Sustainable Intensification of a Rice–Maize System through Conservation Agriculture to Enhance System Productivity in Southern India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Treatments and Crop Management
2.3. Rice and Maize Grain Yields and Weed Population
2.4. Sustainable Yield Index
2.5. Economics
2.6. Water Productivity
2.7. Carbon Fractions in Soil
2.8. Statistical Analysis
3. Results
3.1. Rice, Maize, System Productivity, and Economics
3.1.1. Rice Grain Yield
3.1.2. Maize Grain Yield
3.1.3. Rice–Maize System Productivity
3.1.4. Economics of the Rice–Maize System
3.2. Sustainable Yield Index of Rice, Maize and Rice–Maize System
3.3. Weed Population, Rice and Maize Water Productivity
3.4. Soil Carbon Content
4. Discussion
4.1. System Productivity, Sustainability, and Profitability
4.2. Carbon Content of Soil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loskutov, I.G. Advances in Cereal Crops Breeding. Plants 2021, 10, 1705. [Google Scholar] [CrossRef] [PubMed]
- Fischer, R.; Santiveri, F.; Vidal, I. Crop rotation, tillage and crop residue management for wheat and maize in the sub-humid tropical highlands: II. Maize and system performance. Field Crops Res. 2002, 79, 123–137. [Google Scholar] [CrossRef]
- Jat, M.L.; Gathaha, M.K.; Sahrawat, Y.S.; Tetawal, J.P.; Gupta, R. Double no-till and permanent raised beds in maize-wheat rotation of north western Indo-Gangetic plains of India: Effects on crop yields, water productivity, profitability and soil physical properties. Field Crops Res. 2013, 149, 291–299. [Google Scholar] [CrossRef]
- Bandumula, N. Rice Production in Asia: Key to Global Food Security. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1323–1328. [Google Scholar] [CrossRef]
- Nirmala, B.; Tuti, M.D.; Kumar, R.M.; Waris, A.; Muthuraman, P.; Parmar, B.; Singh, T.V. Integrated assessment of system of rice intensification vs. conventional method of transplanting for economic benefit, energy efficiency and lower global warming potential in India. Agroecol. Sustain. Food Syst. 2021, 45, 745–766. [Google Scholar] [CrossRef]
- Shankar, T.; Malik, G.; Banerjee, M.; Dutta, S.; Maitra, S.; Praharaj, S.; Sairam, M.; Kumar, D.; Dessoky, E.; Hassan, M.; et al. Productivity and Nutrient Balance of an Intensive Rice–Rice Cropping System Are Influenced by Different Nutrient Management in the Red and Lateritic Belt of West Bengal, India. Plants 2021, 10, 1622. [Google Scholar] [CrossRef]
- Pathak, H.; Nayak, A.K.; Jena, M.; Singh, O.N.; Samal, P.; Sharma, S.G. Rice Research for Enhancing Productivity, Profitability and Climate Resilience; ICAR-National Rice Research Institute: Cuttack, India, 2018; p. 542. [Google Scholar]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of Conservation Agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- Ladha, J.K.; Kumar, V.; Alam, M.M.; Sharma, S.; Gathala, M.K.; Chandna, P.; Saharawat, Y.S.; Balasubramanian, V. Integrating crop and resource management technologies for enhanced productivity, profitability and sustainability of the rice-wheat system in South Asia. In Integrated Crop and Resource Management in the Rice-Wheat System of South Asia; Ladha, J.K., Ed.; IRRI: Los Baños, Philippines, 2009; pp. 69–108. [Google Scholar]
- Das, T.; Bhattacharyya, R.; Sharma, A.; Das, S.; Saad, A.; Pathak, H. Impacts of conservation agriculture on total soil organic carbon retention potential under an irrigated agro-ecosystem of the western Indo-Gangetic Plains. Eur. J. Agron. 2013, 51, 34–42. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Das, T.K.; Pramanik, P.; Ganeshan, V.; Saad, A.A.; Sharma, A.R. Impacts of conservation agriculture on soil aggregation and aggregate-associated N under an irrigated agroecosystem of the Indo-Gangetic Plains. Nutr. Cycl. Agroecosyst. 2013, 96, 185–202. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Das, T.; Sudhishri, S.; Dudwal, B.; Sharma, A.; Bhatia, A.; Singh, G. Conservation agriculture effects on soil organic carbon accumulation and crop productivity under a rice–wheat cropping system in the western Indo-Gangetic Plains. Eur. J. Agron. 2015, 70, 11–21. [Google Scholar] [CrossRef]
- Tuti, M.D.; Nirmala, B.; Mahender, K.R.; Sreedevi, B.; Bandeppa, S.S. Sustainable Intensification of Conservation Agriculture Practices in Rice-Maize System to Enhance System Productivity in Southern India; Annual Report IC-AR-Indian; Institute of Rice Research: Rajendranagar, India, 2020; pp. 41–42. [Google Scholar]
- Ondrasek, G.; Begić, H.B.; Zovko, M.; Filipović, L.; Meriño-Gergichevich, C.; Savić, R.; Rengel, Z. Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Sci. Total Environ. 2019, 658, 1559–1573. [Google Scholar] [CrossRef] [PubMed]
- Weil, R.R.; Islam, K.R.; Stine, M.A.; Gruver, J.B.; Samson-Liebig, S.E. Estimating active carbon for soil quality assess-ment: A simplified method for laboratory and field use. Am. J. Alter. Agric. 2003, 18, 3–17. [Google Scholar]
- Gal, A.; Vyn, T.J.; Micheli, E.; Kladivko, E.J.; McFee, W.W. Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing over estimated with tilled-zone sampling depths. Soil Tillage Res. 2007, 96, 42–51. [Google Scholar] [CrossRef]
- Peterson, G.; Halvorson, A.; Havlin, J.; Jones, O.; Lyon, D.; Tanaka, D. Reduced tillage and increasing cropping intensity in the Great Plains conserves soil C. Soil Tillage Res. 1998, 47, 207–218. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rengel, Z.; Petosic, D.; Filipovic, V. Land and Water Management Strategies for the Improvement of Crop Production. Emerg. Technol. Manag. Crop Stress Toler. 2014, 2, 291–313. [Google Scholar] [CrossRef]
- Jat, R.K.; Singh, R.G.; Kumar, M.; Jat, M.L.; Parihar, C.M.; Bijarniya, D.; Sutaliya, J.M.; Jat, M.K.; Parihar, M.D.; Kakraliya, S.K.; et al. Ten years of conservation agriculture in a rice–maize rotation of Eastern Gangetic Plains of India: Yield trends, water productivity and economic profitability. Field Crops Res. 2019, 232, 1–10. [Google Scholar] [CrossRef]
- GOI 2020-21. Directorate of Economics and Statistics, Department of Agriculture, Cooperation and Farmers Welfare. Ministry of Agriculture and Farmers Welfare, Government of India (GOI). 2022. Available online: https://eands.dacnet.nic.in/PDF/English%20MSP%202021.pdf (accessed on 2 February 2022).
- Vittal, K.P.R.; Maruthi Sankar, G.R.; Singh, H.P.; Samra, J.S. Sustainability of Practices of Dryland Agriculture: Methodology and Assessment; All India Coordinated Research Project for Dryland Agriculture; Central Research Institute for Dryland Agriculture, Indian Council of Agricultural Research: Hyderabad, India, 2002; p. 100. [Google Scholar]
- Das, T.K.; Das, D.K. Using chemical seed dormancy breakers with herbicides for weed management in soya bean and wheat. Weed Res. 2018, 58, 188–199. [Google Scholar] [CrossRef]
- Michael, A.M. Irrigation: Theory and Practice; Vikas Publishing House Pvt. Ltd.: Noida, India, 2008; pp. 455–516. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water—FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1998; p. 174. [Google Scholar]
- Bhushan, L.; Ladha, J.K.; Gupta, R.K.; Singh, S.; Tirol-Padre, A.; Saharawat, Y.; Gathala, M.; Pathak, H. Saving of Water and Labor in a Rice–Wheat System with No-Tillage and Direct Seeding Technologies. Agron. J. 2007, 99, 1288–1296. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, 2nd ed.; Page, A.L., Ed.; American Society of Agronomy., Inc.: Madison, WI, USA, 1996; Part 2; pp. 961–1010. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall International Inc.: London, UK, 1967. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Chan, K.Y.; Bowman, A.; Oates, A. Oxidizable organic carbon fractions and soil quality changes in an oxicpaleustalf under different pasture leys. Soil Sci. 2001, 166, 61–67. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; Iowa State University Press: Ames, IA, USA, 1989. [Google Scholar]
- Das, T.K. Is transformation of weed data always necessary? Ann. Agric. Res. 1999, 20, 335–341. [Google Scholar]
- Turk, M.A.; Tawaha, A.M. Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.). Crop Prot. 2003, 22, 673–677. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, M.; Li, Y.; Shui, J.; Zhou, Y. Allelopathy of rice (Oryza sativa L.) root exudates and its relations with Oro-banche Cumana Wallr. and Orobanche minor Sm. germination. J. Plant Interact. 2014, 9, 722–730. [Google Scholar] [CrossRef]
- Baghel, J.K.; Das, T.K.; Rana, D.S.; Paul, S. Effect of weed control on weed competition, soil microbial activity and rice productivity in conservation agriculture-based direct-seeded rice (Oryza sativa)–wheat (Triticum aestivum) cropping system. Indian J. Agron. 2018, 63, 129–136. [Google Scholar]
- Ondrasek, G.; Kranjčec, F.; Maltašić, G.; Stipičević, S. Hardwood fly ash as a low-C waste has strong potential to become a value-added sorbent for removal of the herbicide terbuthylazine from the aquatic matrix. Biomass-Convers. Biorefin. 2021, 1–13. [Google Scholar] [CrossRef]
- Nath, C.P.; Das, T.K.; Rana, K.S.; Pathak, H.; Bhattacharyya, R.; Paul, S.; Meena, M.C. Greenhouse gases emission, soil organic carbon and wheat yield as affected by tillage systems and nitrogen management practices. Arch. Agron. Soil Sci. 2017, 63, 1644–1660. [Google Scholar] [CrossRef]
- Nandan, R.; Singh, V.; Singh, S.S.; Kumar, V.; Hazra, K.K.; Nath, C.P.; Poonia, S.; Malik, R.K.; Bhattacharyya, R.; McDonald, A. Impact of conservation tillage in rice–based cropping systems on soil aggregation, carbon pools and nutrients. Geoderma 2019, 340, 104–114. [Google Scholar] [CrossRef]
- Singh, V.K.; Dwivedi, B.S.; Shukla, A.K.; Chauhan, Y.S.; Yadav, R.L. Diversification of rice with pigeon pea in a rice-wheat cropping system on a Typic Ustochrept: Effect on soil fertility, yield and nutrient-use efficiency. Field Crops Res. 2005, 92, 85–105. [Google Scholar] [CrossRef] [Green Version]
- Ladha, J.K.; Hill, J.E.; Duxbury, J.M.; Gupta, R.K.; Buresh, R.J. (Eds.) Improving the Productivity and Sustainability of Rice-Wheat Systems: Issues and Impacts’ USA; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2003. [Google Scholar]
- Kumar, N.; Nath, C.; Hazra, K.; Das, K.; Venkatesh, M.; Singh, M.; Singh, S.; Praharaj, C.; Singh, N. Impact of zero-till residue management and crop diversification with legumes on soil aggregation and carbon sequestration. Soil Tillage Res. 2019, 189, 158–167. [Google Scholar] [CrossRef]
- Nath, C.P.; Das, T.K.; Rana, K.S.; Bhattacharyya, R.; Pathak, H.; Paul, S.; Meena, M.C.; Singh, S.B. Weeds and nitrogen management effects on weeds infestation and crop productivity of wheat–mung bean sequence in conventional and conservation tillage practices. Agric. Res. 2017, 6, 33–46. [Google Scholar] [CrossRef]
- Chauhan, B.; Opeña, J. Effect of tillage systems and herbicides on weed emergence, weed growth, and grain yield in dry-seeded rice systems. Field Crop. Res. 2012, 137, 56–69. [Google Scholar] [CrossRef]
- Nandan, R.; Singh, V.; Singh, S.S.; Kumar, V.; Hazra, K.K.; Nath, C.P.; Poonia, S.P.; Malik, R.K. Comparative assessment of the relative proportion of weed morphology, diversity, and growth under new generation tillage and crop establishment techniques in rice-based cropping systems. Crop Prot. 2018, 111, 23–32. [Google Scholar] [CrossRef]
- Jones, D.L.; Magthab, E.A.; Gleeson, D.B.; Hill, P.W.; Sánchez-Rodríguez, A.R.; Roberts, P.; Ge, T.; Murphy, D.V. Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biol. Biochem. 2018, 117, 72–82. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
pH | 8.23 |
EC (dS/m) | 0.28 |
Organic carbon (%) | 0.515 |
Available N (kg/ha) | 206.3 |
Available P (kg/ha) | 12.7 |
Available K (kg/ha) | 210.6 |
Soil texture | clay |
Exchangeable K (meq/100 g) | 0.305 |
Exchangeable Na (meq/100 g) | 0.240 |
Exchangeable Ca (meq/100 g) | 5.355 |
Exchangeable Mg (meq/100 g) | 1.773 |
CaCO3 equivalent% | 1.048 |
Carbonate Carbon% | 0.118 |
CEC (meq/100 g) | 7.904 |
Chlorides (meq/100 g) | 3.18 |
Sulphur (mg/kg) | 9.93 |
Boron (mg/kg) | 0.513 |
Zinc (mg/kg) | 0.655 |
Copper (mg/kg) | 0.242 |
Iron (mg/kg) | 5.32 |
Manganese (mg/kg) | 6.33 |
Treatment | Rice Grain Yield (t/ha) | |||||
---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | 2020 | Pooled | |
Sowing time | ||||||
1 July | 5.43 | 5.48 | 5.80 | 5.60 | 5.52 | 5.57 |
15 July | 5.80 | 5.62 | 6.31 | 5.88 | 5.68 | 5.86 |
30 July | 5.60 | 5.70 | 6.10 | 5.80 | 5.60 | 5.76 |
LSD (p = 0.05) | NS | NS | NS | NS | NS | NS |
Establishment method | ||||||
Transplanting | 6.02 | 6.21 | 6.31 | 6.06 | 5.91 | 6.10 |
Wet direct seeded | 5.40 | 5.39 | 5.53 | 5.46 | 5.59 | 5.47 |
LSD (p = 0.05) | 0.52 | 0.54 | 0.57 | 0.51 | NS | 0.54 |
Treatment | Maize Cob Yield (t/ha) | |||||
---|---|---|---|---|---|---|
2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 | Pooled | |
Sowing time | ||||||
1 July | 6.82 | 6.73 | 6.44 | 6.01 | 5.78 | 6.36 |
15 July | 6.88 | 6.65 | 6.40 | 5.88 | 5.64 | 6.29 |
30 July | 6.54 | 6.23 | 6.02 | 5.73 | 5.51 | 6.01 |
LSD (p = 0.05) | NS | NS | NS | NS | NS | NS |
Establishment method | ||||||
Transplanting | 6.84 | 6.72 | 6.51 | 6.02 | 5.76 | 6.37 |
Wet direct seeded | 6.15 | 6.01 | 5.81 | 5.52 | 5.31 | 5.76 |
LSD (p = 0.05) | 0.66 | 0.61 | 0.63 | NS | NS | 0.60 |
Tillage (Winter season) | ||||||
Conventional | 7.21 | 6.91 | 6.74 | 6.27 | 5.70 | 6.57 |
Minimum | 6.06 | 5.81 | 5.47 | 5.37 | 5.28 | 5.60 |
LSD (p = 0.05) | 0.67 | 0.62 | 0.64 | 0.68 | NS | 0.60 |
Treatment | Rice–Maize Productivity (t/ha) | |||||
---|---|---|---|---|---|---|
2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 | Pooled | |
Sowing time | ||||||
1 July | 11.76 | 11.67 | 12.06 | 11.43 | 11.24 | 11.63 |
15 July | 13.27 | 12.76 | 12.62 | 11.58 | 11.23 | 12.29 |
30 July | 11.67 | 11.43 | 11.95 | 11.36 | 11.06 | 11.49 |
LSD (p = 0.05) | 1.13 | 1.11 | NS | NS | NS | NS |
Establishment Method | ||||||
Transplanting | 12.37 | 12.39 | 12.63 | 11.90 | 11.61 | 12.18 |
Wet direct seeded | 11.11 | 10.92 | 11.71 | 11.81 | 10.85 | 10.97 |
LSD (p = 0.05) | 1.16 | 1.13 | 0.98 | 1.03 | 1.06 | 1.10 |
Tillage (Winter Season) | ||||||
Conventional | 12.36 | 12.05 | 12.54 | 11.84 | 11.32 | 12.02 |
Minimum | 11.29 | 11.04 | 11.31 | 10.97 | 10.90 | 11.10 |
LSD (p = 0.05) | 1.01 | 1.00 | 1.10 | NS | NS | NS |
Treatment | Cost of Cultivation (INR/ha) | Net Returns (INR/ha) | ||||
---|---|---|---|---|---|---|
Rice | Maize | System | Rice | Maize | System | |
Sowing Time | ||||||
1 July | 48,560 | 38,650 | 87,210 | 45,643 | 63,586 | 109,229 |
15 July | 48,560 | 38,650 | 87,210 | 50,564 | 62,411 | 112,974 |
30 July | 48,560 | 38,650 | 87,210 | 48,900 | 57,984 | 106,884 |
Establishment Method | ||||||
Transplanting | 54,650 | 38,650 | 93,300 | 48,462 | 63,812 | 112,274 |
Wet direct seeded | 50,650 | 38,650 | 89,300 | 41,994 | 54,099 | 96,093 |
Tillage (Winter Season) | ||||||
Conventional | 48,560 | 39,850 | 88,410 | 48,749 | 65,603 | 114,352 |
Minimum | 48,560 | 36,850 | 85,410 | 48,369 | 53,289 | 101,658 |
Treatment | Rice | Maize | Rice–Maize System |
---|---|---|---|
1 July | 0.93 | 0.87 | 0.94 |
15 July | 0.89 | 0.84 | 0.86 |
30 July | 0.91 | 0.86 | 0.93 |
Transplanting | 0.94 | 0.86 | 0.93 |
Wet direct seeded | 0.92 | 0.81 | 0.93 |
Conventional tillage | 0.85 | 0.94 | |
Minimum tillage | 0.81 | 0.91 |
Treatment | Irrigation Water Productivity (kg Grain/m3) | Total Water Productivity (kg Grain m3) | ||
---|---|---|---|---|
Rice | Maize | Rice | Maize | |
Sowing Time | ||||
1 July | 3.86 | 7.03 | 2.02 | 5.13 |
15 July | 4.22 | 7.21 | 2.31 | 5.34 |
30 July | 4.06 | 6.23 | 1.98 | 4.20 |
LSD (p = 0.05) | NS | 0.66 | NS | 0.51 |
Establishment Method | ||||
Transplanting | 4.03 | 6.88 | 2.12 | 4.92 |
Wet direct seeded | 4.05 | 6.76 | 2.08 | 4.86 |
LSD (p = 0.05) | NS | NS | NS | NS |
Tillage (Winter Season) | ||||
Conventional | 4.04 | 6.62 | 2.1 | 4.89 |
Minimum | 4.04 | 7.02 | 2.1 | 5.33 |
LSD (p = 0.05) | NS | NS | NS | 0.42 |
Treatment | Total Weed Population (Number/m2) | |||||
---|---|---|---|---|---|---|
2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 | Pooled | |
Sowing Time | ||||||
1 July | 61 | 78 | 87 | 112 | 132 | 94 |
15 July | 58 | 71 | 82 | 124 | 128 | 93 |
30 July | 54 | 74 | 78 | 132 | 124 | 92 |
LSD (p = 0.05) | 5.2 | NS | 8.2 | 12.3 | NS | NS |
Establishment Method | ||||||
Transplanting | 42 | 62 | 80 | 112 | 120 | 83 |
Wet direct seeded | 72 | 88 | 94 | 132 | 136 | 104 |
LSD (p = 0.05) | 8.6 | 8.8 | 10.2 | 13.4 | 13.6 | 11 |
Tillage (Winter Season) | ||||||
Conventional | 51 | 64 | 78 | 102 | 110 | 81 |
Minimum | 63 | 84 | 86 | 142 | 146 | 104 |
LSD (p = 0.05) | 6.4 | 8.8 | 8.6 | 18.4 | 21.6 | 13 |
Treatment | 0–5 cm | 5–15 cm | ||||||
---|---|---|---|---|---|---|---|---|
Very Labile | Labile | Less Labile | Non-Labile | Very Labile | Labile | Less Labile | Non-Labile | |
Sowing Time | ||||||||
1 July | 0.182 | 0.183 | 0.089 | 0.181 | 0.114 | 0.042 | 0.112 | 0.328 |
15 July | 0.187 | 0.189 | 0.078 | 0.164 | 0.116 | 0.046 | 0.113 | 0.320 |
30 July | 0.193 | 0.192 | 0.082 | 0.168 | 0.113 | 0.048 | 0.110 | 0.346 |
LSD (p = 0.05) | NS | NS | NS | NS | NS | NS | NS | NS |
Establishment Method | ||||||||
Transplanting | 0.185 | 0.186 | 0.080 | 0.170 | 0.112 | 0.042 | 0.112 | 0.361 |
Wet direct seeded | 0.189 | 0.190 | 0.086 | 0.172 | 0.116 | 0.048 | 0.110 | 0.301 |
LSD (p = 0.05) | NS | NS | NS | NS | NS | NS | NS | NS |
Tillage (Winter Season) | ||||||||
Conventional | 0.180 | 0.180 | 0.08 | 0.168 | 0.118 | 0.052 | 0.111 | 0.351 |
Minimum | 0.194 | 0.196 | 0.086 | 0.174 | 0.121 | 0.051 | 0.111 | 0.311 |
LSD (p = 0.05) | 0.01 | 0.01 | NS | NS | NS | NS | NS | NS |
Treatment | Soil Moisture Content (%) | ||
---|---|---|---|
0–5 cm | 5–15 cm | 15–30 cm | |
Sowing time | |||
1 July | 11.2 | 12.6 | 13.6 |
15 July | 11.6 | 12.2 | 13.4 |
30 July | 10.2 | 12.0 | 13.0 |
LSD (p = 0.05) | NS | NS | NS |
Establishment method | |||
Transplanting | 10.8 | 12.2 | 13.1 |
Wet direct seeded | 11.2 | 12.4 | 13.3 |
LSD (p = 0.05) | NS | NS | NS |
Tillage (Winter season) | |||
Conventional | 10.0 | 11.5 | 13.0 |
Minimum | 12.1 | 12.9 | 13.6 |
LSD (p = 0.05) | 1.0 | 1.0 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuti, M.D.; Rapolu, M.K.; Sreedevi, B.; Bandumula, N.; Kuchi, S.; Bandeppa, S.; Saha, S.; Parmar, B.; Rathod, S.; Ondrasek, G.; et al. Sustainable Intensification of a Rice–Maize System through Conservation Agriculture to Enhance System Productivity in Southern India. Plants 2022, 11, 1229. https://doi.org/10.3390/plants11091229
Tuti MD, Rapolu MK, Sreedevi B, Bandumula N, Kuchi S, Bandeppa S, Saha S, Parmar B, Rathod S, Ondrasek G, et al. Sustainable Intensification of a Rice–Maize System through Conservation Agriculture to Enhance System Productivity in Southern India. Plants. 2022; 11(9):1229. https://doi.org/10.3390/plants11091229
Chicago/Turabian StyleTuti, Mangal Deep, Mahender Kumar Rapolu, Banugu Sreedevi, Nirmala Bandumula, Surekha Kuchi, Sonth Bandeppa, Soumya Saha, Brajendra Parmar, Santosha Rathod, Gabrijel Ondrasek, and et al. 2022. "Sustainable Intensification of a Rice–Maize System through Conservation Agriculture to Enhance System Productivity in Southern India" Plants 11, no. 9: 1229. https://doi.org/10.3390/plants11091229