Exploring New Sources of Bioactive Phenolic Compounds from Western Balkan Mountains
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Plant Extracts and Reference Solutions
4.3. UHPLC–MS/MS Analysis
4.4. Antioxidant Activity
4.5. Antimicrobial Properties
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cosme, P.; Rodríguez, A.B.; Espino, J.; Garrido, M. Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications. Antioxidants 2020, 9, 1263. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Waseem, A.; Rafia, A.; Ayaz, M.; Qayyum, A.; Ahmed, R.; Khan, S.U.; Liaquat, M.; Naz, S.; Ahmad, S. The analysis of new higher operative bioactive compounds and chemical functional group from herbal plants through UF-HPLC-DAD and Fourier transform infrared spectroscopy methods and their biological activity with antioxidant potential process as future green chemical assay. Arab. J. Chem. 2021, 14, 102935. [Google Scholar] [CrossRef]
- Gilbert, B.; Alves, L.F. Synergy in plant medicines. Curr. Med. Chem. 2003, 10, 13–20. [Google Scholar] [CrossRef]
- Abreu, A.C.; Coqueiro, A.; Sultan, A.R.; Lemmens, N.; Kim, H.K.; Verpoorte, R.; van Wamel, W.J.B.; Simões, M.; Choi, Y.H. Looking to nature for a new concept in antimicrobial treatments: Isoflavonoids from Cytisus striatus as antibiotic adjuvants against MRSA. Sci. Rep. 2017, 7, 3777. [Google Scholar] [CrossRef]
- Dettweiler, M.; Melander, R.J.; Porras, G.; Risener, C.; Marquez, L.; Samarakoon, T.; Melander, C.; Quave, C.L. A clerodane diterpene from Callicarpa americana resensitizes methicillin-resistant Staphylococcus aureus to β-lactam antibiotics. ACS Infect. Dis. 2020, 6, 1667–1673. [Google Scholar] [CrossRef]
- Chassagne, F.; Samarakoon, T.; Porras, G.; Lyles, J.T.; Micah, D.; Lewis, M.; Akram, S.M.; Sarah, S.; Raschid, F.D.; Cassandra, Q.L. A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Front. Pharmacol. 2021, 11, 586548. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 2006, 41, 1523–1542. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Maksimović, M. Chemical composition and bioactivity of essential oil from Thymus species in Balkan Peninsula. Phytochem. Rev. 2015, 14, 335–352. [Google Scholar] [CrossRef]
- Karalija, E.; Muratovic, E.; Tarkowski, P.; Cavar Zeljkovic, S. Variation in phenolic composition of Knautia arvensis in correlation with geographic area and plant organ. Nat. Prod. Commun. 2017, 4, 545–548. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Karalija, E.; Parić, A.; Muratović, E.; Tarkowski, P. Environmental factors do not affect the phenolic profile of Hypericum perforatum growing wild in Bosnia and Herzegovina. Nat. Prod. Commun. 2017, 27, 1465–1468. [Google Scholar] [CrossRef]
- Bos, R.; Woerdenbag, H.J.; Hendriks, H.; Zwaving, J.H.; De Smet, P.A.; Tittel, G.; Wikström, H.V.; Scheffer, J.J. Analytical aspects of phytotherapeutic valerian preparations. Phytochem. Anal. 1996, 7, 143–151. [Google Scholar] [CrossRef]
- González-Trujano, M.E.; Contreras-Murillo, G.; López-Najera, C.A.; Hidalgo-Flores, F.J.; Navarrete-Castro, A.; Sánchez, C.G.; Magdaleno-Madrigal, V.M. Anticonvulsant activity of Valeriana edulis roots and valepotriates on the pentylenetetrazole-induced seizures in rats. J. Ethnopharmacol. 2020, 265, 113299. [Google Scholar] [CrossRef]
- Pilerood, S.A.; Prakash, J. Nutritional and medicinal properties of valerian (Valeriana officinalis) herb: A review. Int. J. Food Sci. Nutr. 2013, 1, 25–33. [Google Scholar]
- Dhiman, B.; Sharma, P.; Pal, P.K. Biology, chemical diversity, agronomy, conservation and industrial importance of Valeriana jatamansi: A natural sedative. J. Appl. Res. Med. Aromat. Plants 2020, 16, 100243. [Google Scholar] [CrossRef]
- Bhatt, I.D.; Dauthal, P.; Rawat, S.; Gaira, K.S.; Jugran, A.; Rawal, R.S.; Dhar, U. Characterization of essential oil composition, phenolic content, and antioxidant properties in wild and planted individuals of Valeriana jatamansi Jones. Sci. Hortic. 2012, 136, 61–68. [Google Scholar] [CrossRef]
- Rondón, M.; Velasco, J.; Rojas, J.; Gámez, L.; León, G.; Entralgo, E.; Morales, A. Antimicrobial activity of four Valeriana (Caprifoliaceae) species endemic to the Venezuelan Andes. Rev. Biol. Trop. 2018, 66, 1282–1289. [Google Scholar] [CrossRef]
- Jugran, A.K.; Rawat, S.; Bhatt, I.D.; Rawal, R.S. Essential oil composition, phenolics and antioxidant activities of Valeriana jatamansi at different phenological stages. Plant Biosyst. 2021, 155, 891–898. [Google Scholar] [CrossRef]
- Šoljan, D.; Muratović, E.; Abadžić, S. Plants of the Mountains of Bosnia and Herzegovina; TKD Šahinpašić: Sarajevo, Bosnia and Herzegovina, 2009; p. 382. [Google Scholar]
- Isebrands, J.G.; Richardson, J. Poplars and Willows: Trees for Society and the Environment; The Food and Agriculture Organization of the United Nations: Boston, MA, USA, 2014; p. 634. [Google Scholar] [CrossRef]
- Drummond, E.M.; Harbourne, N.; Marete, E.; Martyn, D.; Jacquier, J.C.; O’Riordan, D.; Gibney, E.R. Inhibition of proinflammatory biomarkers in THP1 macrophages by polyphenols derived from chamomile, meadowsweet and willow bark. Phytother. Res. 2013, 27, 588–594. [Google Scholar] [CrossRef]
- Shara, M.; Stohs, S.J. Efficacy and safety of white willow bark (Salix alba) extracts. Phytother. Res. 2015, 29, 1112–1116. [Google Scholar] [CrossRef]
- Veiga, M.; Costa, E.M.; Silva, S.; Pintado, M. Impact of plant extracts upon human health: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 873–886. [Google Scholar] [CrossRef]
- Nahrstedt, A.; Schmidt, M.; Jäggi, R.; Metz, J.; Khayyal, M.T. Willow bark extract: The contribution of polyphenols to the overall effect. Wien. Med. Wochenschr. 2007, 157, 348–351. [Google Scholar] [CrossRef]
- Freischmidt, A.; Untergehrer, M.; Ziegler, J.; Knuth, S.; Okpanyi, S.; Müller, J.; Kelber, O.; Weiser, D.; Jürgenliemk, G. Quantitative analysis of flavanones and chalcones from willow bark. Pharmazie 2015, 70, 565–568. [Google Scholar] [CrossRef]
- Contandriopoulos, J. Differentiation and evolution of the genus Campanula in the Mediterranean region. In Plant Biosystematics; Grant, W.F., Ed.; Academic Press: Toronto, ON, Canada, 1984; pp. 141–158. [Google Scholar]
- Pieroni, A. Medicinal plants and food medicines in the folk traditions of the upper Lucca Province, Italy. J. Ethnopharmacol. 2000, 70, 235–273. [Google Scholar] [CrossRef]
- Cuendet, M.; Potterat, O.; Hostettmann, K. Flavonoids and phenylpropanoid derivatives from Campanula barbata. Phytochemistry 2001, 56, 631–636. [Google Scholar] [CrossRef]
- Brandt, K.; Kondo, T.; Aoki, H.; Goto, T. Structure and biosynthesis of anthocyanins in flowers of Campanula. Phytochemistry 1993, 33, 209–212. [Google Scholar] [CrossRef]
- Jaradat, N.A.; Abualhasan, M. Comparison in vitro of antioxidant activity between fifteen Campanula species (Bellflower) from Palestinian Flora. Pharmacogn. J. 2015, 7, 276–279. [Google Scholar] [CrossRef]
- Moosavi, S.R.; Shams Ardekani, M.R.; Vazirian, M.; Sadati Lamardi, S.N. Campanula latifola, Giant Bellflower; ethno-botany, phytochemical and antioxidant evaluation. Trad. Integr. Med. 2018, 3, 113–119. [Google Scholar]
- Šilić, Č. Endemične Biljke, 3rd ed.; Svjetlost: Sarajevo, Bosnia and Herzegovina, 1990; p. 134. [Google Scholar]
- Ticktin, T. The ecological implications of harvesting non-timber forest products. J. Appl. Ecol. 2004, 41, 11–21. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Jeszka-Skowron, M.; Ozer, M.S. Valeriana dioscoridis aerial parts’ extracts—A new source of phytochemicals with antioxidant and enzyme inhibitory activities. Ind. Crop. Prod. 2020, 148, 112273. [Google Scholar] [CrossRef]
- Iqbal, M.; Bawazeer, S.; Bakht, J.; Rauf, A.; Shah, M.R.; Khalil, A.A.; El-Esawi, M.A. Green synthesis of silver nanoparticles from Valeriana jatamansi shoots extract and its antimicrobial activity. Green Process. Synth. 2020, 9, 715–721. [Google Scholar] [CrossRef]
- Khuda, F.; Iqbal, Z.; Khan, A.; Nasir, F. Antimicrobial and anti-inflammatory activities of leaf extract of Valeriana wallichii DC. Pak. J. Pharm. Sci. 2012, 25, 715–719. [Google Scholar] [PubMed]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Bazzaz, B.S.F. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Contr. 2019, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Fankam, A.G.; Kuiate, J.R.; Kuete, V. Antibacterial and antibiotic resistance modulatory activities of leaves and bark extracts of Recinodindron heudelotii (Euphorbiaceae) against multidrug-resistant Gram-negative bacteria. BMC Complement. Altern. Med. 2017, 17, 168. [Google Scholar] [CrossRef]
- Atef, N.M.; Shanab, S.M.; Negm, S.I.; Abbas, J.A. Evaluation of antimicrobial activity of some plant extracts against antibiotic susceptible and resistant bacterial strains causing wound infection. Bull. Natl. Res. Cent. 2019, 43, 144. [Google Scholar] [CrossRef]
- Dou, J.; Xu, W.; Koivisto, J.J.; Mobley, J.K.; Padmakshan, D.; Kögler, M.; Xu, C.; Willför, S.; Ralph, J.; Vuorinen, T. Characteristics of hot water extracts from the bark of cultivated willow (Salix sp.). ACS Sustain. Chem. Eng. 2018, 6, 5566–5573. [Google Scholar] [CrossRef]
- Budny, M.; Zalewski, K.; Stolarski, M.J.; Wiczkowski, W.; Okorski, A.; Stryiński, R. The phenolic compounds in the young shoots of selected willow cultivars as a determinant of the plants’ attractiveness to Cervids (Cervidae, Mammalia). Biology 2021, 10, 612. [Google Scholar] [CrossRef]
- Popova, T.P.; Kaleva, M.D. Antimicrobial effect in vitro of aqueous extracts of leaves and branches of willow (Salix babylonica L). Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 146–152. [Google Scholar]
- Fayaz, M.; Sivakumaar, P.K. Phytochemical Analysis and antimicrobial activity of Salix alba against dental biofilm forming bacteria. Int. J. Pharm. Biol. Arch. 2014, 5, 137–140. [Google Scholar] [CrossRef]
- Javed, B.; Nawaz, K.; Munazir, M. Phytochemical analysis and antibacterial activity of tannins extracted from Salix alba L. against different gram-positive and gram-negative bacterial strains. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 1303–1314. [Google Scholar] [CrossRef]
- Wang, L.; Bi, C.; Cai, H.; Liu, B.; Zhong, X.; Deng, X.; Wang, T.; Xiang, H.; Niu, X.; Wang, D. The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase A inhibition. Front. Microbiol. 2015, 6, 1031. [Google Scholar] [CrossRef]
- Huang, J.J.; Yu, H.; Hong, G.; Cheng, H.; Zheng, M. Antifungal effect of tea extracts on Candida albicans. Dent. Mater. J. 2020, 39, 664–669. [Google Scholar] [CrossRef]
- Hsu, H.; Sheth, C.C.; Veses, V. Herbal extracts with antifungal activity against Candida albicans: A systematic review. Mini-Rev. Med. Chem. 2021, 21, 90–117. [Google Scholar] [CrossRef]
- Hemaiswarya, S.; Doble, M. Synergistic interaction of phenylpropanoids with antibiotics against bacteria. J. Med. Microbiol. 2010, 59, 1469–1476. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Sarikurkcu, R.T.; Tepe, B. Campanula macrostachya: Biological activity and identification of phenolics using a liquid chromatography-electrospray ionization tandem mass spectrometry system. Environ. Sci. Pollut. Res. 2021, 28, 21812–21822. [Google Scholar] [CrossRef]
- Korkmaz, B.; Fandakli, S.; Barut, B.; Yildirim, S.; Sener, S.O.; Ozturk, E.; Terzioglu, S.; Yayli, N. Volatile and Phenolic Components and Antioxidant, Acetylcholinesterase, Tyrosinase, α-Glucosidase Inhibitory Effects of Extracts Obtained From Campanula latifolia L. subsp. latifolia. J. Essent. Oil-Bear. Plant. 2020, 23, 1118–1131. [Google Scholar] [CrossRef]
- Janković, I.B.; Drobac, M.B.; Lakušić, D.V. Compounds of the methanolic leaf extract as chemotaxonomic markers for the Campanula pyramidalis complex (Campanulaceae). Acta Bot. Croat. 2014, 73, 481–490. [Google Scholar] [CrossRef][Green Version]
- Alhage, J.; Elbitar, H.; Taha, S.; Benvegnu, T. In vitro assessment of antioxidant, antimicrobial, cytotoxic, anti-inflammatory, and antidiabetic activities of Campanula retrorsa crude extracts. Pharmacogn. Res. 2018, 10, 397–403. [Google Scholar] [CrossRef]
- Usta, C.; Yildirim, A.B.; Turker, A.U. Antibacterial and antitumor activities of some plants grown in Turkey. Biotechnol. Biotechnol. Equip. 2014, 28, 306–315. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Šišková, J.; Komzáková, K.; De Diego, N.; Kaffková, K.; Tarkowski, P. Phenolic compounds and biological activity of selected Mentha species. Plants 2021, 10, 550. [Google Scholar] [CrossRef]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- NCCLS. Performance Standards for Antimicrobial Disc Susceptibility Tests. Approved Standard; NCCLS Publication M2-A5; Clinical and Laboratory Standards Institute: Villanova, PA, USA, 1993. [Google Scholar]
Compound | VM-F | VM-L | SR-B | SR-OB | SR-YB | SR-L | CH-F | CH-L | CH-S |
---|---|---|---|---|---|---|---|---|---|
2,3-Dihydoxybenzoic acid | nd | nd | nd | nd | 6.94 d ± 1.60 | nd | 0.30 e ± 0.00 | 0.22 f ± 0.08 | nd |
Gallic acid | nd | nd | nd | nd | nd | nd | 1.80 e ± 0.02 | nd | nd |
3-Hydroxybenzoic acid | nd | 1.11 c ± 0.09 | nd | nd | nd | 1.95 c ± 0.39 | nd | nd | nd |
4-Hydroxybenzoic acid | 3.22 c ± 0.03 | 2.06 b ± 0.52 | nd | nd | 1.77 e ± 0.10 | nd | 31.24 b ± 4.97 | 3.75 d,e ± 0.17 | nd |
Salicylic acid | 2.79 c ± 0.01 | 3.31 b ± 0.89 | nd | 8.79 b ± 0.05 | 32.33 c ± 0.95 | nd | nd | nd | 0.65 c ± 0.00 |
Syringic acid | nd | nd | 5.33 b ± 0.13 | 5.18 c ± 0.04 | 5.26 d ± 0.05 | 5.19 b ± 0.03 | 10.85 d ± 1.51 | 9.75 c ± 0.30 | 5.70 b ± 0.37 |
Vanillic acid | nd | nd | 4.83 b ± 0.35 | 5.14 c ± 0.54 | 5.31 d ± 0.73 | nd | 6.65 d ± 1.23 | 4.83 d ± 0.81 | 4.97 b ± 0.89 |
Caffeic acid | 0.93 e ± 0.12 | 1.05 c,d ± 0.15 | nd | nd | nd | 0.88 d ± 0.04 | 0.39 e ± 0.01 | 1.15 f ± 0.05 | nd |
Chlorogenic acid | nd | nd | nd | nd | 48.39 b ± 0.95 | 438.97 a ± 79.64 | 32.70 b ± 0.66 | 55.55 b ± 2.00 | nd |
p-Coumaric acid | 1.84 d ± 0.12 | 1.93 b,c ± 0.02 | nd | nd | 1.25 e ± 0.03 | nd | 20.20 c ± 3.73 | 1.82 e,f ± 0.07 | nd |
Ferulic acid | nd | nd | 2.35 c ± 0.08 | nd | 1.40 e ± 0.03 | nd | 7.11 d ± 1.16 | 2.85 e ± 0.02 | 1.06 c ± 0.03 |
Sinapic acid | nd | nd | 0.91 d ± 0.01 | 0.92 d ± 0.01 | 0.93 e ± 0.02 | 0.93 d ± 0.01 | 1.17 e ± 0.02 | 1.33 f ± 0.06 | 0.94 c ± 0.05 |
Apigenin | 32.50 b ± 0.94 | nd | nd | nd | nd | nd | nd | nd | nd |
Catechin | nd | nd | 838.39 a ± 210.13 | 843.62 a ± 157.44 | 485.97 a ± 6.86 | 359.97 a ± 45.97 | nd | nd | nd |
Hesperetin | 0.32 e ± 0.01 | 0.54 d ± 0.15 | nd | nd | nd | nd | nd | nd | nd |
Pinocembrin | nd | nd | nd | nd | nd | 4.36 b ± 0.31 | 16.72 c ± 0.93 | 9.18 c ± 0.86 | nd |
Quercetin | 43.76 a ± 2.12 | nd | nd | nd | nd | nd | nd | nd | nd |
Rutin | 0.75 e ± 0.01 | 1.54 d ± 0.52 | nd | nd | nd | 3.98 b ± 1.23 | 82.74 a ± 3.49 | 205.33 a ± 25.50 | 11.14 a ± 0.24 |
Total identified (%) | 8.61 | 1.15 | 85.18 | 86.37 | 58.96 | 81.62 | 21.19 | 29.57 | 2.45 |
Plant Extract/ Compound | Antioxidant Activity | Antimicrobial Activity (mm) | ||||
---|---|---|---|---|---|---|
IC50 (μg/mL) | S. aboni | E. coli | E. faecalis | S. aureus | C. albicans | |
VM-F | 48.13 e ± 0.86 | 11.67 c ± 0.58 | 13.33 c ± 0.58 | 14.33d ± 1.15 | 15.00 c,d ± 1.00 | 20.33 b ± 0.58 |
VM-L | 95.02 c ± 1.35 | 14.00 b ± 1.73 | 15.67 a ± 2.89 | 17.00 c ± 1.00 | 18.00 c ± 3.46 | 21.33 b ± 1.15 |
SR-B | 94.41 c ± 0.26 | nd | 12.33 c,d ± 1.15 | 12.00 e ± 1.00 | 14.00 d ± 0.00 | 15.33 c,d ± 1.15 |
SR-OB | 92.96 c,d ± 0.15 | nd | nd | nd | nd | nd |
SR-YB | 93.83 c ± 0.25 | nd | 11.00 d ± 0.00 | nd | 13.00 d ± 1.73 | nd |
SR-L | 94.22 c ± 0.05 | nd | 11.33 d ± 0.58 | 14.67 d ± 0.58 | 17.33 c ± 0.58 | nd |
CH-F | 129.21 b ± 1.70 | 11.33 c ± 0.58 | 11.67 d ± 1.15 | 15.67 d ± 1.15 | 14.33 d ± 0.58 | 11.33 e ± 1.15 |
CH-L | 89.65 d ± 0.61 | 11.67 c ± 1.15 | 14.33 a,c ± 1.15 | 14.67 d ± 1.15 | 13.67 d ± 0.58 | nd |
CH-S | 223.25 a ± 4.75 | nd | nd | 10.67 f ± 0.58 | nd | 11.67 e ± 1.15 |
Chlorogenic acid | 5.62 h ± 0.02 | 13.00 b,c ± 0.00 | nd | nd | nd | 14.33 d ± 0.58 |
Ferulic acid | 7.36 h ± 0.10 | nd | 14.67 a,c ± 0.58 | nd | nd | nd |
p-Coumaric acid | 17.76 g ± 1.09 | 13.67 b,c ± 0.58 | 11.33 d ± 0.58 | 13.00 e ± 0.00 | nd | 17.00 c ± 0.00 |
Salicylic acid | 2.71 h ± 0.04 | 13.50 b,c ± 0.71 | 13.00 b,c ± 1.73 | 13.00 e ± 1.73 | nd | 25.33 a ± 0.58 |
4-Hydroxybenzoic acid | 45.60 e ± 0.41 | 12.33 b,c ± 1.53 | 12.00 c,d ± 0.00 | 12.67 e ± 1.15 | nd | 18.67 c ± 2.89 |
Quercetin | 38.47 e ± 1.90 | nd | 12.33 c,d ± 0.58 | 23.00 a ± 1.00 | 27.33 b ± 2.31 | 22.33 b ± 2.52 |
Caffeic acid | 28.55 f ± 1.04 | 13.00 b,c ± 1.41 | 15.00 a ± 1.00 | 12.00 e ± 0.00 | nd | nd |
Antibiotic/antimicotic | na | 17.00 a ± 1.00 | 14.00 a ± 2.00 | 19.50 b ± 0.50 | 34.00 a ± 2.00 | 19.67 b,c ± 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karalija, E.; Dahija, S.; Demir, A.; Bešta-Gajević, R.; Zeljković, S.Ć.; Tarkowski, P. Exploring New Sources of Bioactive Phenolic Compounds from Western Balkan Mountains. Plants 2022, 11, 1002. https://doi.org/10.3390/plants11071002
Karalija E, Dahija S, Demir A, Bešta-Gajević R, Zeljković SĆ, Tarkowski P. Exploring New Sources of Bioactive Phenolic Compounds from Western Balkan Mountains. Plants. 2022; 11(7):1002. https://doi.org/10.3390/plants11071002
Chicago/Turabian StyleKaralija, Erna, Sabina Dahija, Arnela Demir, Renata Bešta-Gajević, Sanja Ćavar Zeljković, and Petr Tarkowski. 2022. "Exploring New Sources of Bioactive Phenolic Compounds from Western Balkan Mountains" Plants 11, no. 7: 1002. https://doi.org/10.3390/plants11071002
APA StyleKaralija, E., Dahija, S., Demir, A., Bešta-Gajević, R., Zeljković, S. Ć., & Tarkowski, P. (2022). Exploring New Sources of Bioactive Phenolic Compounds from Western Balkan Mountains. Plants, 11(7), 1002. https://doi.org/10.3390/plants11071002