DNA-Based Identification of Eurasian Vicia Species Using Chloroplast and Nuclear DNA Barcodes
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Materials and DNA Extraction
4.2. PCR Amplification and Sequence Analysis
4.3. Basic Local Alignment Search Tool (BLAST) Analysis
4.4. Multiple Sequence Alignment and Dendrographic Representation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bryant, J.A.; Hughes, S.G. Wild Crop Relatives: Genomic and Breeding Resources; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-14386-1. [Google Scholar]
- Grusak, M.A. Phytochemicals in plants: Genomics-assisted plant improvement for nutritional and health benefits. Curr. Opin. Biotechnol. 2002, 13, 508–511. [Google Scholar] [CrossRef]
- Grusak, M.A. Enhancing Mineral Content in Plant Food Products. J. Am. Coll. Nutr. 2013, 21, 178S–183S. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, E.; Silva, L.R.; Peix, A. Legumes: A Healthy and Ecological Source of Flavonoids. Curr. Nutr. Food Sci. 2010, 6, 109–144. [Google Scholar] [CrossRef]
- Bromfield, E.S.; Butler, G.; Barran, L.R. Temporal effects on the composition of a population of Sinorhizobium meliloti associated with Medicago sativa and Melilotus alba. Can. J. Microbiol. 2011, 47, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Sprent, J.I. Nodulation in Legumes; Royal Botanic Gardens, Kew: Richmond, VA, USA, 2001. [Google Scholar]
- Arianoutsou, M.; Thanos, C.A. Legumes in the fire-prone Mediterranean regions: An example from Greece. Int. J. Wildl. Fire 1996, 6, 77–82. [Google Scholar] [CrossRef]
- Graham, P.H.; Vance, C.P. Legumes: Importance and Constraints to Greater Use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef] [Green Version]
- Keskin, S.O.; Ali, T.M.; Ahmed, J.; Shaikh, M.; Siddiq, M.; Uebersax, M.A. Physico-chemical and functional properties of legume protein, starch, and dietary fiber—A review. Legum. Sci. 2021, 4, e117. [Google Scholar] [CrossRef]
- Siegel, A.; Fawcett, B. Food legume processing and utilization: With special emphasis on application in developing countries. In IDRC-TS1; International Development Research Centre: Ottawa, ON, Canada, 1976; p. 88. ISBN 0-88936-086-3. [Google Scholar]
- Schutyser, M.A.I.; Pelgrom, P.J.M.; van der Goot, A.J.; Boom, R.M. Dry fractionation for sustainable production of functional legume protein concentrates. Trends Food Sci. Technol. 2015, 45, 327–335. [Google Scholar] [CrossRef]
- Doyle, J.J.; Luckow, M.A. The Rest of the Iceberg. Legume Diversity and Evolution in a Phylogenetic Context. Plant Physiol. 2003, 131, 900–910. [Google Scholar] [CrossRef] [Green Version]
- Lewis, G.P.; Schrire, B.; Mackinder, B.; Lock, M. Legumes of the World; Royal Botanic Gardens: London, UK, 2005; ISBN 9781900347808. [Google Scholar]
- Cacan, E.; Kokten, K.; Inci, H.; Das, A.; Sengul, A.Y. Fatty Acid Composition of the Seeds of Some Vicia Species. Chem. Nat. Compd. 2016, 52, 1084–1086. [Google Scholar] [CrossRef]
- Schaefer, H.; Hechenleitner, P.; Santos-Guerra, A.; De Sequeira, M.M.; Pennington, R.T.; Kenicer, G.; Carine, M.A. Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evol. Biol. 2012, 12, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kupicha, F.K. The infrageneric structure of Lathyrus. Notes Roy Bot. Gard Edinb. 1983, 41, 209–244. [Google Scholar]
- Kupicha, F.K. The infrageneric structure of Vicia. Notes Roy Bot. Gard Edinb. 1976, 34, 287–326. [Google Scholar]
- Hanelt, P.; Mettin, D. Biosystematics of the genus Vicia L. (Leguminosae). Annu. Rev. Ecol. Syst. 1989, 20, 199–223. [Google Scholar] [CrossRef]
- Ruffini Castiglione, M.; Frediani, M.; Gelati, M.T.; Ravalli, C.; Venora, G.; Caputo, P.; Cremonini, R. Cytological and molecular characterization of Vicia esdraelonensis Warb. & Eig: A rare taxon. Protoplasma 2007, 231, 151–159. [Google Scholar] [PubMed]
- Keiša, A.; Maxted, N.; Ford-Lloyd, B. The assessment of biodiversity loss over time: Wild legumes in Syria. Genet. Resour. Crop Evol. 2007, 55, 603–612. [Google Scholar] [CrossRef]
- Haider, N.; Nabulsi, I.; Mirali, N. Identification of species of Vicia subgenus Vicia (Fabaceae) using chloroplast DNA data. Turkish J. Agric. For. 2012, 36, 297–308. [Google Scholar]
- Chernoff, M.; Plttmann, U.; Klslev, M.E. Seed characters and testa texture in species of the vicieae: Their taxonomic significance. Isr. J. Bot. 1992, 41, 167–186. [Google Scholar]
- Jalilian, N.; Rahiminejad, M.R.; Maassoumi, A.A.; Maroofi, H. Taxonomic revision of the genus Vicia L. (Fabaceae) in Iran. Iran. J. Bot. 2014, 20, 155–164. [Google Scholar]
- Endo, Y.; Ohashi, H. The morphology of styles and stigmas inVicia (Leguminosae), and its systematic implications. J. Plant Res. 1995, 108, 17–24. [Google Scholar] [CrossRef]
- Nam, B.M.; Park, M.S.; Oh, B.U.; Chung, G.Y. A cytotaxonomic study of Vicia L. (Fabaceae) in Korea. Korean J. Plant Taxon. 2012, 42, 307–315. [Google Scholar] [CrossRef]
- Hosseinzadeh, Z.; Pakravan, M.; Tavassoli, A. Micromorphology of Seed in Some Vicia Species from Iran. Rostaniha 2009, 9, 230. [Google Scholar]
- Ali, M.N.; Yeasmin, L.; Gantait, S.; Goswami, R.; Chakraborty, S. Screening of rice landraces for salinity tolerance at seedling stage through morphological and molecular markers. Physiol. Mol. Biol. Plants 2014, 20, 411–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxted, N.; Khettab, M.A.; Bisby, F.A. The newly discovered relatives of Vicia faba do little to resolve the enigma of its origin. Bot. Chron. 1991, 10, 435–465. [Google Scholar]
- Macas, J.; Navrátilová, A.; Mészáros, T. Sequence subfamilies of satellite repeats related to rDNA intergenic spacer are differentially amplified on Vicia sativa chromosomes. Chromosoma 2003, 112, 152–158. [Google Scholar] [CrossRef]
- Chen, S.; Yao, H.; Han, J.; Liu, C.; Song, J.; Shi, L.; Zhu, Y.; Ma, X.; Gao, T.; Pang, X.; et al. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS ONE 2010, 5, e8613. [Google Scholar] [CrossRef]
- Gregory, T.R. DNA barcoding does not compete with taxonomy. Nature 2005, 434, 1067. [Google Scholar] [CrossRef] [Green Version]
- Hollingsworth, P.M.; Graham, S.W.; Little, D.P. Choosing and Using a Plant DNA Barcode. PLoS ONE 2011, 6, e19254. [Google Scholar] [CrossRef]
- Stavridou, E.; Lagiotis, G.; Karapetsi, L.; Osathanunkul, M.; Madesis, P. DNA Fingerprinting and Species Identification Uncovers the Genetic Diversity of Katsouni Pea in the Greek Islands Amorgos and Schinoussa. Plants 2020, 9, 479. [Google Scholar] [CrossRef] [Green Version]
- Lagiotis, G.; Stavridou, E.; Bosmali, I.; Osathanunkul, M.; Haider, N.; Madesis, P. Detection and quantification of cashew in commercial tea products using High Resolution Melting (HRM) analysis. J. Food Sci. 2020, 85, 1629–1634. [Google Scholar] [CrossRef]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Gielly, L.; Miquel, C.; Valentini, A.; Vermat, T.; Corthier, G.; Brochmann, C.; Willerslev, E. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 2007, 35, e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chase, M.W.; Cowan, R.S.; Hollingsworth, P.M.; van den, B.C.; Madriñán, S.; Petersen, G.; Seberg, O.; Jørgsensen, T.; Cameron, K.M.; Carine, M.; et al. A proposal for a standardised protocol to barcode all land plants. Taxon 2007, 56, 295–299. [Google Scholar] [CrossRef]
- Kress, W.J.; Wurdack, K.J.; Zimmer, E.A.; Weigt, L.A.; Janzen, D.H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA 2005, 102, 8369–8374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollingsworth, M.L.; Andra Clark, A.; Forrest, L.L.; Richardson, J.; Pennington, R.T.; Long, D.G.; Cowan, R.; Chase, M.W.; Gaudeul, M.; Hollingsworth, P.M. Selecting barcoding loci for plants: Evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol. Ecol. Resour. 2009, 9, 439–457. [Google Scholar] [CrossRef]
- Madesis, P.; Ganopoulos, I.; Ralli, P.; Tsaftaris, A.; Parthenopi, R.; Tsaftaris, A. Barcoding the major Mediterranean leguminous crops by combining universal chloroplast and nuclear DNA sequence targets. Genet. Mol. Res. 2012, 11, 2548–2558. [Google Scholar] [CrossRef]
- Gao, T.; Chen, S. Authentication of the Medicinal Plants in Fabaceae by DNA Barcoding Technique. Planta Med. 2009, 75, 13. [Google Scholar] [CrossRef]
- Endo, Y.; Choi, B.H.; Ohashi, H.; Delgado-Salinas, A. Phylogenetic relationships of New World Vicia (Leguminosae) inferred from nrDNA internal transcribed spacer sequences and floral characters. Syst. Bot. 2008, 33, 356–363. [Google Scholar] [CrossRef]
- Ruffini Castiglione, M.; Frediani, M.; Gelati, M.T.; Ravalli, C.; Venora, G.; Caputo, P.; Cremonini, R. Cytology of Vicia species. X. Karyotype evolution and phylogenetic implication in Vicia species of the sections Atossa, Microcarinae, Wiggersia and Vicia. Protoplasma 2011, 248, 707–716. [Google Scholar] [CrossRef]
- Shiran, B.; Kiani, S.; Sehgal, D.; Hafizi, A.; ul-Hassan, T.; Chaudhary, M.; Raina, S.N. Internal transcribed spacer sequences of nuclear ribosomal DNA resolving complex taxonomic history in the genus Vicia L. Genet. Resour. Crop Evol. 2014, 61, 909–925. [Google Scholar] [CrossRef]
- Cold Spring Harbor DNA Learning Center. UsingDNA Barcodes to Identify and Classify Living Things. Available online: http://www.dnabarcoding101.org/ (accessed on 8 September 2021).
- Raveendar, S.; Lee, J.R.; Shim, D.; Lee, G.A.; Jeon, Y.A.; Cho, G.T.; Ma, K.H.; Lee, S.Y.; Sung, G.H.; Chung, J.W. Comparative efficacy of four candidate DNA barcode regions for identification of Vicia species. Plant Genet. Resour. Characterisation Util. 2017, 15, 286–295. [Google Scholar] [CrossRef]
- Raveendar, S.; Lee, J.-R.; Park, J.-W.; Lee, G.-A.; Jeon, Y.-A.; Lee, Y.J.; Cho, G.-T.; Ma, K.-H.; Lee, S.-Y.; Chung, J.-W. Potential use of ITS2 and matK as a Two-Locus DNA Barcode for Identification of Vicia Species. Plant Breed. Biotechnol. 2015, 3, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.F.; Gao, Q.; Liu, F.; Wang, Z.; Wang, J.L.; Wang, X.G. DNA barcoding evaluation of Vicia (Fabaceae): Comparative efficacy of six universal barcode loci on abundant species. J. Syst. Evol. 2020, 58, 77–88. [Google Scholar] [CrossRef]
- Han, S.; Sebastin, R.; Wang, X.H.; Lee, K.J.; Cho, G.T.; Hyun, D.Y.; Chung, J.W. Identification of Vicia Species Native to South Korea Using Molecular and Morphological Characteristics. Front. Plant Sci. 2021, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Tiffney, B.H. The Eocene North Atlantic land bridge:its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J. Arnold Arboretum. 1985, 66, 243–273. [Google Scholar] [CrossRef]
- van de Wouw, M.; Maxted, N.; Chabane, K.; Ford-Lloyd, B.V. Molecular taxonomy of Vicia ser. Vicia based on Amplified Fragment Length Polymorphisms. Plant Syst. Evol. 2001, 229, 91–105. [Google Scholar] [CrossRef]
- Bennett, S.J.; Maxted, N. An ecogeographic analysis of the Vicia narbonensis complex. Genet. Resour. Crop Evol. 1997, 44, 411–428. [Google Scholar] [CrossRef]
- van de Wouw, M.; Maxted, N.; Ford-Lloyd, B.V. A multivariate and cladistic study of Vicia L. ser. Vicia (Fabaceae) based on analysis of morphological characters. Plant Syst. Evol. 2003, 237, 19–39. [Google Scholar] [CrossRef]
- Van Ittersum, K.; Candel, M.J.J.M.; Torelli, F. The market for PDO/PGI protected regional products: Consumers’ attitudes and behaviour. In Proceedings of the 67th EAAE Seminar, Le Mans, France, 28–30 October 1999. [Google Scholar]
- Sakowicz, T.; Cieślikowski, T. Phylogenetic analyses within three sections of the genus Vicia. Cell. Mol. Biol. Lett. 2006, 11, 594–615. [Google Scholar] [CrossRef]
- Venora, G.; Blangiforti, S.; Frediani, M.; Maggini, F.; Gelati, M.T.; Castiglione, M.R.; Cremonini, R. Nuclear DNA contents, rDNAs, chromatin organization, and karyotype evolution inVicia sect,faba. Protoplasma 2000, 213, 118–125. [Google Scholar] [CrossRef]
- Fuchs, J.; Strehl, S.; Brandes, A.; Schweizer, D.; Schubert, I. Molecular-cytogenetic characterization of the Vicia faba genome—Heterochromatin differentiation, replication patterns and sequence localization. Chromosom. Res. 1998, 6, 219–230. [Google Scholar] [CrossRef]
- Przybylska, J.; Zimniak-Przybylska, Z. Electrophoretic seed albumin patterns and species relationships in Vicia sect. Faba (Fabaceae). Plant Syst. Evol. 1995, 198, 179–194. [Google Scholar] [CrossRef]
- van de Ven, W.T.G.; Duncan, N.; Ramsay, G.; Phillips, M.; Powell, W.; Waugh, R. Taxonomic relationships between V. faba and its relatives based on nuclear and mitochondrial RFLPs and PCR analysis. Theor. Appl. Genet. 1993, 86, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Rønning, S.B.; Rudi, K.; Berdal, K.G.; Holst-Jensen, A. Differentiation of important and closely related cereal plant species (Poaceae) in food by hybridization to an oligonucleotide array. J. Agric. Food Chem. 2005, 53, 8874–8880. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.; Peakall, R.; Gilmore, S.R.; Robertson, J. A molecular identification system for grasses: A novel technology for forensic botany. Forensic Sci. Int. 2005, 152, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar]
- Ahmed, I.; Biggs, P.J.; Matthews, P.J.; Collins, L.J.; Hendy, M.D.; Lockhart, P.J. Mutational Dynamics of Aroid Chloroplast Genomes. Genome Biol. Evol. 2012, 4, 1316–1323. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Matthews, P.J.; Biggs, P.J.; Naeem, M.; Mclenachan, P.A.; Lockhart, P.J. Identification of chloroplast genome loci suitable for high-resolution phylogeographic studies of Colocasia esculenta (L.) Schott (Araceae) and closely related taxa. Mol. Ecol. Resour. 2013, 13, 929–937. [Google Scholar] [CrossRef]
- Xu, J.H.; Liu, Q.; Hu, W.; Wang, T.; Xue, Q.; Messing, J. Dynamics of chloroplast genomes in green plants. Genomics 2015, 106, 221–231. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Henry, R.J.; Rossetto, M.; Wang, Y.; Chen, S. Plant DNA barcoding: From gene to genome. Biol. Rev. Camb. Philos. Soc. 2015, 90, 157–166. [Google Scholar] [CrossRef]
- Choi, B.H.; Seok, D.I.; Endo, Y.; Ohashi, H. Phylogenetic significance of stylar features in genus Vicia (Leguminosae): An analysis with molecular phylogeny. J. Plant Res. 2006, 119, 513–523. [Google Scholar] [CrossRef]
- Maxted, N. An Ecogeographical Study of Vicia Subgenus Vicia; IPGRI (International Plant Research Institute): Rome, Italy, 1995; ISBN 978-92-9043-240-1. [Google Scholar]
- Fennell, S.R.; Powell, W.; Wright, F.; Ramsay, G.; Waugh, R. Phylogenetic relationships betweenVicia faba (Fabaceae) and related species inferred from chloroplasttrnL sequences. Plant Syst. Evol. 1998, 212, 247–259. [Google Scholar] [CrossRef]
- Jaaska, V. Isoenzyme diversity and phylogenetic affinities in Vicia subgenus Vicia (Fabaceae). Genet. Resour. Crop Evol. 1997, 44, 557–574. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Jukes, T.H.; Cantor, C.R. Evolution of Protein Molecules. Mamm. Protein Metab. 1969, 3, 21–132. [Google Scholar]
Species/Subspecies Name | Sample ID | GenBank Accession Number | Bit Score | E-Value | % Identity |
---|---|---|---|---|---|
V. aintabensis Boiss. | 3 | MZ334891 | 737 | 0 | 100% |
V. aintabensis Boiss. | 13 | MZ334892 | 702 | 0 | 100% |
V. aintabensis Boiss. | 20 | MZ334893 | 697 | 0 | 100% |
V. anatolica Turrill. | 5 | MZ334894 | 713 | 0 | 99.24% |
V. anatolica Turill. | 50 | MZ334895 | 845 | 0 | 99.57% |
V. anatolica Turill. | 54 | MZ334896 | 704 | 0 | 99.48% |
V. anatolica Turill. | 65 | MZ334897 | 630 | 0 | 99.43% |
V. bithynica L. | 23 | MZ334898 | 501 | 1E-137 | 100% |
V. bithynica L. | 43 | MZ334899 | 488 | 3E-141 | 100% |
V. bithynica L. | 68 | MZ334900 | 466 | 4E-127 | 100% |
V. bithynica L. | 72 | MZ334901 | 516 | 4E-142 | 100% |
V. dionysiensis | 12 | MZ334902 | ǂ | ǂ | ǂ |
V. dionysiensis | 16 | MZ334903 | ǂ | ǂ | ǂ |
V. dionysiensis | 52 | MZ334904 | ǂ | ǂ | ǂ |
V. ervilia L. | 8 | MZ334905 | 736 | 0 | 100% |
V. ervilia L. | 17 | MZ334906 | 734 | 0 | 100% |
V. ervilia L. | 34 | MZ334907 | 652 | 0 | 100% |
V. ervilia L. | 44 | MZ334908 | 693 | 0 | 100% |
V. ervilia L. | 78 | MZ334909 | 739 | 0 | 100% |
V. faba L. | 37 | MZ334911 | 198 | 7E-52 | 90.13% |
V. faba L. | 61 | MZ334910 | 307 | 2E-84 | 79.41% |
V. faba L. | 22 | MZ334912 | 412 | 3E-116 | 89.05% |
V. grandiflora Scop. | 55 | MZ334913 | 377 | 3E-107 | 100% |
V. grandiflora Scop. | 57 | MZ334914 | 433 | 3E-124 | 100% |
V. grandiflora Scop. | 71 | MZ334916 | 518 | 9E-150 | 100% |
V. grandiflora Scop. | 70 | MZ334915 | 481 | 2E-138 | 100% |
V. hyaeniscyamus Mouterde | 41 | MZ334917 | ǂ | ǂ | ǂ |
V. hyaeniscyamus Mouterde | 86 | MZ334918 | ǂ | ǂ | ǂ |
V. hybrida L. | 25 | MZ334919 | 808 | 0 | 100% |
V. hybrida L. | 42 | MZ334920 | 693 | 0 | 98.97% |
V. hybrida L. | 60 | MZ334921 | 800 | 0 | 100% |
V. hybrida L. | 62 | MZ334922 | 737 | 0 | 98.80% |
V. lathyroides L. | 36 | MZ334923 | 449 | 4E-122 | 99.59% |
V. lathyroides L. | 38 | MZ334924 | 178 | 4E-50 | 89.36% |
V. lathyroides L. | 46 | MZ334925 | 472 | 8E-129 | 99.61% |
V. lathyroides L. | 49 | MZ334926 | 459 | 6E-125 | 99.60% |
V. lutea L. | 2 | MZ334927 | 761 | 0 | 99.76% |
V. lutea L. | 45 | MZ334928 | 704 | 0 | 99.23% |
V. lutea L. | 26 | MZ334929 | 739 | 0 | 99.50% |
V. lutea L. | 48 | MZ334930 | 730 | 0 | 98.31% |
V. michauxii Spreng. | 11 | MZ334931 | 717 | 0 | 99.74% |
V. michauxii Spreng. | 19 | MZ334932 | 612 | 7E-171 | 99.70% |
V. monantha Retz. | 21 | MZ334933 | 628 | 0 | 100% |
V. narbonensis L. | 1 | MZ334934 | 390 | 2E-104 | 99.53% |
V. narbonensis L. | 4 | MZ334935 | 392 | 5E-105 | 100% |
V. narbonensis L. | 30 | MZ334936 | 514 | 1E-141 | 99.65% |
V. narbonensis L. | 14 | MZ334937 | 377 | 1E-100 | 100% |
V. narbonensis L. | 47 | MZ334938 | 444 | 2E-120 | 99.59% |
V. noeana Boiss. | 7 | MZ334939 | 767 | 0 | 99.76% |
V. noeana Boiss. | 9 | MZ334940 | 760 | 0 | 100% |
V. noeana Boiss. | 29 | MZ334941 | 773 | 0 | 100% |
V. pannonica Crantz | 85 | MZ334945 | 741 | 2E-179 | 95.91% |
V. pannonica Crantz | 64 | MZ334942 | 835 | 0 | 100% |
V. pannonica Crantz | 76 | MZ334943 | 758 | 0 | 100% |
V. pannonica Crantz | 15 | MZ334944 | 719 | 0 | 99.74% |
V. pannonica Crantz | 77 | MZ334946 | 765 | 0 | 99.52% |
V. peregrina L. | 35 | MZ334947 | 693 | 0 | 99.47% |
V. peregrina L. | 51 | MZ334948 | 846 | 0 | 100% |
V. peregrina L. | 63 | MZ334949 | 791 | 0 | 99.77% |
V. peregrina L. | 73 | MZ334950 | 785 | 0 | 99.77% |
V. sativa L. | 66 | MZ334952 | 455 | 9E-124 | 94.24% |
V. sativa L. | 59 | MZ334951 | 483 | 4E-132 | 99.25% |
V. sativa L. | 67 | MZ334953 | 488 | 8E-134 | 99.63% |
V. sativa L. | 80 | MZ334956 | 503 | 3E-138 | 100% |
V. sativa L. | 69 | MZ334954 | 523 | 4E-144 | 99.31% |
V. sativa L. | 79 | MZ334955 | 420 | 3E-113 | 100% |
V. sativa L. | 82 | MZ334957 | 453 | 3E-123 | 99.60% |
V. sericocarpa Fenzl | 32 | MZ334958 | 628 | 7E-176 | 96.06% |
V. sericocarpa Fenzl | 40 | MZ334959 | 597 | 2E-166 | 97.97% |
V. sericocarpa Fenzl | 53 | MZ334960 | 656 | 0 | 99.72% |
V. villosa Roth | 24 | MZ334961 | 667 | 0 | 99.46% |
Species/Subspecies Name | Sample ID | GenBank Accession Number | Bit Score | E-Value | % Identity |
---|---|---|---|---|---|
V. anatolica Turill. | 65 | MZ338313 | 475 | 2E-137 | 99.61 |
V. bithynica L. | 23 | MZ338299 | 743 | 0 | 100% |
V. faba L. | 37 | MZ338302 | 763 | 0 | 100% |
V. faba L. | 61 | MZ338311 | 763 | 0 | 100% |
V. grandiflora Scop. | 55 | MZ338309 | 621 | 0 | 99.71% |
V. grandiflora Scop. | 57 | MZ338310 | 621 | 0 | 99.71% |
V. grandiflora Scop. | 71 | MZ338318 | 580 | 2E-168 | 99.41% |
V. grandiflora Scop. | 70 | MZ338317 | 627 | 0 | 100% |
V. lathyroides L. | 36 | MZ338301 | 737 | 0 | 99.75% |
V. lathyroides L. | 38 | MZ338303 | 737 | 0 | 99.75% |
V. lathyroides L. | 46 | MZ338306 | 752 | 0 | 99.76% |
V. lathyroides L. | 49 | MZ338308 | 758 | 0 | 100% |
V. lutea L. | 2 | MZ338297 | 743 | 0 | 100% |
V. lutea L. | 45 | MZ338305 | 743 | 0 | 100% |
V. lutea L. | 48 | MZ338307 | 743 | 0 | 100% |
V. pannonica Crantz | 64 | MZ338312 | 739 | 0 | 99.75% |
V. pannonica Crantz | 76 | MZ338319 | 743 | 0 | 100% |
V. pannonica Crantz | 15 | MZ338298 | 743 | 0 | 100% |
V. pannonica Crantz | 77 | MZ338320 | 743 | 0 | 100% |
V. sativa L. | 66 | MZ338314 | 763 | 0 | 99.52% |
V. sativa L. | 67 | MZ338315 | 780 | 0 | 100% |
V. sativa L. | 80 | MZ338322 | 778 | 0 | 100% |
V. sativa L. | 69 | MZ338316 | 771 | 0 | 100% |
V. sativa L. | 79 | MZ338321 | 771 | 0 | 99.76% |
V. sativa L. | 82 | MZ338323 | 774 | 0 | 100% |
V. sericocarpa Fenzl | 32 | MZ338300 | 353 | 5E-93 | 98.03% |
V. sericocarpa Fenzl | 40 | MZ338304 | 353 | 5E-93 | 98.03% |
Species/Subspecies Name | Sample ID | GenBank Accession Number | Bit Score | E-Value | % Identity |
---|---|---|---|---|---|
V. anatolica Turill. | 5 | MZ285764 | ǂ | ǂ | ǂ |
V. anatolica Turill. | 65 | MZ285781 | ǂ | ǂ | ǂ |
V. dionysiensis | 12 | MZ285766 | ǂ | ǂ | ǂ |
V. dionysiensis | 16 | MZ285767 | ǂ | ǂ | ǂ |
V. dionysiensis | 52 | MZ285775 | ǂ | ǂ | ǂ |
V. faba L. | 37 | MZ285772 | 857 | 0 | 100% |
V. faba L. | 61 | MZ285780 | 857 | 0 | 100% |
V. faba L. | 22 | MZ285769 | 857 | 0 | 100% |
V. grandiflora Scop. | 55 | MZ285777 | ǂ | ǂ | ǂ |
V. grandiflora Scop. | 57 | MZ285778 | ǂ | ǂ | ǂ |
V. grandiflora Scop. | 71 | MZ285786 | ǂ | ǂ | ǂ |
V. grandiflora Scop. | 70 | MZ285785 | ǂ | ǂ | ǂ |
V. lathyroides L, | 38 | MZ285773 | ǂ | ǂ | ǂ |
V. michauxii Spreng. | 11 | MZ285765 | ǂ | ǂ | ǂ |
V. michauxii Spreng. | 19 | MZ285768 | ǂ | ǂ | ǂ |
V. pannonica Crantz | 85 | MZ285790 | ǂ | ǂ | ǂ |
V. peregrina L. | 35 | MZ285771 | ǂ | ǂ | ǂ |
V. sativa L. | 66 | MZ285782 | 857 | 0 | 100% |
V. sativa L. | 59 | MZ285779 | 857 | 0 | 100% |
V. sativa L. | 67 | MZ285783 | 857 | 0 | 100% |
V. sativa L. | 80 | MZ285788 | 857 | 0 | 100% |
V. sativa L. | 69 | MZ285784 | 857 | 0 | 100% |
V. sativa L. | 79 | MZ285787 | 857 | 0 | 100% |
V. sativa L. | 82 | MZ285789 | 857 | 0 | 100% |
V. sericocarpa Fenzl | 32 | MZ285770 | ǂ | ǂ | ǂ |
V. sericocarpa Fenzl | 40 | MZ285774 | ǂ | ǂ | ǂ |
V. sericocarpa Fenzl | 53 | MZ285776 | ǂ | ǂ | ǂ |
Species/Subspecies Name | Sample ID | Source |
---|---|---|
V. aintabensis Boiss. | 3 | Italy |
V. aintabensis Boiss | 13 | France |
V. aintabensis Boiss | 20 | Syria |
V. anatolica Turill. | 5 | Turkmenistan |
V. anatolica Turill. | 50 | Turkey |
V. anatolica Turill. | 54 | Turkey |
V. anatolica Turill. | 65 | Australia |
V. bithynica L. | 23 | Syria |
V. bithynica L. | 43 | Malta |
V. bithynica L. | 68 | Azerbaijan |
V. bithynica L. | 72 | Syria |
V. dionysiensis | 12 | Syria |
V. dionysiensis | 16 | Syria |
V. dionysiensis | 52 | Syria |
V. ervilia L. | 8 | Syria |
V. ervilia L. | 17 | Syria |
V. ervilia L. | 34 | Syria |
V. ervilia L. | 44 | Syria |
V. ervilia L. | 78 | Syria |
V. faba L. | 37 | Syria |
V. faba L. | 61 | Syria |
V. faba L. | 22 | Syria |
V. grandiflora Scop. | 55 | Armenia |
V. grandiflora Scop. | 57 | Armenia |
V. grandiflora Scop. | 71 | Sweden |
V. grandiflora Scop. | 70 | Turkey |
V. hyaeniscyamus Mouterde | 41 | Syria |
V. hyaeniscyamus Mouterde | 86 | Syria |
V. hybrida L. | 25 | Iraq |
V. hybrida L. | 42 | Jordan |
V. hybrida L. | 60 | Italy |
V. hybrida L. | 62 | Morocco |
V. lathyroides L. | 36 | Turkey |
V. lathyroides L. | 38 | Turkey |
V. lathyroides L. | 46 | Armenia |
V. lathyroides L. | 49 | Algeria |
V. lutea L. | 2 | Tunisia |
V. lutea L. | 45 | Azerbaijan |
V. lutea L. | 26 | Algeria |
V. lutea L. | 48 | Turkey |
V. michauxii Spreng. | 11 | Turkey |
V. michauxii Spreng. | 19 | Tajikistan |
V. monantha Retz. | 21 | Syria |
V. narbonensis L. | 1 | Lebanon |
V. narbonensis L. | 4 | Turkey |
V. narbonensis L. | 30 | Syria |
V. narbonensis L. | 14 | Syria |
V. narbonensis L. | 47 | Jordan |
V. noeana Boiss. | 7 | Syria |
V. noeana Boiss. | 9 | Turkey |
V. noeana Boiss. | 29 | Syria |
V. pannonica Crantz | 85 | Uzbekistan |
V. pannonica Crantz | 64 | Australia |
V. pannonica Crantz | 76 | Italy |
V. pannonica Crantz | 15 | Italy |
V. pannonica Crantz | 77 | Turkey |
V. peregrina L. | 35 | Iraq |
V. peregrina L. | 51 | Syria |
V. peregrina L. | 63 | Turkey |
V. peregrina L. | 73 | Armenia |
V. sativa L. | 66 | Egypt |
V. sativa L. | 59 | Syria |
V. sativa L. | 67 | Turkey |
V. sativa L. | 80 | Market |
V. sativa L. | 69 | Lithuania |
V. sativa L. | 79 | Italy |
V. sativa L. | 82 | Romania |
V. sericocarpa Fenzl | 32 | Turkey |
V. sericocarpa Fenzl | 40 | Iraq |
V. sericocarpa Fenzl | 53 | Turkey |
V. villosa Roth | 24 | Turkey |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosmali, I.; Lagiotis, G.; Haider, N.; Osathanunkul, M.; Biliaderis, C.; Madesis, P. DNA-Based Identification of Eurasian Vicia Species Using Chloroplast and Nuclear DNA Barcodes. Plants 2022, 11, 947. https://doi.org/10.3390/plants11070947
Bosmali I, Lagiotis G, Haider N, Osathanunkul M, Biliaderis C, Madesis P. DNA-Based Identification of Eurasian Vicia Species Using Chloroplast and Nuclear DNA Barcodes. Plants. 2022; 11(7):947. https://doi.org/10.3390/plants11070947
Chicago/Turabian StyleBosmali, Irene, Georgios Lagiotis, Nadia Haider, Maslin Osathanunkul, Costas Biliaderis, and Panagiotis Madesis. 2022. "DNA-Based Identification of Eurasian Vicia Species Using Chloroplast and Nuclear DNA Barcodes" Plants 11, no. 7: 947. https://doi.org/10.3390/plants11070947
APA StyleBosmali, I., Lagiotis, G., Haider, N., Osathanunkul, M., Biliaderis, C., & Madesis, P. (2022). DNA-Based Identification of Eurasian Vicia Species Using Chloroplast and Nuclear DNA Barcodes. Plants, 11(7), 947. https://doi.org/10.3390/plants11070947