variation in Hemp and Marijuana (Cannabis sativa L.) According to Amplified Fragment Length Polymorphisms. J. Forensic Sci. 2006, 51, 371–375. [Google Scholar] [CrossRef]
- Rotherham, D.; Harbison, S.A. Differentiation of drug and non-drug Cannabis using a single nucleotide polymorphism (SNP) assay. Forensic Sci. Int. 2011, 207, 193–197. [Google Scholar] [CrossRef]
- Sawler, J.; Stout, J.M.; Gardner, K.M.; Hudson, D.; Vidmar, J.; Butler, L.; Page, J.E.; Myles, S. The Genetic Structure of Marijuana and Hemp. PLoS ONE 2015, 10, e0133292. [Google Scholar] [CrossRef] [Green Version]
- Doh, E.J.; Lee, G.; Yun, Y.-J.; Kang, L.-W.; Kim, E.S.; Lee, M.Y.; Oh, S.-E. DNA Markers to Discriminate Cannabis sativa L. ‘Cheungsam’ with Low Tetrahydrocannabinol (THC) Content from Other South Korea Cultivars Based on the Nucleotide Sequences of Tetrahydrocannabinolic Acid Synthase and Putative 3-Ketoacyl-CoA Synthase Genes. Evid.-Based Complement. Altern. Med. 2019, 2019, 8121796. [Google Scholar] [CrossRef] [Green Version]
- Fett, M.S.; Mariot, R.F.; Avila, E.; Alho, C.S.; Stefenon, V.M.; Camargo, F.A.D.O. 13-loci STR multiplex system for Brazilian seized samples of marijuana: Individualization and origin differentiation. Int. J. Legal Med. 2019, 133, 373–384. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, J.; Huang, S.; Pan, G.; Chang, L.; Li, J.; Zhang, C.; Tang, H.; Chen, A.; Peng, D.; et al. Genetic Diversity and Population Structure of Cannabis Based on the Genome-Wide Development of Simple Sequence Repeat Markers. Front. Genet. 2020, 11, 958. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B. History of Cannabis and Its Preparations in Saga, Science, and Sobriquet. Chem. Biodivers. 2007, 4, 1614–1648. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, I.; Pellino, M.; Rigault, P.; van Velzen, R.; Ebersbach, J.; Ashnest, J.R.; Mau, M.; Schranz, M.E.; Alcorn, J.; Laprairie, R.B.; et al. The Genomics of Cannabis and Its Close Relatives. Annu. Rev. Plant Biol. 2020, 71, 713–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, M.P.; Clarke, R.C. Physical evidence for the antiquity of Cannabis sativa L. J. Int. Hemp Assoc. 1998, 5, 80–92. [Google Scholar]
- Small, E. Classification of Cannabis sativa L. in relation to Agricultural, Biotechnology and Recreational Utilization. In Cannabis sativa L. Botany and Biotechnology; Chandra, S., Lata, H., ElSohly, M., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Long, T.; Wagner, M.; Demske, D.; Leipe, C.; Tarasov, P.E. Cannabis in Eurasia: Origin of human use and Bronze Age trans-continental connections. Veg. Hist. Archaeobotany 2016, 26, 245–258. [Google Scholar] [CrossRef]
- Duvall, C.S. The African Roots of Marijuana; Duke University Press: Durham, NC, USA, 2019. [Google Scholar]
- Monthony, A.S.; Page, S.R.; Hesami, M.; Jones, A.M.P. The Past, Present and Future of Cannabis sativa Tissue Culture. Plants 2021, 10, 185. [Google Scholar] [CrossRef]
- Vassilevska-Ivanova, R. Biology and ecology of genus Cannabis: Genetic origin and biodiversity. In Vitro production of cannabinoids. Genet. Plant Physiol. 2019, 9, 75–98. [Google Scholar]
- Chandra, S.; Lata, H.; ElSohly, M.A.; Walker, L.A.; Potter, D. Cannabis cultivation: Methodological issues for obtaining medical-grade product. Epilepsy Behav. 2017, 70, 302–312. [Google Scholar] [CrossRef]
- Adams, T.K.; Masondo, N.A.; Malatsi, P.; Makunga, N.P. Cannabis sativa: From Therapeutic Uses to Micropropagation and Beyond. Plants 2021, 10, 2078. [Google Scholar] [CrossRef]
- Hesami, M.; Baiton, A.; Alizadeh, M.; Pepe, M.; Torkamaneh, D.; Jones, A.M.P. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int. J. Mol. Sci. 2021, 22, 5671. [Google Scholar] [CrossRef]
- Slusarkiewicz-Jarzina, A.; Ponitka, A.; Kaczmarek, Z. Influence of cultivar, explant source and plant growth regulator on callus induction and plant regeneration of Cannabis sativa L. Acta Biol. Crac. Ser. Bot. 2005, 47, 145–151. [Google Scholar]
- Wielgus, K.; Luwanska, A.; Lassocinski, W.; Kaczmarek, Z. Estimation of Cannabis sativa L. Tissue Culture Conditions Essential for Callus Induction and Plant Regeneration. J. Nat. Fibers 2008, 5, 199–207. [Google Scholar] [CrossRef]
- Lata, H.; Chandra, S.; Khan, I.A.; ElSohly, M.A. High Frequency Plant Regeneration from Leaf Derived Callus of HighΔ9-Tetrahydrocannabinol Yielding Cannabis sativa L. Planta Med. 2010, 76, 1629–1633. [Google Scholar] [CrossRef]
- Hussain, S.H.F. Cannabinoids production in Cannabis sativa L. An In Vitro Approach. Ph.D. Thesis, Technischen Universitat Dortmund, Dortmund, Germany, 2014. [Google Scholar]
- Movahedi, M.; Ghasemi-Omran, V.; Torabi, S. The effect of different concentrations of TDZ and BA on in vitro regeneration of Iranian cannabis (Cannabis sativa) using cotyledon and epicotyl explants. J. Plant Mol. Breed. 2014, 3, 20–27. [Google Scholar] [CrossRef]
- Hesami, M.; Jones, A.M.P. Modeling and optimizing callus growth and development in Cannabis sativa using random forest and support vector machine in combination with a genetic algorithm. Appl. Microbiol. Biotechnol. 2021, 105, 5201–5212. [Google Scholar] [CrossRef]
- Smýkalová, I.; Vrbová, M.; Cvečková, M.; Plačková, L.; Žukauskaitė, A.; Zatloukal, M.; Hrdlička, J.; Plíhalová, L.; Doležal, K.; Griga, M. The effects of novel synthetic cytokinin derivatives and endogenous cytokinins on the in vitro growth responses of hemp (Cannabis sativa L.) explants. Plant Cell Tissue Organ Cult. 2019, 139, 381–394. [Google Scholar] [CrossRef]
- Pepe, M.; Hesami, M.; Small, F.; Jones, A.M.P. Comparative Analysis of Machine Learning and Evolutionary Optimization Algorithms for Precision Micropropagation of Cannabis sativa: Prediction and Validation of in vitro Shoot Growth and Development Based on the Optimization of Light and Carbohydrate Sources. Front. Plant Sci. 2021, 12, 757869. [Google Scholar] [CrossRef]
- Chaffey, N. Hemp on the move. Trends Plant Sci. 2001, 6, 505. [Google Scholar] [CrossRef]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Shi, G.; Cai, Q. Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol. Adv. 2009, 27, 555–561. [Google Scholar] [CrossRef]
- Ahmad, R.; Tehsin, Z.; Malik, S.T.; Asad, S.A.; Shahzad, M.; Bilal, M.; Shah, M.M.; Khan, S.A. Phytoremediation Potential of Hemp (Cannabis sativa L.): Identification and Characterization of Heavy Metals Responsive Genes. Clean-Soil Air Water 2015, 44, 195–201. [Google Scholar] [CrossRef]
- Husain, R.; Weeden, H.; Bogush, D.; Deguchi, M.; Soliman, M.; Potlakayala, S.; Katam, R.; Goldman, S.; Rudrabhatla, S. Enhanced tolerance of industrial hemp (Cannabis sativa L.) plants on abandoned mine land soil leads to overexpression of cannabinoids. PLoS ONE 2019, 14, e0221570. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.X.; Heidel, M.; Wu, Z.; Yoshimoto, A.; Leong, G.; Pan, D.; Ako, H. Comparative evaluation of industrial hemp varieties: Field experiments and phytoremediation in Hawaii. Ind. Crops Prod. 2021, 170, 113683. [Google Scholar] [CrossRef]
- Montonya, D. Hemp as Fibre and Food? Regulatory Developments and Current Issues; Breafing Paper No 03/2016; Parliamentary Research Service: Sydney, Australia, 2016. [Google Scholar]
- Kamat, J.; Roy, D.N.; Goel, K. Effect of harvesting age on the chemical properties of hemp plants. J. Wood Chem. Technol. 2002, 22, 285–293. [Google Scholar] [CrossRef]
- Robinson, R. The Great Book of Hemp: The Complete Guide to the Environmental, Commercial and Medicinal Uses of the World’s Most Extraordinary Plant; Park Street Press: Rochester, NY, USA, 1995. [Google Scholar]
- Schluttenhofer, C.; Yuan, L. Challenges towards Revitalizing Hemp: A Multifaceted Crop. Trends Plant Sci. 2017, 22, 917–929. [Google Scholar] [CrossRef] [Green Version]
- Leyva, D.R.; McCullough, R.S.; Pierce, G.N. Medicinal Use of Hempseeds (Cannabis sativa L.): Effects on Platelet Aggregation. In Nuts and Seeds in Health and Diseases Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Elsevier: London, UK, 2011. [Google Scholar]
- World’s Top Exports. Cannabis Oils Imports by Country. 2019. Available online: http://www.worldstopexports.com/Cannabis-oils-imports-by-country/ (accessed on 13 February 2021).
- Technavio Report. Legal Cannabis Market by Product and Geography—Forecast and Analysis 2020–2024; Technavio: London, UK, 2020. [Google Scholar]
- Finnan, J.; Styles, D. Hemp: A more sustainable annual energy crop for climate and energy policy. Energy Policy 2013, 58, 152–162. [Google Scholar] [CrossRef]
- Das, L.; Liu, E.; Saeed, A.; Williams, D.W.; Hu, H.; Li, C.; Ray, A.E.; Shi, J. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. Bioresour. Technol. 2017, 244, 641–649. [Google Scholar] [CrossRef]
- Ren, M.; Tang, Z.; Wu, X.; Spengler, R.; Jiang, H.; Yang, Y.; Boivin, N. The origins of cannabis smoking: Chemical residue evidence from the first millennium BCE in the Pamirs. Sci. Adv. 2019, 5, eaaw1391. [Google Scholar] [CrossRef] [Green Version]
- UNODC. World Drug Report. Cannabis and Hallucinogens; UNODC: Vienna, Austria, 2019. [Google Scholar]
- Jang, J.H.; Bae, E.-K.; Choi, Y.-I.; Lee, O.R. Ginseng-derived patatin-related phospholipase PgpPLAIIIβ alters plant growth and lignification of xylem in hybrid poplars. Plant Sci. 2019, 288, 110224. [Google Scholar] [CrossRef]
- Jang, J.H.; Lee, O.R. Patatin-Related Phospholipase AtpPLAIIIα Affects Lignification of Xylem in Arabidopsis and Hybrid Poplars. Plants 2020, 9, 451. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.H.; Lee, O.R. Overexpression of ginseng patatin-related phospholipase pPLAIIIβ alters the polarity of cell growth and decreases lignin content in Arabidopsis. J. Ginseng Res. 2020, 44, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Seo, H.S.; Lee, O.R. Overexpression of pPLAIIIγ in Arabidopsis Reduced Xylem Lignification of Stem by Regulating Peroxidases. Plants 2022, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Bai, Y.; Zhang, J.; Liu, D.; Zhao, X. A comparison of different oxidative pretreatments on polysaccharide hydrolyzability and cell wall structure for interpreting the greatly improved enzymatic digestibility of sugarcane bagasse by delignification. Bioresour. Bioprocess. 2020, 7, 24. [Google Scholar] [CrossRef]
- WHO. Cannabidiol (CBD) Critical Review Report. Expert Committee on Drug Dependence Fortieth Meeting; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- FDA. FDA and Cannabis: Research and Drug Approval Process. 2020. Available online: https://www.fda.gov/news-events/public-health-focus/fda-and-Cannabis-research-and-drugapproval-process (accessed on 16 June 2021).
- NICE. Cannabis-Based Medicinal Products. NICE Guideline. 2019. Available online: https://www.nice.org.uk/guidance/ng144/resources/Cannabisbased-medicinal-products-pdf-66141779817157 (accessed on 10 May 2021).
- Arseneault, L.; Cannon, M.; Poulton, R.; Murray, R.; Caspi, A.; Moffitt, T.E. Cannabis use in adolescence and risk for adult psychosis: Longitudinal prospective study. BMJ 2002, 325, 1212–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andréasson, S.; Allebeck, P.; Engström, A.; Rydberg, U. Cannabis and schizophrenia. A longitudinal study of Swedish conscripts. Lancet 1987, 330, 1483–1486. [Google Scholar] [CrossRef]
- Barkus, E.; Murray, R.M. Substance use in adolescence and psychosis: Clarifying the relationship. Annu. Rev. Clin. Psychol. 2010, 6, 365–389. [Google Scholar] [CrossRef] [PubMed]
- Trezza, V.; Cuomo, V.; Vanderschuren, L.J. Cannabis and the developing brain: Insights from behavior. Eur. J. Pharmacol. 2008, 585, 441–452. [Google Scholar] [CrossRef]
- Gleason, K.A.; Birnbaum, S.G.; Shukla, A.; Ghose, S. Susceptibility of the adolescent brain to cannabinoids: Long-term hippocampal effects and relevance to schizophrenia. Transl. Psychiatry 2012, 2, e199. [Google Scholar] [CrossRef] [Green Version]
- Renard, J.; Rushlow, W.J.; LaViolette, S.R. Effects of Adolescent THC Exposure on the Prefrontal GABAergic System: Implications for Schizophrenia-Related Psychopathology. Front. Psychiatry 2018, 9, 281. [Google Scholar] [CrossRef] [Green Version]
- Lubman, D.I.; Cheetham, A.; Yücel, M. Cannabis and adolescent brain development. Pharmacol. Ther. 2015, 148, 1–16. [Google Scholar] [CrossRef]
- Solowij, N.; Yucel, M.; Lorenzetti, V.; Lubman, D. Does Cannabis cause lasting brain damage? In Marijuana and Madness; Castle, D., Murray, R.M., D’Souza, D.C., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 103–113. [Google Scholar]
- Grant, K.S.; Petroff, R.; Isoherranen, N.; Stella, N.; Burbacher, T.M. Cannabis use during pregnancy: Pharmacokinetics and effects on child development. Pharmacol. Ther. 2018, 182, 133–151. [Google Scholar] [CrossRef]
- D’Souza, D.C.; Perry, E.; MacDougall, L.; Ammerman, Y.; Cooper, T.; Wu, Y.-T.; Braley, G.; Gueorguieva, R.; Krystal, J.H. The Psychotomimetic Effects of Intravenous Delta-9-Tetrahydrocannabinol in Healthy Individuals: Implications for Psychosis. Neuropsychopharmacology 2004, 29, 1558–1572. [Google Scholar] [CrossRef]
- Khiabani, H.Z.; Bramness, J.G.; BjøRneboe, A.; MøRland, J. Relationship Between THC Concentration in Blood and Impairment in Apprehended Drivers. Traffic Inj. Prev. 2006, 7, 111–116. [Google Scholar] [CrossRef]
- Croxford, J.L. Therapeutic Potential of Cannabinoids in CNS Disease. CNS Drugs 2003, 17, 179–202. [Google Scholar] [CrossRef]
- Killestein, J.; Hoogervorst, E.L.J.; Reif, M.; Blauw, B.; Smits, M.; Uirdehaag, B.M.J.; Nagelkerken, L.; Polman, C.H. Immunomodulatory effects of orally administered cannabinoids in multiple sclerosis. J. Neuroimmunol. 2003, 137, 140–143. [Google Scholar] [CrossRef]
- Flach, A.J. Delta-9-tetrahydrocannabinol (THC) in the treatment of end-stage open-angle glaucoma. Trans. Am. Ophthalmol. Soc. 2002, 100, 215–224. [Google Scholar]
- Turna, J.; Patterson, B.; Van Ameringen, M. Is Cannabis treatment for anxiety, mood, and related disorders ready for prime time? Depress. Anxiety 2017, 34, 1006–1017. [Google Scholar] [CrossRef]
- Frankel, J.P.; Hughes, A.; Lees, A.J.; Stern, G.M. Marijuana for parkinsonian tremor. J. Neurol. Neurosurg. Psychiatry 1990, 53, 436. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, M. Cannabinoids: Potential anticancer agents. Nat. Rev. Cancer 2003, 3, 745–755. [Google Scholar] [CrossRef]
- Kalenderoglou, N.; MacPherson, T.; Wright, K.L. Cannabidiol Reduces Leukemic Cell Size—But Is It Important? Front. Pharmacol. 2017, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Hesami, M.; Najafabadi, M.Y.; Adamek, K.; Torkamaneh, D.; Jones, A.M.P. Synergizing Off-Target Predictions for In Silico Insights of CENH3 Knockout in Cannabis through CRISPR/Cas. Molecules 2021, 26, 2053. [Google Scholar] [CrossRef]
- Watt, G.; Karl, T. In vivo Evidence for Therapeutic Properties of Cannabidiol (CBD) for Alzheimer’s Disease. Front. Pharmacol. 2017, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Leweke, F.M.; Piomelli, D.; Pahlisch, F.; Muhl, D.; Gerth, C.W.; Hoyer, C.; Klosterkötter, J.; Hellmich, M.; Koethe, D. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl. Psychiatry 2012, 2, e94. [Google Scholar] [CrossRef] [Green Version]
- Renard, J.; Norris, C.; Rushlow, W.; Laviolette, S.R. Neuronal and molecular effects of Cannabidiol on the mesolimbic dopamine system: Implications for novel schizophrenia treatments. Neurosci. Biobehav. Rev. 2017, 75, 157–165. [Google Scholar] [CrossRef]
- Bewley-Taylor, D.; Blickman, T.; Jelsma, M. The Rise and Decline of Cannabis Prohibition: The History of Cannabis in the UN Drug Control System and Options for Reform; Transnational Institute: Amsterdam, The Netherlands; Global Drug Policy Observatory: Swansea, Wales, 2014. [Google Scholar]
- Bayer, I.; Ghodse, H.; Evolution of International Drug Control, 1945–1995. Bulletin on Narcotics. 1999. Available online: https://www.unodc.org/unodc/en/data-and-analysis/bulletin/bulletin_1999-01-01_1_page003.html (accessed on 16 June 2021).
- Musto, D.F. The Marijuana Tax Act of 1937. Arch. General Psychiatry 1972, 26, 101–108. [Google Scholar] [CrossRef]
- United Nations Commission on Narcotic Drugs. CND Votes on Recommendations for Cannabis and Cannabis-Related Substances. Press Statement—. Vienna. Available online: https://www.unodc.org/res/commissions/CND/Mandate_Functions/scheduling-elearning-tutorial_html/Brochure_on_the_Scheduling_Procedures_under_the_International_Drug_Control_Conventions.pdf (accessed on 11 November 2021).
- ProCon. Legal Recreational Marijuana States and DC. 2021. Available online: https://marijuana.procon.org/legal-recreational-marijuana-states-and-dc/ (accessed on 17 November 2021).
- Eastwood, N.; Fox, E.; Rosmaria, A. A Quiet Revolution: Drug Decriminalization Across the Globe. Release. Drugs, The Law & Human Rights. 2016. Available online: https://www.release.org.uk/sites/default/files/pdf/publications/A%20Quiet%20Revolution%20-%20Decriminalisation%20Across%20the%20Globe.pdf (accessed on 28 July 2021).
- MacKay, R.; Phillips, K. The Legal Regulation of Marijuana in Canada and Selected Countries. Legal and Social Affairs Division, Parliamentary Information and Research Service; 2016-94-E; Library of Parliament: Ottawa, ON, Canada, 2016. [Google Scholar]
- Abuhasira, R.; Shbiro, L.; Landschaft, Y. Medical use of cannabis and cannabinoids containing products—Regulations in Europe and North America. Eur. J. Intern. Med. 2018, 49, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Areesantichai, C.; Perngparn, U.; Pilley, C. Current cannabis-related situation in the Asia-Pacific region. Curr. Opin. Psychiatry 2020, 33, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Schlag, A.K. An Evaluation of Regulatory Regimes of Medical Cannabis: What Lessons Can Be Learned for the UK? Med. Cannabis Cannabinoids 2020, 3, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Tanney, C.A.S.; Backer, R.; Geitmann, A.; Smith, D.L. Cannabis Glandular Trichomes: A Cellular Metabolite Factory. Front. Plant Sci. 2021, 12, 721986. [Google Scholar] [CrossRef] [PubMed]
- Gülck, T.; Møller, B.L. Phytocannabinoids: Origins and Biosynthesis. Trends Plant Sci. 2020, 25, 985–1004. [Google Scholar] [CrossRef]
- Romero, P.; Peris, A.; Vergara, K.; Matus, J.T. Comprehending and improving cannabis specialized metabolism in the systems biology era. Plant Sci. 2020, 298, 110571. [Google Scholar] [CrossRef]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Livingston, S.J.; Quilichini, T.D.; Booth, J.K.; Wong, D.C.J.; Rensing, K.H.; Laflamme-Yonkman, J.; Castellarin, S.D.; Bohlmann, J.; Page, J.E.; Samuels, A.L. Cannabis glandular trichomes alter morphology and metabolite content during flower maturation. Plant J. 2020, 101, 37–56. [Google Scholar] [CrossRef]
- Cascini, F.; Passerotti, S.; Martello, S. A real-time PCR assay for the relative quantification of the tetrahydrocannabinolic acid (THCA) synthase gene in herbal Cannabis samples. Forensic Sci. Int. 2011, 217, 134–138. [Google Scholar] [CrossRef]
- Sirikantaramas, S.; Morimoto, S.; Shoyama, Y.; Ishikawa, Y.; Wada, Y.; Shoyama, Y.; Taura, F. The Gene Controlling Marijuana Psychoactivity: Molecular cloning and heterologous expression of Tetrahydrocannabinolic acid synthase from Cannabis sativa L. J. Biol. Chem. 2004, 279, 39767–39774. [Google Scholar] [CrossRef] [Green Version]
- Taura, F.; Dono, E.; Sirikantaramas, S.; Yoshimura, K.; Shoyama, Y.; Morimoto, S. Production of Δ1-tetrahydrocannabinolic acid by the biosynthetic enzyme secreted from transgenic Pichia pastoris. Biochem. Biophys. Res. Commun. 2007, 361, 675–680. [Google Scholar] [CrossRef]
- Zirpel, B.; Stehle, F.; Kayser, O. Production of Δ9-tetrahydrocannabinolic acid from cannabigerolic acid by whole cells of Pichia (Komagataella) pastoris expressing Δ9-tetrahydrocannabinolic acid synthase from Cannabis sativa L. Biotechnol. Lett. 2015, 37, 1869–1875. [Google Scholar] [CrossRef]
- Zirpel, B.; Degenhardt, F.; Martin, C.; Kayser, O.; Stehle, F. Engineering yeasts as platform organisms for cannabinoid biosynthesis. J. Biotechnol. 2017, 259, 204–212. [Google Scholar] [CrossRef]
- Luo, X.; Reiter, M.A.; D’Espaux, L.; Wong, J.; Denby, C.M.; Lechner, A.; Zhang, Y.; Grzybowski, A.; Harth, S.; Lin, W.; et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 2019, 567, 123–126. [Google Scholar] [CrossRef]
- Sirikantaramas, S.; Taura, F.; Tanaka, Y.; Ishikawa, Y.; Morimoto, S.; Shoyama, Y. Tetrahydrocannabinolic Acid Synthase, the Enzyme Controlling Marijuana Psychoactivity, is Secreted into the Storage Cavity of the Glandular Trichomes. Plant Cell Physiol. 2005, 46, 1578–1582. [Google Scholar] [CrossRef]
- Wilkinson, S.T.; Yarnell, S.; Radhakrishnan, R.; Ball, S.A.; D’Souza, D.C. Marijuana Legalization: Impact on Physicians and Public Health. Annu. Rev. Med. 2016, 67, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Koltai, H.; Namdar, D. Cannabis Phytomolecule ‘Entourage’: From Domestication to Medical Use. Trends Plant Sci. 2020, 25, 976–984. [Google Scholar] [CrossRef]
- Matías-Hernández, L.; Jiang, W.; Yang, K.; Tang, K.; Brodelius, P.E.; Pelaz, S. AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. Plant J. 2017, 90, 520–534. [Google Scholar] [CrossRef] [Green Version]
- Sayre, R.; Soto-Aguilar, M.; Zidenga, T.; Goncalves, E.C. Systems and Methods for Enhancing Trichome Formation and Density in Cannabis. U.S. Patent No. 10,724,048 B2, 28 July 2020. [Google Scholar]
- Parsons, J.L.; Martin, S.L.; James, T.; Golenia, G.; Boudko, E.A.; Hepworth, S.R. Polyploidization for the Genetic Improvement of Cannabis sativa. Front. Plant Sci. 2019, 10, 476. [Google Scholar] [CrossRef]
- Huang, S.; Weigel, D.; Beachy, R.N.; Li, J. A proposed regulatory framework for genome-edited crops. Nat. Genet. 2016, 48, 109–111. [Google Scholar] [CrossRef]
- Feeney, M.; Punja, Z.K. Tissue culture and Agrobacterium-mediated transformation of hemp (Cannabis sativa L.). In Vitro Cell. Dev. Biol. Plant 2003, 39, 578–585. [Google Scholar] [CrossRef]
- Wahby, I.; Caba, J.M.; Ligero, F. Agrobacterium infection of hemp (Cannabis sativa L.): Establishment of hairy root cultures. J. Plant Interact. 2013, 8, 312–320. [Google Scholar] [CrossRef]
- Schachtsiek, J.; Hussain, T.; Azzouhri, K.; Kayser, O.; Stehle, F. Virus-induced gene silencing (VIGS) in Cannabis sativa L. Plant Methods 2019, 15, 157–159. [Google Scholar] [CrossRef]
- Sorokin, A.; Yadav, N.S.; Gaudet, D.; Kovalchuk, I. Transient expression of the β-glucuronidase gene in Cannabis sativa varieties. Plant Signal. Behav. 2020, 15, 1780037. [Google Scholar] [CrossRef]
- Deguchi, M.; Bogush, D.; Weeden, H.; Spuhler, Z.; Potlakayala, S.; Kondo, T.; Zhang, Z.J.; Rudrabhatla, S. Establishment and optimization of a hemp (Cannabis sativa L.) agroinfiltration system for gene expression and silencing studies. Sci. Rep. 2020, 10, 3504. [Google Scholar] [CrossRef] [Green Version]
- Beard, K.M.; Boling, A.W.H.; Bargmann, B.O.R. Protoplast isolation, transient transformation, and flow-cytometric analysis of reporter-gene activation in Cannabis sativa L. Ind. Crops Prod. 2021, 164, 113360. [Google Scholar] [CrossRef]
- Ahmed, S.; Gao, X.; Jahan, M.A.; Adams, M.; Wu, N.; Kovinich, N. Nanoparticle-based genetic transformation of Cannabis sativa. J. Biotechnol. 2021, 326, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Prigge, V.; Xu, X.; Li, L.; Babu, R.; Chen, S.; Atlin, G.N.; Melchinger, A.E. New Insights into the Genetics of in Vivo Induction of Maternal Haploids, the Backbone of Doubled Haploid Technology in Maize. Genetics 2012, 190, 781–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilles, L.M.; Martinant, J.-P.; Rogowsky, P.; Widiez, T. Haploid induction in plants. Curr. Biol. 2017, 27, R1095–R1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacquier, N.M.A.; Gilles, L.M.; Pyott, D.E.; Martinant, J.-P.; Rogowsky, P.M.; Widiez, T. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat. Plants 2020, 6, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Galán-Ávila, A.; García-Fortea, E.; Prohens, J.; Herraiz, F.J. Microgametophyte Development in Cannabis sativa L. and First Androgenesis Induction Through Microspore Embryogenesis. Front. Plant Sci. 2021, 12, 669424. [Google Scholar] [CrossRef]
- Kelliher, T.; Starr, D.; Richbourg, L.; Chintamanani, S.; Delzer, B.; Nuccio, M.L.; Green, J.; Chen, Z.; McCuiston, J.; Wang, W.; et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 2017, 542, 105–109. [Google Scholar] [CrossRef]
- Ravi, M.; Chan, S.W.L. Haploid plants produced by centromere-mediated genome elimination. Nature 2010, 464, 615–618. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, C.; Qi, X.; Jiao, Y.; Wang, D.; Wang, Y.; Liu, Z.; Chen, C.; Chen, B.; Tian, X.; et al. Mutation of ZmDMP enhances haploid induction in maize. Nat. Plants 2019, 5, 575–580. [Google Scholar] [CrossRef]
- Kermicle, J.L. Androgenesis Conditioned by a Mutation in Maize. Science 1969, 166, 1422–1424. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Meng, D.; Zhong, Y.; Chen, C.; Dong, X.; Xu, X.; Chen, B.; Li, W.; Li, L.; et al. A 4-bp Insertion at ZmPLA1 Encoding a Putative Phospholipase A Generates Haploid Induction in Maize. Mol. Plant 2017, 10, 520–522. [Google Scholar] [CrossRef] [Green Version]
- Kelliher, T.; Starr, D.; Su, X.; Tang, G.; Chen, Z.; Carter, J.; Wittich, P.E.; Dong, S.; Green, J.; Burch, E.; et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 2019, 37, 287–292. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, L.; Zhao, B.; Zhao, Y.; Xie, Y.; Zheng, Z.; Li, Y.; Sun, J.; Wang, H. Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. Mol. Plant 2019, 12, 597–602. [Google Scholar] [CrossRef] [Green Version]
Health Conditions Caused by THC Use | References |
Psychosis | [82,83,84] |
Memory impairment | [85,86] |
Anxiety | [87,88] |
Schizophrenia | [82,85,86,87,88,89] |
Lack of attention | [88] |
Interference with prenatal brain development | [85,88,90] |
Impairment to psychomotor performance | [91,92] |
Health Conditions Treated by THC | References |
Pain | [93] |
Multiple sclerosis | [94] |
Glaucoma | [95] |
Nausea | [81,93] |
Loss of appetite for cancer and AIDS patients | [93] |
Depression | [96] |
Parkinson disease | [97] |
Spasticity | [81] |
Cancer | [98,99] |
Tourette’s syndrome | [100] |
Health Conditions Treated by CBD | References |
Alzheimer’s disease | [101] |
Pain | [93] |
Multiple sclerosis | [94] |
Depression | [96] |
Schizophrenia | [102,103] |
Cancer | [98,99] |
Epilepsy | [79] |
Heterologous System Used | Enzyme Used | Precursor Molecules Supplied to System | Cannabinoids /Intermediate Compound Produced | References |
---|---|---|---|---|
Tobacco roots | THCAS | CBGA | THCA | [120] |
Pichia pastoris | THCAS | CBGA | THCA | [121] |
Pichia pastoris | THCAS | CBGA | THCA | [122] |
Escherichia coli | THCAS | CBGA | None | [122] |
Saccharomyces cerevisiae | Prenyltransferase (NphB) and THCAS | Olivetolic Acid and GPP | CBGA | [123] |
Pichia pastoris | Prenyltransferase (NphB) and THCAS | Olivetolic Acid and GPP | THCA | [123] |
Saccharomyces cerevisiae | Enzymes involved in biosynthesis of GPP, OA and phytocannabinoids | Galactose | THCA, CBDA, THCVA, CBDVA | [124] |
Saccharomyces cerevisiae | Aromatic prenyltransferase (CsaPT4) | Glucose or glucose+hexanoic acid or glucose+OA | Olivetolic acid, CBGA | [9] |
Tobacco leaves | Aromatic prenyltransferase (CsaPT4) | AAE1, OLS and OAC | OA glucoside | [9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simiyu, D.C.; Jang, J.H.; Lee, O.R. Understanding Cannabis sativa L.: Current Status of Propagation, Use, Legalization, and Haploid-Inducer-Mediated Genetic Engineering. Plants 2022, 11, 1236. https://doi.org/10.3390/plants11091236
Simiyu DC, Jang JH, Lee OR. Understanding Cannabis sativa L.: Current Status of Propagation, Use, Legalization, and Haploid-Inducer-Mediated Genetic Engineering. Plants. 2022; 11(9):1236. https://doi.org/10.3390/plants11091236
Chicago/Turabian StyleSimiyu, David Charles, Jin Hoon Jang, and Ok Ran Lee. 2022. "Understanding Cannabis sativa L.: Current Status of Propagation, Use, Legalization, and Haploid-Inducer-Mediated Genetic Engineering" Plants 11, no. 9: 1236. https://doi.org/10.3390/plants11091236